WTM: The Site-Wise Empirical Wuhan University Tropospheric Model
Abstract
:1. Introduction
2. Determination of WTM
2.1. Ray-Tracing
2.2. A-Priori Coefficient Determination
2.3. Slant Path Delay Modeling
2.4. Time-Variant Analysis
2.5. Time Series Fitting
3. Evaluation of WTM
3.1. Evaluation Strategies
3.2. Model Accuracy Analysis
4. Validation of WTM in BDS PPP
4.1. Data Processing Strategies
4.2. Coordinate Repeatability Analysis
4.3. Coordinate and ZTD Difference Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landskron, D. Modeling Tropospheric Delays for Space Geodetic Techniques. Ph.D. Thesis, Department of Geodesy and Geoinformation, TU Wien, Wien, Austria, 2017. Available online: http://repositum.tuwien.ac.at/obvutwhs/content/titleinfo/2099559 (accessed on 13 September 2022).
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Landskron, D.; Böhm, J. Refined discrete and empirical horizontal gradients in VLBI analysis. J. Geod. 2018, 92, 1387–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marini, J.W. Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci. 1972, 7, 223–231. [Google Scholar] [CrossRef]
- Herring, T.A. Modeling atmospheric delays in the analysis of space geodetic data. In Proceedings of the Refraction of Transatmospheric Signals in Geodesy, The Hague, The Netherlands, 19–22 May 1992; Netherlands Geodetic Commission Publications in Geodesy: Delft, The Netherlands, 1992; Volume 36, pp. 157–164. [Google Scholar]
- Niell, A.E. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. Solid Earth 1996, 101, 3227–3246. [Google Scholar] [CrossRef]
- Böhm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. Solid Earth 2006, 111, 1–9. [Google Scholar] [CrossRef]
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [Green Version]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef] [Green Version]
- MacMillan, D.S.; Ma, C. Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys. Res. Lett. 1997, 24, 453–456. [Google Scholar] [CrossRef]
- Böhm, J.; Urquhart, L.; Steigenberger, P.; Heinkelmann, R.; Nafisi, V.; Schuh, H. A priori gradients in the analysis of space geodetic observations. In Reference Frames for Applications in Geosciences; Springer: Berlin/Heidelberg, Germany, 2013; pp. 105–109. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P. The ERA5 global reanalysis. Q. J. R. Meteor. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Liang, H.; Lou, Y.; Cai, Y.; Cao, Y.; Zhou, Y.; Liu, W. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China. J. Geod. 2019, 93, 1897–1909. [Google Scholar] [CrossRef]
- Zhou, Y.; Lou, Y.; Zhang, W.; Kuang, C.; Liu, W.; Bai, J. Improved performance of ERA5 in global tropospheric delay retrieval. J. Geod. 2020, 94, 103. [Google Scholar] [CrossRef]
- Hofmeister, A. Determination of Path Delays in the Atmosphere for Geodetic VLBI by Means of Ray-Tracing. Ph.D. Thesis, Department of Geodesy and Geoinformation, TU Wien, Wien, Austria, 2016. Available online: http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444 (accessed on 13 September 2022).
- Wallace, J.M.; Hobbs, P.V. Atmospheric Thermodynamics//Atmospheric Science; Elsevier: Amsterdam, The Netherlands, 2006; pp. 63–111. [Google Scholar]
- Rocken, C.; Sokolovskiy, S.; Johnson, J.M.; Hunt, D. Improved mapping of tropospheric delays. J. Atmos. Ocean. Technol. 2001, 18, 1205–1213. [Google Scholar] [CrossRef]
- Nilsson, T.; Böhm, J.; Wijaya, D.D.; Tresch, A.; Nafisi, V.; Schuh, H. Path delays in the neutral atmosphere. In Atmospheric Effects in Space Geodesy; Böhm, J., Schuh, H., Eds.; Springer Atmospheric Sciences; Springer: Berlin, Germany, 2013; pp. 73–136. ISBN 9783642369315. [Google Scholar] [CrossRef]
- Rüeger, J.M. Refractive index formulae for radio waves. In Proceedings of the FIG XXII International Congress (FIG), Washington, DC, USA, 19–26 April 2002; Available online: https://www.fig.net/resources/proceedings/fig_proceedings/fig_2002/Js28/JS28_rueger.pdf (accessed on 13 September 2022).
- Böhm, J. Troposphärische Laufzeitverzögerungen in der VLBI. Ph.D. Thesis, Institut für Geodäsie und Geophysik, TU Wien, Wien, Austria, 2004. Available online: https://publik.tuwien.ac.at/files/PubDat_119666.pdf (accessed on 13 September 2022).
- Böhm, J.; Schuh, H. Vienna mapping functions in VLBI analyses. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Zhou, Y.; Lou, Y.; Zhang, W.; Bai, J.; Zhang, Z. An improved tropospheric mapping function modeling method for space geodetic techniques. J. Geod. 2021, 95, 98. [Google Scholar] [CrossRef]
- Chen, G.; Herring, T. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res. Solid Earth 1997, 102, 20489–20502. [Google Scholar] [CrossRef]
- Zhou, Y.; Lou, Y.; Zhang, W.; Wu, P.; Bai, J.; Zhang, Z. Tropospheric Second-Order Horizontal Gradient Modeling for GNSS PPP. Remote Sens. 2022, 14, 4807. [Google Scholar] [CrossRef]
- Zhang, W.; Lou, Y.; Huang, J.; Liu, W. A refined regional empirical pressure and temperature model over China. Adv. Space Res. 2018, 62, 1065–1074. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Chen, R.; Fu, W.; Xu, B.; Jiang, P.; Liu, J.; Zhou, H.; Han, Y. Refining the empirical global pressure and temperature model with the ERA5 reanalysis and radiosonde data. J. Geod. 2021, 95, 31. [Google Scholar] [CrossRef]
- Mateus, P.; Mendes, V.B.; Plecha, S.M. HGPT2: An ERA5-based global model to estimate relative humidity. Remote Sens. 2021, 13, 2179. [Google Scholar] [CrossRef]
- Urquhart, L.; Nievinski, F.G.; Santos, M.C. Assessment of troposphere mapping functions using three-dimensional ray-tracing. GPS Solut. 2014, 18, 345–354. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Q.; Geng, J.; Lou, Y.; Ge, M.; Liu, J. Recent development of PANDA software in GNSS data processing. In Proceedings of the International Conference on Earth Observation Data Processing and Analysis (ICEODPA), Wuhan, China, 28–30 December 2008; International Society for Optics and Photonics. SPIE: Bellingham, DC, USA, 2008; Volume 7285, p. 72851S. [Google Scholar] [CrossRef]
- Fritsche, M.; Dietrich, R.; Knöfel, C.; Rülke, A.; Vey, S.; Rothacher, M.; Steigenberger, P. Impact of higher-order ionospheric terms on GPS estimates. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif. Satell. Geod. 1972, 15, 247–251. [Google Scholar]
- Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 1987, 22, 379–386. [Google Scholar] [CrossRef]
- MacMillan, D.S. Atmospheric gradients from very long baseline interferometry observations. Geophys. Res. Lett. 1995, 22, 1041–1044. [Google Scholar] [CrossRef]
- Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Tregoning, P.; Dam, T.V. Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
Item | GPT3 | WTM |
---|---|---|
Model Type |
|
|
Data source |
|
|
Time variation |
|
|
Space coverage |
|
|
Input parameters |
|
|
Output parameters |
|
|
A-priori and coefficients |
|
|
Components | Models | e = 3° | e = 5° | e = 7° | e = 10° | e = 15° | e = 30° | e = 70° |
---|---|---|---|---|---|---|---|---|
MF | GPT3 | 60.64 | 21.57 | 10.06 | 4.11 | 1.36 | 0.19 | 0.03 |
WTM | 58.34 | 20.68 | 9.39 | 3.77 | 1.27 | 0.18 | 0.03 | |
HG | GPT3 | 74.66 | 35.66 | 20.35 | 10.73 | 4.99 | 1.25 | 0.15 |
WTM | 72.99 | 34.75 | 19.81 | 10.44 | 4.85 | 1.22 | 0.15 |
Observation | |
---|---|
Sampling interval | 300 s |
Frequency combination | Ionosphere-free combination of B1I and B3I |
Elevation cutoff angle | 3° |
Elevation weighting strategy | |
Error correction | |
Phase center variations | igs14.atx |
Higher-order ionospheric delay | GIM and IGRF13 (Fritsche et al. [32]) |
Ocean tide loading | FES2014b |
A priori tropospheric delay | Scheme 1: ZHD (GPT3 + Saastamoinen [33]); ZWD (GPT3+Askne and Nordius [34]); mapping function (GPT3) Scheme 2: ZHD (WTM); ZWD (WTM); mapping function (WTM) |
Parameter estimation | |
Satellite orbits and clock corrections | Fixed from GBM 5 min products |
Mapping function | Scheme 1: Wet GPT3 Scheme 2: Wet WTM |
ZWD stochastic model | Piece-wise constant (1 h), random walk between segments |
Gradient mapping function | (MacMillan [35]) |
Gradient stochastic model | Piece-wise constant (2 h), random walk between segments |
Station coordinates | Daily constant |
Receiver clock corrections | White noise |
Ambiguities | Fixed |
Models | N | E | U |
---|---|---|---|
GPT3 | 2.12 | 3.28 | 7.72 |
WTM | 2.12 | 3.29 | 7.73 |
Components | WTM-GPT3 | |||||
---|---|---|---|---|---|---|
Min | Max | Mean | ||||
Bias | RMS | Bias | RMS | Bias | RMS | |
U | −1.78 | 0.79 | 1.39 | 2.95 | −0.64 | 1.36 |
ZTD | −0.43 | 0.31 | 0.87 | 1.03 | 0.36 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Lou, Y.; Zhang, W.; Wu, P.; Bai, J.; Zhang, Z. WTM: The Site-Wise Empirical Wuhan University Tropospheric Model. Remote Sens. 2022, 14, 5182. https://doi.org/10.3390/rs14205182
Zhou Y, Lou Y, Zhang W, Wu P, Bai J, Zhang Z. WTM: The Site-Wise Empirical Wuhan University Tropospheric Model. Remote Sensing. 2022; 14(20):5182. https://doi.org/10.3390/rs14205182
Chicago/Turabian StyleZhou, Yaozong, Yidong Lou, Weixing Zhang, Peida Wu, Jingna Bai, and Zhenyi Zhang. 2022. "WTM: The Site-Wise Empirical Wuhan University Tropospheric Model" Remote Sensing 14, no. 20: 5182. https://doi.org/10.3390/rs14205182
APA StyleZhou, Y., Lou, Y., Zhang, W., Wu, P., Bai, J., & Zhang, Z. (2022). WTM: The Site-Wise Empirical Wuhan University Tropospheric Model. Remote Sensing, 14(20), 5182. https://doi.org/10.3390/rs14205182