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Abstract: Three dimensional (3D) green volume is an important tree factor used in forest surveys as a
prerequisite for estimating aboveground biomass (AGB). In this study, we developed a method for
accurately calculating the 3D green volume of single trees from unmanned aerial vehicle laser scanner
(ULS) data, using a voxel coupling convex hull by slices algorithm, and compared the results using
voxel coupling convex hull by slices algorithm with traditional 3D green volume algorithms (3D
convex hull, 3D concave hull (alpha shape), convex hull by slices, voxel and voxel coupling convex
hull by slices algorithms) to estimate AGB. Our results showed the following: (1) The voxel coupling
convex hull by slices algorithm can accurately estimate the 3D green volume of a single ginkgo tree
(RMSE = 11.17 m3); (2) Point cloud density can significantly affect the extraction of 3D green volume;
(3) The addition of the 3D green volume parameter can significantly improve the accuracy of the
model to estimate AGB, where the highest accuracy was obtained by the voxel coupling convex hull
by slices algorithm (CV-R2 = 0.85, RMSE = 11.29 kg, and nRMSE = 15.12%). These results indicate
that the voxel coupling convex hull by slices algorithms can more effectively calculate the 3D green
volume of a single tree from ULS data. Moreover, our study provides a comprehensive evaluation of
the use of ULS 3D green volume for AGB estimation and could significantly improve the estimation
accuracy of AGB.

Keywords: 3D green volume; aboveground biomass; UAV-Lidar; urban forest; random forest model

1. Introduction

The three-dimensional (3D) green volume of an urban forest could be defined as
the volume of space occupied by all green stems and leaves of plants in the city [1–5],
which reflects the ecological functions and environmental benefits of urban forests in
terms of spatial patterns. Thus, it has been well established that 3D green volume plays
important roles in the estimation of aboveground biomass (AGB), the estimation of the
environmental benefits of greening, and the construction of forest fire risk models, thus,
effectively improving the efficiency of urban green space evaluation and green space
planning [6–9]. However, urban forests are composed of scattered trees, tree belts, forests
with structural diversity, and forests with broken distribution [10]. They are very different
from the large, continuously distributed forests in the general sense, thus, making the
monitoring and evaluation of urban forest resources complicated. How to accurately
estimate the 3D green volume and AGB of urban forests has become an urgent problem to
be solved.

Methods for measuring 3D green volume currently include field measurements, optical
remote sensing estimation, and LiDAR estimation. The most widely used manual method
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for estimating canopy volume is the ellipsoidal method, in which crown diameters and
canopy heights are measured, assuming an ellipsoidal shape for the canopy [9]. The
disadvantage of this method is the large workload, and low efficiency, and it is difficult to
carry out a wide range of extensions. Optical remote sensing estimation is mainly based on
single-tree crown diameter extraction from high-resolution images combined with ground
measured data and on building crown diameter–crown height models to perform 3D green
volume estimation. This method has achieved good results in related research in China [11],
but it is difficult to comprehensively obtain the vertical distribution of forest structure. The
accuracy of the model needs to be further improved [12]. Light detection and ranging
(LiDAR) are an active remote sensing technique using pulsed or continuous-wave lasers to
measure the range of an object that can rapidly obtain dense 3D point clouds with high
precision. Moreover, LiDAR has become a trending topic of domestic and international
research because it can describe the forest canopy structure in more detail and provide
advanced technical means for accurate estimation of 3D green volume by enabling the leap
from two-dimensional (2D) to 3D forest ecosystem research [13–17].

A review of domestic and foreign literature found that the main algorithms for 3D
green volume estimation, based on LiDAR point clouds, include 3D convex hulls, 3D con-
cave hulls (alpha shape), convex hulls by slices, and voxels. For example, Ebadat et al. [18]
used unmanned aerial vehicle laser scanner (ULS) and photogrammetric point cloud
to extract 3D green volume based on a 3D convex hull algorithm. The results showed
that UAV photogrammetry and LiDAR point clouds were highly correlated (R2 = 0.99).
Vauhkonen et al. [19] extracted canopy volume based on ALS data. using the alpha shape
algorithm, and used it to estimate wood volume. He et al. [2] calculated the 3D green
volume based on terrestrial laser scanner (TLS) data. using the convex hull by slices al-
gorithm. and better obtained the 3D green volume of the Beijing urban forest (R2 > 0.85).
Fernández-Sarría et al. [20] extracted the 3D green volume of overhanging trees, using
a voxel algorithm, based on TLS data (R2 = 0.78), and the results showed that TLS has
some potential in predicting the 3D green volume of urban forests. How to choose the
appropriate algorithm and input parameters is the current problem faced by researchers.

LiDAR can accurately extract structural parameters, such as crown projection area,
crown diameter, and crown height, which makes it advantageous for single-tree AGB
estimation [21–23]. Three dimensional green volume characterizes the volume of space
occupied by plants. Therefore, the participation of 3D green volume in the estimation of
AGB has attracted extensive attention from scholars. For example, Tao et al. [24] showed
that a 3D green biomass incorporation model could more accurately estimate the AGB
(R2 = 0.77, RMSE = 179.0 Mg/ha). Hauglin et al. [6] estimated the AGB of a single tree plant
based on TLS extraction of voxelization parameters with higher accuracy than conventional
anisotropic growth models (R2 = 0.88, RMSE% = 32%).

LiDAR data acquisition includes TLS, airborne laser scanner (ALS), and ULS. The laser
radar scanner installed on the TLS ground support obtains a high-density point cloud, but it
takes a great deal of time to collect TLS data. due to its static properties, so its use cannot be
widely promoted [25]. ALS can obtain a wide range of 3D point cloud data, but low point
cloud density makes it impossible to accurately express stand structure [9]. Conversely,
ULS can efficiently acquire large-area point cloud data, and compared with ALS, ULS flies
at lower altitudes and can acquire a higher point cloud density [26]. However, there are
few studies on the extraction of single tree 3D green volume based on ULS [18].

Ginkgo (Ginkgo biloba L.) is widely distributed in China and East Asia, with the
advantages of an upright trunk, beautiful tree shape and strong resistance to diseases, etc. It
is an important tree species for urban greening and has high economic and ecological value.
It is of great significance to obtain accurate structural parameters of single Ginkgo trees.
This study developed a new algorithm to calculate tree 3D green volume from ULS data.
Coupled voxel and convex hull by slices algorithms provide a more accurate calculation
of 3D green volume, compared with those achieved using conventional algorithms. The
objectives of this study were the following: (1) to select the optimal algorithm for single
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tree 3D green volume extraction based on ULS data, (2) to evaluate the effect of point
cloud density variation on 3D green volume, and (3) to compare different 3D green volume
algorithms for AGB estimation.

2. Materials and Methods
2.1. Study Area and Data Acquisition

The study area, Zhejiang A&F University (Figure 1), is situated in Lin’an, Hangzhou,
Zhejiang Province. The geographical coordinates of Lin’an city are 30◦15′10′′~30◦15′30′′N,
119◦43′10′′~119◦43′40′′E. The area is dominated by hilly and mountainous terrain, and the
terrain slopes from west to southeast. The area has a subtropical monsoon climate, with
abundant light and abundant rainfall. The average annual precipitation is 1613.9 mm, with
158 days of precipitation, and the average annual frost-free period is 237 days. The average
elevation of the study area is approximately 50 m, and the area is covered with ginkgo trees
on both sides of Ginkgo avenue.
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Figure 1. Overview of the study area. (a) location of Hangzhou, (b) location of the study area,
(c) aerial photograph of the study area, (d) ULS point cloud of the study area, (e) ground image of
ginkgo, (f) ULS point cloud of ginkgo, (g) point cloud of a single tree of ginkgo.

Field work was conducted in July 2021. Data from 64 single ginkgo trees were mea-
sured. The coordinates of each single tree were located using a real-time kinematic (RTK)
device. The diameter at breast height (DBH) was measured using a diameter tape. The
single-tree height and branch height were measured using a hypsometer, and the north–
south and east–west crown diameters were measured using a tape rule [27]. Crown height
is tree height minus branch height [28]. The crown diameter is the average of the east–west
and north–south crown diameters. The single-tree 3D green volume values were calculated
according to the crown diameter and crown height based on the volume of the geometry [9].
The single-tree AGB values were calculated according to the tree height and DBH, based on
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the biomass allometric model developed by [29]. The measured forest structural attributes
for the single trees are summarized in Table 1.

Table 1. Descriptive statistics of field inventory data for 64 trees.

Statistics DBH (cm) Tree Height (m) Crown Diameter (m) Branch Height (m)

Minimum 14.80 8.00 6.00 1.40
Maximum 23.90 14.30 2.85 4.20

Range 9.10 6.30 3.15 2.80
SD 2.29 1.78 0.65 0.51

Average 18.76 11.01 4.45 2.37

2.2. ULS Data

The ULS data for this study were acquired in May 2021. The DJI Matrice 600 Pro six-
rotor unmanned aerial vehicle (UAV) was used in clear-weather and low-wind conditions.
Using the Velodyne Puck LITETM sensor to obtain the original ULS point cloud, the sensor
records the first echo of the pulse, with a flight altitude of 60 m, flight speed of 5 m/s,
swath width of 25 m, and route overlap rate of 50%, with an average point cloud density of
approximately 230 pts.

2.3. ULS Metrics

The ULS point cloud was preprocessed using LiDAR360 software. First, the single-tree
point cloud was denoised and filtered. Then, classification of ground points was carried
out using the improved progressive TIN densification (IPTD) algorithm [30] and a digital
elevation model (DEM), with a resolution of 0.5 m generated by irregular triangulation
interpolation [31]. Finally, the point cloud data were normalized to remove topographic
fluctuations from the data. Point clouds above 2 m were extracted as canopy point clouds,
and three sets of metrics were computed (Table 2) [32,33].

Table 2. Description of metrics derived from ULS data.

Metrics Description

Height-related metrics

Percentile height (H_5, H_10, H_20,
H_25, H_30, H_40, H_50, H_60, H_70,

H_75, H_80, H_90, H_95, H_99)

The percentiles of the canopy height distribution
(5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th,

75th, 80th, 90th, 95th, 99th) of first returns
Mean height (H_mean) Mean height above ground of all first returns

Maximum height (H_max) Maximum height above ground of all first returns
Median height (H_median) Median height above ground of all first returns
Interquartile spacing (H_iq) The interquartile spacing of heights of all first returns

Root mean square (H_sq) The root mean square of heights of all first returns
Kurtosis of height (H_kurtosis) The kurtosis of heights of all first returns

The coefficient of variation of height (H_cv) The coefficient of variation of heights of all first returns
Variance of height (H_variance) The variation of heights of all first returns

Density-related metrics Canopy return density (D1,D3,D5,D7,D9) The proportion of points above the quantiles
(10th, 30th, 50th, 70th and 90th) to total number of points

Canopy-related metrics
Canopy projection area (CS) The canopy projection area of all first returns

Crown diameter (CD) (Xmax−Xmin)+(Ymax−Ymin)
2

Crown height (CH) Zmax − Zmin

2.4. Green Volume Calculation Algorithm
2.4.1. Convex Hull Algorithm

A convex hull is a concept in computational geometry defined as finding a minimal
set of points such that the shape formed by the set of points can contain all points in the
2D plane or 3D space [34]. Figure 2a shows a schematic diagram of the 2D convex hull.
In this study, the point cloud of a single tree canopy is projected to the 2D plane, the 2D
convex hull is calculated, and the projected area of the canopy is extracted based on the
convhull function in MATLAB. Figure 2b shows the results of the convex hull algorithm in
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3D space, based on the quickhull algorithm to reconstruct the canopy surface and calculate
the volume under the convex hull, i.e., the 3D green volume [20].
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Figure 2. (a) A schematic diagram of a 2D convex hull algorithm, and (b) An example of a 3D convex
hull algorithm.

2.4.2. Concave Hull Algorithm

The concave hull algorithm is another common geometric calculation method, which
can be understood as an additional parameter alpha that can be set on top of the convex hull,
with alpha as the diameter of the circle rolling along the boundary of the convex polyhedron.
The trajectory of the rolling circle is the boundary of the concave polyhedron [19], so the
method is also called alpha shape. The algorithm is shown in Figure 3a. The process of
reconstructing the shape of the tree crown in the 3D concave hull does not connect vertices
that are too far apart, as in the 3D convex hull. If alpha tends to infinity, the concave hull
result is infinitely close to the convex hull, while a smaller alpha tends to be concave at
a certain position to fit the shape of the point set more closely [35,36]. The results of the
concave packet algorithm with different parameters on a tree are shown in Figure 3b. In
this study, we set the alpha range as 0.1–5 m, took 0.1 m as a step and calculated the RMSE
with measured 3D green volume to select the optimal scale.

2.4.3. Convex Hull by Slices Algorithm

The convex hull by slices algorithm is based on the idea of integration. First, the
canopy is sliced according to the uniform thickness, and each layer is considered a table
body. For each layer, the point clouds within 0.2 m of each plane are counted, these point
clouds are projected to the same plane, and the projected area of the plane is calculated
using the 2D convex hull algorithm. Then, the table product formula is used to calculate
the volume of each layer. Finally, all the slice volumes are summed to obtain the 3D green
volume (Figure 4) [27,37]. The convex hull by slices algorithm sets the height difference in
the range of 0.1–5 m with a step of 0.1 m, and calculates the RMSE with measured 3D green
volume to select the optimal scale. The volume of each layer of the table is calculated as
follows:

V = ∑
(
Sn + Sn+1 +

√
Sn + Sn+1

)
3

∗ ∆h (1)
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where Sn is the projected area of the nth layer of the point cloud calculated based on the
2D convex packet algorithm and ∆h is the height of the table.
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2.4.4. Voxel Algorithm

The voxel algorithm uses a regular 3D grid to partition the discrete canopy point cloud.
The initialized grid is divided into N smaller voxels according to the input parameters, and
the number of voxels in which at least one point exists in the statistical space is determined,
based on the range of the canopy point cloud to determine the polar values of the starting
grid in the XYZ coordinate directions. The sum of the space volumes occupied by the
voxels is the 3D green volume (Figure 5) [28,38]. In this study, the voxel edge length was
set in the range of 0.1–1 m, the step length was 0.1 m, and the RMSE was calculated with
measured 3D green volume to select the optimal scale.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 4. The schematic diagram of the convex hull by slices algorithm. 

2.4.4. Voxel algorithm 
The voxel algorithm uses a regular 3D grid to partition the discrete canopy point 

cloud. The initialized grid is divided into N smaller voxels according to the input 
parameters, and the number of voxels in which at least one point exists in the statistical 
space is determined, based on the range of the canopy point cloud to determine the polar 
values of the starting grid in the XYZ coordinate directions. The sum of the space volumes 
occupied by the voxels is the 3D green volume (Figure 5) [28,38]. In this study, the voxel 
edge length was set in the range of 0.1–1 m, the step length was 0.1 m, and the RMSE was 
calculated with measured 3D green volume to select the optimal scale. 

 
Figure 5. (a) The single tree point clouds (b) The schematic diagram of the voxel algorithm. 

2.4.5. Voxel Coupling Convex Hull by Slices Algorithm 
The 3D convex hull algorithm treats the canopy as a whole and cannot calculate the 

gaps within the canopy, and its boundary does not represent the real canopy outline, and, 
thus, it overestimates the measured 3D green volume [1,8]. The concave hull algorithm 
excessively removes voids and gaps when calculating the volume, leading to low 3D 
green volume estimation results [39]. Since the crown shape and size of different single 
trees of the same species vary greatly, uniform thickness slices in the vertical direction 
bring some errors to the calculation of 3D green volume based on the convex hull by slices 
algorithm [40]. The voxel algorithm can generate realistic canopy shapes to obtain high-
accuracy 3D green volume [28,41], but the missing ULS point cloud leads to 

Figure 5. (a) The single tree point clouds (b) The schematic diagram of the voxel algorithm.

2.4.5. Voxel Coupling Convex Hull by Slices Algorithm

The 3D convex hull algorithm treats the canopy as a whole and cannot calculate the
gaps within the canopy, and its boundary does not represent the real canopy outline, and,
thus, it overestimates the measured 3D green volume [1,8]. The concave hull algorithm
excessively removes voids and gaps when calculating the volume, leading to low 3D green
volume estimation results [39]. Since the crown shape and size of different single trees of the
same species vary greatly, uniform thickness slices in the vertical direction bring some errors
to the calculation of 3D green volume based on the convex hull by slices algorithm [40].
The voxel algorithm can generate realistic canopy shapes to obtain high-accuracy 3D green
volume [28,41], but the missing ULS point cloud leads to underestimation of 3D green
volume [9]. Figure 6 shows a single tree ginkgo canopy for the voxel algorithm, and it can
be seen that the point cloud absence increases with decreasing height.
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Based on the above analysis, a new algorithm for 3D green volume estimation, named
voxel coupling convex hull by slices, is proposed in this study. The method calculates the
3D green volume by dividing the single tree canopy point cloud into two parts according
to height, and the volume of the upper canopy point cloud is calculated using the voxel
algorithm, to prevent the calculation error of the upper layer caused by uniform thickness
slicing, while the volume of the lower canopy point cloud is calculated using the convex
hull by slices algorithm, to prevent the calculation error of the green volume caused by the
missing point cloud of the lower layer (Figure 7). To explore the optimal stratification ratio,
this study set the stratification range, from 10% to 90%, with a step size of 10%, extracted
the 3D green volume of each stratification, and calculated the RMSE with measured 3D
green volume to select the optimal scale. The computational equations of this new method
are shown below:

V = n ∗Vn + ∑
(
Sn + Sn+1 +

√
Sn + Sn+1

)
3

∗ ∆h (2)

where n is the number of voxels, Vn is the volume of a single voxel, Sn is the projected area
of the nth layer of the point cloud, and ∆h is the height of the table.
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2.5. Sensitivity Analysis of ULS Data Density

To explore the effect of different LiDAR point cloud densities on extracting 3D
green volume, the original point density (230 pts/m2) was used to lower densities to
75% (172.5 pts/m2), 50% (115 pts/m2), 25% (57.5 pts/m2), 10% (23 pts/m2) and 5%
(11.5 pts/m2). We used a point cloud height-based algorithm that groups all point clouds
by elevation and extracts reduced point clouds by percentage in each layer [15,42]. This
algorithm ensured the consistency of sampling, and the extracted point cloud data could
maintain a similar spatial distribution as the original point cloud data.

2.6. Random Forest Model

The RF algorithm, created by Breiman and Cutler, was developed as an integrated
learning model and a basic decision tree classifier. The decision tree algorithm is an
extension of the conventional framework. It improves prediction accuracy by combining
multiple decision trees [43,44]. The basic idea is that by using bootstrapping with repeated
sampling replacement from several random samples, and establishing a corresponding
decision tree for each sample, a RF could be constituted by combining the forecasting of
multiple decision trees [45].

The randomForest function under the randomForest data package in R software was
used to construct the RF model. First, in the method using the random forest R language, the
program determines the influence of each independent variable on the regression process
and then evaluates the influence using two indexes. One is the model mean square error
(%InMSE) increment when out-of-bag arguments appear, and the second is the impact of
purity on the tree node model when out-of-bag arguments arise. Second, the RF algorithm
has three important parameters: ntree is the number of random regression trees; nodesize
is the minimum size of the terminal node, whose default value is 5; and mtry is a variable
division number (the default value is one-third of the number of arguments). In this
study, ntree was set to 2000, and the rest of the parameters were set as default parameters.
The effect of each independent variable was determined based on the out-of-bag error
(%InMSE) [43] (Figure 8).
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2.7. Model Verification

In this study, the R2, RMSE, and nRMSE of 10-fold cross-validation were used to
evaluate the model fit. Generally, a higher accuracy is indicated by higher values of R2 and
lower values of RMSE and nRMSE. R2, RMSE and nRMSE were calculated as follows:

R2 = 1− ∑n
i=1 (pi − oi)

2

∑n
i=1 (oi − oi)

2 (3)

RMSE =

√
1
n ∑n

i=1(pi − oi)
2 (4)

nRMSE =

√
1
n ∑n

i=1 (pi − oi)
2

oi
(5)

where oi represents the observed AGB for the ith tree, oi is the observed mean value, pi is
the estimated AGB for the ith tree, and n is the number of trees.

3. Results
3.1. Determination of Different 3D Green Volume Algorithm Parameters

Figure 9 shows that in the alpha shape algorithm, as the alpha parameter increased,
the 3D green volume also became larger, and the alpha value tended to stabilize after 2 m.
The RMSE showed first a decreasing and then an increasing trend, with a peak at the 0.6 m
scale, and tended to stabilize after the alpha value was greater than 1.3 m. The RMSE
under this scale was 12.20 m3. The overall trend of the 3D green volume obtained by the
convex hull by slices algorithm decreased with increasing height interval, and the RMSE
did not change regularly, but, overall, the RMSE was higher when the height interval was
higher, with a peak at the 0.9 m scale. The RMSE under this scale was 13.01 m3. The 3D
green volume obtained by the voxel algorithm increased linearly with increasing voxel size,
and the RMSE showed a trend of first decreasing and then increasing, peaking at a scale
of 0.4 m. The optimal voxel size was selected as 0.4 × 0.4 × 0.4 m, and the RMSE at this
scale was 12.03 m3. Figure 10 shows the results of the voxel coupling convex hull by slices
algorithm. As the segmentation scale increased, the RMSE decreased and then increased.
The optimal canopy segmentation scale was selected to be 20%, and the RMSE at this scale
was 11.17 m3, which was lower than those of the other algorithms.
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3.2. Calculation Results of 3D Green Volume

The 3D green volume of single ginkgo trees differed significantly, due to differences
in growth. The results of the 3D green volume calculated using the five algorithms, 3D
convex hull, 3D concave hull, convex hull by slices, voxel and voxel coupling convex hull
by slices, are shown in Table 3. The average 3D green volume and RMSE calculated by
the 3D convex hull algorithm was much higher than those calculated by the other models,
ranging from 21.22–196.10 m3 (mean = 84.86 m3, RMSE = 45.31 m3). The average 3D green
volume calculated by the 3D concave hull was the lowest, ranging from 12.12–74.84 m3

(mean = 37.72 m3, RMSE = 12.20 m3). The convex hull by slices algorithm overestimated
3D green volume, and ranged from 15.16–133.53 m3 (mean = 53.85 m3, RMSE = 13.01 m3),
and the 3D green volume calculated by the voxel algorithm ranged from 16.00–81.79 m3

(mean = 43.13 m3, RMSE = 12.03 m3). The average 3D green volume calculated by the voxel
coupling convex hull by slices algorithm ranged from 15.58–97.20 m3 (mean = 46.61 m3),
and the 3D green volume calculated by this method was the minimum RMSE (11.17 m3).

Table 3. Three dimensional green volume of single trees of ginkgo by different algorithms.

Algorithms Min (m3) Max (m3) Mean (m3) RMSE (m3)

Observed data 12.55 96.39 46.85 -
3D convex hull 21.22 196.10 84.86 45.31
3D concave hull 12.12 74.84 37.72 12.20

convex hull by slices 15.16 133.53 53.85 13.01
voxel 16.00 81.79 43.13 12.03

voxel coupling convex hull by slices 15.58 97.20 46.61 11.17

3.3. ULS Point Density Effects on the Performance of the 3D Green Volume

To investigate the effects of ULS point density on 3D green volume, we calculated using
5 algorithms with different sampling densities of 75% (172.5 pts/m2), 50% (115 pts/m2),
25% (57.5 pts/m2), 10% (23 pts/m2) and 5% (11.5 pts/m2) and the Pearson’s correlation
between AGB and 3D green volume (Figure 11). The box plot in Figure 11 shows the
changes in the 3D green volume values due to the decrease in point cloud density. The
3D green volume values and r values of all five algorithms decreased as the point cloud
density decreased; among them, the values of the 3D convex hull and convex hull by slices
algorithm decreased slowly with the point cloud density from 100% (230 pts/m2) to 10%
(23 pts/m2), and the correlation with the AGB was stable. However, when the point density
decreased to 5% (11.5 pts/m2), there was a marked decrease in the r values and 3D green
volume values (3D convex hull, r = 0.88–0.86; convex hull by slices, r = 0.84–0.80). For the
alpha shape and voxel algorithms, there was a slight downward trend in the 3D green
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volume value and r values as the point cloud density decreased from 100% (230 pts/m2) to
50% (115 pts/m2), and as the point cloud density decreased from 50% (115 pts/m2) to 5%
(11.5 pts/m2), the metric and r values decreased significantly (alpha shape, r = 0.84–0.70;
voxel r = 0.87–0.80). The 3D green volume values of voxel coupling convex hull by slices
algorithm decreased with point cloud density in the same way as the voxel algorithm,
but the decrease in r values was lower (0.87–0.84). Therefore, this study chose to extract
single-tree 3D green volume at 100% (230 pts/m2) of point cloud density as a metric to
estimate AGB.
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3.4. RF Variable Importance Analysis

In this study, the 3D green volume extracted by each of the five algorithms was
combined with the ULS base parameters to obtain the importance scores of the input
variables by adding the RF model for 100 runs. Figure 12 shows a statistical plot of the
importance scores of the top 20 variables with the greatest impact on the estimated AGB. In
all models, 3D green volume, H_99, and H_max were the three parameters with the highest
importance; the 3D green volume in model 2 had the second highest importance after H_99;
the 3D green volume in model 3 had lower importance than H_99 and H_max; and the
3D green volume in models 4, 5 and 6 were the parameters with the highest importance.
The mean importance of 3D green volume in model 6 was 35.92, which was significantly
higher than that of the other parameters. It indicated that 3D green volume is an important
parameter for estimating single tree AGB.
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3.5. Single-Tree AGB Estimation

The results of different models predicting single tree AGB are shown in Figure 13 and
Table 4. The accuracy of model 1, based on ULS base parameters, was CV-R2 = 0.81, RMSE =
12.66 kg, nRMSE = 16.94%, and the AGBs estimated by models 2–5, with the addition of
3D green volume parameters, were better than that of model 1 (CV-R2 = 0.82–0.85, RMSE =
11.29–12.54 kg, nRMSE = 15.12–16.79%). This indicated that the addition of 3D green volume
could significantly improve the estimation accuracy of AGB. Model 6 had the highest accuracy
(CV-R2 = 0.85, RMSE = 11.29 kg, nRMSE = 15.12%), with an improvement in CV-R2 of 0.04, a
decrease in RMSE of 1.37 kg, and a decrease in nRMSE of 1.82%.
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Table 4. Different algorithms for estimating AGB accuracy.

Algorithms R2 RMSE (kg) nRMSE (%)

base parameters 0.81 12.66 16.94
3D convex hull 0.82 12.54 16.79
3D concave hull 0.83 12.15 16.26

convex hull by slices 0.83 12.01 16.08
voxel 0.84 11.66 15.61

voxel coupling convex hull by slices 0.85 11.29 15.12

4. Discussion

Previous studies have shown that lidar pulses are nearly vertical, resulting in the num-
ber of point clouds from the lower parts of the crown being lower than those nearer the top,
and, thus, ALS tends to underestimate the 3D green volume at the bottom of the canopy [9].
Although the point cloud density obtained by ULS is higher than that of ALS, there is still a
problem of missing point clouds inside the bottom layer of the canopy (Figure 6). Alpha
shape and voxel algorithms are strongly affected by the point cloud integrity, resulting
in an underestimation of 3D green volume [19,46]. Fernández-Sarría et al. [20] found that
the 3D convex hull algorithm overestimated the canopy gap, leading to an overestimation
of the 3D green volume. Yan et al. [1] argued that the 2D convex hull algorithm would
overestimate the projected area of the canopy slices, leading to an overestimation of the
3D green volume by the convex hull by slices algorithm. Our results showed that the 3D
concave hull and voxel algorithms underestimated the 3D green volume, and the 3D convex
hull and convex hull by slices overestimated the 3D green volume, which was consistent
with previous studies. In this study, we described and evaluated a method to estimate the
3D green volume of a single tree and obtained the optimal 3D green volume extraction
result (RMSE = 11.17 m3). The voxel coupling convex hull by slices algorithm calculates
the 3D green volume at the bottom of the canopy using the convex hull by slices algorithm,
which is more stable than the voxel algorithm [1,46] and can solve the underestimation of
3D green volume caused by the missing point cloud at the bottom of the canopy to obtain a
more accurate 3D green volume.

Foreign and domestic studies have shown that changes in point cloud density have
no significant effect on most ULS metrics [15,39,47]. This study also analyzed the effect
of the change in point cloud density on the 3D green volume and found that as the point
cloud density decreased from 100% (230 pts/m2) to 75% (172.5 pts/m2), 50% (115 pts/m2),
25% (57.5 pts/m2), 10% (23 pts/m2) and 5% (11.5 pts/m2), the 3D green volume values
extracted by all five algorithms and the correlation with AGB decreased as the point cloud
density decreased (Figure 11). Our results illustrated that the 3D concave hull algorithm
and voxel algorithm were sensitive to the point cloud density; when the point cloud density
decreased, the extracted 3D green volume value and correlation decreased considerably.
Vauhkonen et al. [44] found that the lower the point cloud density, the lower the accuracy
of the concave hull algorithm in predicting single tree features. Liu et al. [29] pointed out
that the reduction in point cloud density had a significant effect on the canopy volume
metrics extracted based on voxels. The 3D convex hull and convex hull by slices algorithms
are more stable because these two algorithms are built based on the convex hull algorithm,
which calculates the area (volume) of the entire point set based on the outermost points
(planes) and is less affected by changes in point cloud density [1]. The voxel coupling
convex hull by slices algorithm is more stable than the voxel algorithm in terms of r value
variation, which further indicates that the algorithm solves the effect of missing point
clouds in the results of the voxel algorithm.

In this study, 3D green volume was involved in AGB estimation as a parameter, and
the analysis of the importance of RF variables showed that 3D green volume was one
of the most important parameters for AGB estimation (Figure 11). The accuracy of AGB
estimation was significantly improved with the inclusion of the 3D green volume parameter
(Figure 12), indicating that 3D green volume had an important influence on AGB estimation,
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which was consistent with the results of previous studies [24]. The model accuracy showed
a significant improvement compared to the AGB accuracy (R2 = 0.77) estimated by [18]
based on ALS. This was due to the lower flight altitude of the ULS (60 m) compared with
that of the ALS, which enabled a higher density of point cloud data to be acquired, and
higher density point cloud data helped to reconstruct the forest 3D structure at a more
refined scale [33,48]. Through a comparative analysis, it was found that model 6 predicted
AGB with the highest accuracy, because the voxel coupling convex hull by slices algorithm
obtained a more accurate 3D green volume, compared to the other algorithms, which made
the model fitting ability more accurate.

5. Conclusions

To better extract the 3D green volume of a single tree based on the ULS point cloud,
this study proposes the voxel coupling convex hull by slices algorithm, which improves
the existing algorithms. To validate the algorithm, the 3D green volume of 64 single ginkgo
trees was calculated using this method, and the AGB of single trees was estimated based
on the 3D green volume and compared with existing methods. The results showed that the
voxel coupling convex hull by slices algorithm was most suitable for calculating the 3D
green volume and estimating the AGB using ULS data. The results were as follows: (1) The
choice of input parameters of different algorithms significantly affects the results for 3D
green volume. Under the premise of using optimal parameters, the voxel coupling convex
hull by slices algorithm provided the most accurate estimate of the 3D green volume of
single ginkgo trees with RMSE = 11.17 m3; (2). The error in calculating 3D green measures
increased for all algorithms as the point cloud density decreased. The concave hull and
voxel algorithms had a higher dependence on point cloud density than the other algorithms,
and the correlation between AGB and the 3D convex hull, convex hull by slices and voxel
coupling convex hull by slices algorithms was more stable when the point cloud density
was higher than 10%; (3) The 3D green volume was the most important parameter for
estimating the AGB of a single tree. The addition of the 3D green volume parameter
could significantly improve the accuracy of the model to estimate AGB, where the highest
accuracy was obtained with the voxel coupling convex hull by slices algorithm, which
estimated AGB with CV-R2 = 0.85, RMSE = 11.29 kg, and nRMSE = 15.12%. Our study
demonstrates that ULS point cloud data can be used to accurately extract the 3D green
volume of single trees in urban forests and that the 3D green volume is promising for
estimating the AGB of a single tree.
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