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Abstract: The exact knowledge of the signal steering vector is not always known, which may
result in detection performance degradation when a signal mismatch occurs. In this paper, we
discuss the problem of designing a robust radar target detector in the background of Gaussian noise
whose covariance matrix is unknown. To improve robustness to mismatched signals, a random
perturbation that follows the complex normal distribution is added under the alternative hypothesis.
Since traditional detectors that divide complex parameters into real parts and imaginary parts are
sometimes difficult to obtain, a new robust, complex parameter gradient test is derived directly from
the complex data. Moreover, the CFAR property of the new detector is proven. The performance
assessment indicates that the gradient detector exhibits suitable robustness to the mismatched signals.

Keywords: radar target; adaptive detection; gradient test; signal mismatch

1. Introduction

Adaptive detection algorithms have gained increasing interest among scholars in the
fields of radar, sonar, and communications in recent decades due to their flexible design
criteria. In a seminal paper, Kelly [1] used statistical hypothesis testing techniques to
address the signal detection problem and derived a generalized likelihood ratio test (GLRT)
to decide whether targets exist or not. Subsequently, Robey et al. [2] first utilized the GLRT
test statistic using only the data under test and then plugged the sample covariance matrix
(CM) into the test statistic to obtain the adaptive matched filter (AMF). De Maio [3] proved
that the Wald test and the AMF coincide when detecting signals with known steering
vectors and unknown amplitudes. When the target signal lies in a subspace of dimension
not less than 1, Kraut et al. [4] proposed adaptive subspace detectors using no prior
knowledge of noise CM. Later, the Rao test, which is more selective to sidelobe signals than
Kelly’s GLRT, was proposed in [5]. Adaptive target detection problems in other scenarios,
such as training-limited environments and nonhomogeneous clutter environments, have
been studied in [6–11].

Most of the adaptive detectors discussed above assume that the signal signature is
completely known. However, when beam pointing errors, array calibration errors, or
sidelobe signals exist, the nominal steering vector is no longer equal to the actual one [12].
Adaptive detectors can be categorized as mismatch selective detectors and mismatch robust
detectors based on their sensitivity to mismatched signals. Robust detectors can still provide
high detection probabilities in the case of signal mismatch, while selective detectors achieve
stronger rejection capabilities of mismatched signals. To enhance sensitivity, a fictitious
interference that is orthogonal to the presumed target signals in the quasi-whitened space
or the truly whitened observation space was added under the null hypothesis to design an
adaptive beamformer orthogonal rejection test [13] and its modified algorithm [14]. Some
other selective detectors were designed in [15,16].
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Radars in scan mode prefer a detector that is more robust to the mismatched signals. To
improve robustness, three GLRT-based adaptive detectors [17] were proposed by assuming
that the real parts and imaginary parts of the target steering vector belong to the union of
two convex cones. The three detectors perform better than Kelly’s GLRT, AMF, and adaptive
beamformer orthogonal rejection test in mismatched signal cases, respectively. In [18], three
adaptive robust detectors for MIMO radar were proposed by adopting a subspace model
to represent the transmit signals or receive signals. Considering that the improper choice of
signal subspace may result in certain performance loss, Besson [19] assumed that the angle
between the presumed signal and actual signal is bounded and derived GLRT detector
by solving a semidefinite programming problem. The proposed GLRT is more robust but
suffers certain matched performance loss compared to the generalized adaptive subspace
detector. In [20], subspace constraint, the adaptive beamformer orthogonal rejection test,
and conic uncertainty set constraint techniques were combined to derive the adaptive
polarimetric radar detector. More recently, target echoes were modeled as the sum of
a random signal, noise, and target signal to increase the plausibility of the alternative
hypothesis in [21]. The resulting detectors can achieve increased robustness and similar
matched detection performance with Kelly’s GLRT.

Since a uniformly most powerful (UMP) test is lacking for the problem of detecting
signals with known steering vectors and unknown amplitudes [5] in Gaussian noise, it is
necessary to derive new adaptive detectors according to other test criteria and evaluate
the detection performance [22]. The gradient test is a commonly used test criterion other
than GLRT, Rao, and Wald tests [23]. This paper discusses adaptive radar target detection
problems when a signal mismatch occurs. A complex parameter gradient test is resorted to
proposing a new adaptive detector. To improve robustness, we modify the alternative hy-
pothesis by introducing a random perturbation that follows a complex normal distribution
with the CM proportional to the noise CM. Moreover, the test statistic is derived directly
based on complex parameters instead of dividing them into real and imaginary parts. The
constant false alarm rate (CFAR) property of the new detector is proved with respect to
the noise CM. The performance evaluation shows that the new gradient detector achieves
suitable detection performance in mismatched signal scenarios.

We organize the remainder of the paper as follows. Section 2 gives the problem
formulation of the problem at hand. The design of the adaptive robust gradient detector is
shown in Section 3. Matched and mismatched detection performance analysis is given in
Section 4. In Section 5, we conclude this paper.

2. Problem Formulation

The received radar echoes are denoted by y0 ∈ CN×1, where N is the number of
coherent pulses or the product of pulse numbers and antenna array elements [21,24]. We
formulate the problem of target detection as a binary hypothesis test. Under the alternative
hypothesis, the echoes include the noise n0 and useful target signal s = αt. Under the null
hypothesis, the echoes include only the noise n0. Here, n0 ∈ CN×1 follows a circularly
symmetric complex normal (CSCN) distribution with zero mean, and CM R, α denotes the
target amplitude, t ∈ CN×1 is the steering vector of the target. A random component ω
is added under the alternative hypothesis to improve the robustness of the mismatched
signals. Then, the detection problem is equivalent to deciding which of the two hypotheses
holds: 

H0 :
{

y0 = n0,
yk = nk, k = 1, . . . , K

H1 :
{

y0 = αt + ω + n0,
yk = nk, k = 1, . . . , K

(1)

where y0 are data under test or primary data, Yk = [y1, . . . yk, . . . , yK], k = 1, . . . , K are
training data that are independent and identically distributed (i.i.d.) with the noise n0 in
the primary data. The random perturbation ω obeys zero mean CSCN distribution with
CM δR.



Remote Sens. 2022, 14, 5236 3 of 11

Then, the distributions of the received data under the two hypotheses are
H0 :

{
y0 ∼ CN(0, R),
yk ∼ CN(0, R), k = 1, . . . , K

H1 :
{

y0 ∼ CN(αt, (1 + δ)R),
yk ∼ CN(0, R), k = 1, . . . , K

(2)

where CN(·) denotes the CSCN distribution, δ is a real constant greater than 0.
According to the distribution of the received data, we calculate the joint probability

density function (PDF) of the training data Yk and the primary data y0 under Hι as

fι =
1

πN(1+K)(1 + δ)N |R|K+1 exp
{
−tr
[

R−1
(

S +
1

(1 + ιδ)
(y0 − ιαt)(y0 − ιαt)H

)]}
(3)

where ι = 0, 1, S =
K
∑

k=1
ykyH

k , | · | denotes determinant, (·)H denotes conjugate transpose,

tr(·) denotes trace.

3. Design of Adaptive Robust Detector

For brevity, we set Θr =
[
αT , αH , δ

]T , Θs = vec(R), Θ =
[
ΘT

r , ΘT
s
]T , where Θ is an(

N2 + 3
)
-dimensional column vector. We resort to a one-step complex parameter gradient

test to design an adaptive detector.

3.1. Adaptive Robust Gradient Detector

The complex parameter gradient test is

TGradient =
∂ ln f1

∂ΘT
r

∣∣∣∣
Θ=Θ̂0

(
Θ̂r1 −Θr0

) H1
≷
H0

η (4)

where Θ̂0 is the maximum likelihood estimate (MLE) of Θ under H0, Θr0 is the value of Θr
under H0, Θ̂r1 is the MLE of Θr under H1, (·)T is transpose, ln(·) denotes the logarithm, η
denotes the detection threshold.

We substitute Θr into the test statistic (4) and get

∂ ln f1

∂ΘT
r

=

(
∂ ln f1

∂Θ
∗
r

)H
=


∂ ln f1

∂α
∗

∂ ln f1
∂α

∂ ln f1
∂δ


H

(5)

According to the differential theory of complex matrices, we take the partial differential
of the logarithm of the joint PDF (3) under H1 with respect to Θ

∗
r and have the following

results
∂ ln f1

∂α∗
=

1
1 + δ

(
tHR−1y0 − αtHR−1t

)
(6)

∂ ln f1

∂α
=

1
1 + δ

(
yH

0 R−1t− αHtHR−1t
)T

(7)

∂ ln f1

∂δ
= − N

1 + δ
+

1

(1 + δ)2

[
(y0 − αt)HR−1(y0 − αt)

]
(8)

From the test statistic (4), it can be seen that the MLE of Θ under H0 and the MLE of
Θr under H1 are also needed. After some calculation, we obtain

dR ln f1 = −(K + 1)tr
(

R−1dR
)
+ tr

{[
S + (y0 − αt)(y0 − αt)H/(1 + δ)

]
R−1dRR−1

}
(9)
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R̂1 =

[
S +

1
(1 + δ)

(y0 − αt)(y0 − αt)H
]

/(K + 1) (10)

R̂0 =
(

S + y0yH
0

)
/(K + 1) (11)

Θ̂0 =
[
01×3, vecT(R̂0

)]T
(12)

where R̂0 and R̂1 are MLEs of R under H0 and H1 given α and δ. We can then obtain MLE
of α given δ after substituting R̂1 into the joint PDF (3)

α̂ = argmin
α

∣∣∣S + (y0 − αt)(y0 − αt)H/(1 + δ)
∣∣∣

= argmin
α

(1 + δ)−1|S|
[
(1 + δ) + (y0 − αt)HS−1(y0 − αt)

]
=

tHS−1y0
tHS−1t

(13)

We substitute α̂ and R̂1 into joint PDF f1 and find that the MLE of δ can be calculated by

minimizing (1 + δ)
N

K+1

∣∣∣S + 1
(1+δ) (y0 − α̂t)(y0 − α̂t)H

∣∣∣ with respect to δ. Then, according to
the properties of the determinant, we have the MLE of δ [21]

min
δ

(1 + δ)
N

K+1

∣∣∣∣S + 1
(1+δ) (y0 − α̂t)(y0 − α̂t)H

∣∣∣∣
= min

δ
|S|(1 + δ)

N
K+1−1

[
1 + δ + ỹH

0 ỹ0 − ỹH
0 t̃
(

t̃H t̃
)−1

t̃Hỹ0

] (14)

δ̂ =

{
(ζ − 1)T − 1, (ζ − 1)T − 1 > 0
0, else

(15)

where T = ỹH
0 P⊥t̃ ỹ0, ỹ0 = S−

1
2 y0, t̃ = S−

1
2 t, P⊥t̃ = IN − t̃

(
t̃H t̃
)−1

t̃H , ζ = K+1
N .

The adaptive complex parameter gradient detector can be obtained by plugging
(6)–(15) into (4) and simplifying the result:

TGradient = 2Re

(
yH

0 R̂−1
0 ttHS−1y0

tHS−1t

)
+ δ̂
[
tr
(

yH
0 R̂−1

0 y0

)
− N

] H1
≷
H0

η (16)

3.2. CFAR Property Proof of the Gradient Detector

The test statistic of the gradient detector (16) is a function of
yH

0 R̂−1
0 ttHS−1y0

tHS−1t
, yH

0 R̂−1
0 y0,

and T = ỹH
0 P⊥t̃ ỹ0. To prove the CFAR property of the gradient detector, we need only

prove that the three expressions are independent of R. According to the properties of the
inverse matrix [25], we obtain

R̂−1
0 =

[(
S + y0yH

0
)
/(K + 1)

]−1

= (K + 1)
[

S−1 − S−1y0

(
1 + yH

0 S−1y0

)−1
yH

0 S−1
]

(17)

Then, the three expressions can be simplified as

yH
0 R̂−1

0 ttHS−1y0

tHS−1t

= (K + 1)
[

1− yH
0 S−1y0

(
1 + yH

0 S−1y0

)−1
]

yH
0 S−1ttHS−1y0

(
tHS−1t

)−1

= (K + 1) yH
0 S−1ttHS−1y0

(1+yH
0 S−1y0)(tHS−1t)

= (K + 1)TGLRT = (K + 1) γ
1+γ

(18)
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yH
0 R̂−1

0 y0

= (K + 1)yH
0 S−1y0

[
1−

(
1 + yH

0 S−1y0

)−1
yH

0 S−1y0

]
= (K + 1)yH

0 S−1y0

(
1 + yH

0 S−1y0

)−1

= (K + 1)
(

1− ς
γ+1

) (19)

T = ỹH
0 P⊥t̃ ỹ0

= yH
0 S−1y0 − yH

0 S−1t
(

tHS−1t
)−1

tHS−1y0

= 1
ς − 1

(20)

where γ =
yH

0 S−1ttHS−1y0
tHS−1t

/
(

1 + yH
0 S−1y0 −

yH
0 S−1ttHS−1y0

tHS−1t

)
, ς = 1/

(
1 + yH

0 S−1y0−

yH
0 S−1ttHS−1y0

tHS−1t

)
. Since ς ∼ CβK−N+2,N−1 and γ ∼ CF1,K−N+1 [21] are all independent

of noise CM, the proposed detector is CFAR with respect to noise CM, where Cβ and CF
denote complex central beta distribution and complex central F-distribution, respectively.

4. Performance Assessment

Monte Carlo simulations are resorted to testing the matched and mismatched detection
performance of the proposed detector. The threshold and detection probabilities are
obtained by 100/Pf a and 1/Pf a independent trials. Unless otherwise specified, we set

Pf a = 10−4, N = 16, t =
[
1, ej2π fd , . . . , ej2π(N−1) fd

]
, j =

√
−1, fd = 0.08. The noise

CM is R = M + σ2IN , where M(i, j) = exp
[
−2π2σ2

f (i− j)2
]

denotes a Gaussian-shaped

noise CM, σ2IN denotes a white noise CM 10 dB weaker than the Gaussian-shaped noise,
σf = 0.05. The signal-to-noise ratio (SNR) is

SNR = |α|2tHR−1t (21)

4.1. CFAR Property Analysis

To analyze the CFAR property of the adaptive gradient detector, we set the correlation
coefficient as: ρ = exp

(
−2π2σ2

f

)
. In Figure 1, we give the curves of Pf a versus ρ and σ.

The curves show that Pf a stays almost the same for various ρ and σ. In other words, the
false alarm probabilities of the proposed detectors are independent of noise CM. Thus, both
the simulation results and theoretical analysis prove that the proposed adaptive gradient
detector is CFAR with respect to noise CM.
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Figure 1. CFAR property analysis for N = 16, K = 2 N: (a) Pf a versus ρ of gradient test; (b) Pf a
versus σ of gradient test.
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4.2. Mismatched Detection Performance Analysis

Now, we test the mismatched detection performance of the proposed detector. We also
give the performance of the robust parametric GLRT detector (PGLRT) proposed in [21] and
the robust Rao and robust Wald detectors proposed in [24] for comparison. The detection
performance of conventional AMF [2] and Kelly’s GLRT [1] is also given. For clarity, we
rewrote the test statistics of these detectors as

TGLRT =

∣∣∣tHS−1y0

∣∣∣2(
1 + yH

0 S−1y0

)(
tHS−1t

) (22)

TAMF =

∣∣∣tHS−1y0

∣∣∣2
tHS−1t

(23)

TPGLRT =


(1+‖ỹ0‖

2)
(

1− 1
ζε

)
[
(ζε−1)‖P⊥t̃ ỹ0‖

2] 1
ζε

,
∥∥∥P⊥t̃ ỹ0

∥∥∥2
> 1

ζε−1

1+‖ỹ0‖
2

1+‖P⊥t̃ ỹ0‖
2 , otherwise

(24)

TWald =
2(K + 1)

1 + δ̂
TAMF +

NKδ̂2

(K + 1)
(
1 + δ̂

)2 (25)

TRao = 2KTAMF +
(K + 1)

NK

[
Ktr
(

S−1y0yH
0

)
− N

]2
(26)

where ζε =
K+1

N (1 + ε), ε ≥ 0.
To analyze the robustness of the new gradient detector, we set the actual signal steering

vector t f =
[
1, ej2π fd f , . . . , ej2π(N−1) fd f

]
, where fd f = fd + ∆/N denotes the Doppler

frequency of the actual signal. When ∆ = 0, t f and t are identical, that is, there is no signal
mismatch. When the actual target steering vector t f deviates from the nominal one t, we
define the mismatch angle as [13]

cos2 θ =
∣∣∣tHR−1t f

∣∣∣2/
[(

tHR−1t
)(

tH
f R−1t f

)]
(27)

The SNR becomes
SNR = |α|2tH

f R−1t f (28)

Figures 2 and 3 plot detection probabilities versus SNR for ∆ = 0.6 (cos2 θ = 0.16)
and ∆ = 0.4 (cos2 θ = 0.46). It can be seen that when the mismatch angle increases from
cos2 θ = 0.16 to cos2 θ = 0.46, the detection probabilities of all the detectors increase. The
Wald test suffers the most obvious performance degradation in signal mismatch cases. The
proposed gradient test achieves comparable mismatched detection performance to the
robust Rao test and outperforms other detectors for various K. When cos2 θ = 0.46, the
gradient test achieves about 2 dB performance improvement compared with the robust
PGLRT and AMF. When cos2 θ = 0.16, the gradient test achieves more than 1 dB and 6 dB
performance improvement compared with the robust PGLRT and AMF, respectively.
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In Figure 4, the probability of detection (Pd) as a function of cos2 θ is plotted to
analyze the gradient detector’s mismatched detection performance when SNR = 20 dB
and K = 24, 32, 40. In Figure 5, the contours of Pd of the detectors as a function of cos2 θ
and SNR when K = 32 is plotted. It can be seen that compared with the PGLRT, Wald,
AMF, and Kelly’s GLRT, the proposed gradient detector is more robust when the signal
mismatch occurs. Compared with the robust Rao detector, the proposed gradient detector
achieves better robustness when cos2 θ > 0.46.
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4.3. Matched Detection Performance Analysis

The detection probability curve versus SNR is shown in Figure 6 to test the adaptive
gradient detector’s matched detection performance. It can be seen that all the detectors
achieve better-matched detection performance as the training data number increases. The
Rao test performs the worst in the matched cases. Compared with the Rao test, the gradient
detector shows increased matched detection performance. Compared with the PGLRT,
AMF, Wald, and GLRT, the proposed gradient suffers certain matched detection perfor-
mance loss. However, the matched detection performance loss is about 1 dB. Meanwhile,
as shown in Figures 2–5, the proposed gradient detector still maintains suitable detection
performance like the Rao test when a signal mismatch occurs, while other detectors suffer
severe detection performance degradation. In conclusion, the gradient detector can achieve
comparable robustness and improved matched detection performance compared to the Rao
test. The gradient detector guarantees stronger robustness than PGLRT, AMF, Wald, and
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GLRT in signal mismatch cases at the expense of a slight matched detection performance
loss.
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4.4. Computation Complexity Analysis

To analyze the computation complexity of the proposed detector, we give the operation
time of the eight detectors for Pf a = 10−4, cos2 θ = 1, SNR = 10 dB and K = 32. To obtain
the threshold and the detection probabilities, 104 independent Monte Carlo trials are
conducted. Table 1 shows the mean operation time of 10 experiments. It can be seen that
the AMF has the shortest operation time while the Wald test has the greatest computational
burden.

Table 1. Computation complexity of the detectors.

Parameters Operation Time(s)

PGLRT (ε = 0.1, 0.2, 0.3 ) 75.3228
Rao 72.6946

Wald 77.5186
GLRT 70.0076
AMF 68.3321

Gradient 76.2530

4.5. Experimental Results of IPIX Real Data

The VV polarimetric data of File 85 of the real datasets [26] collected using IPIX
radar in Grimsby in 1998 is used to analyze the detection performance of the gradient
detector. The real data have been preprocessed according to the steps in [27] to follow
complex Gaussian distribution. The PDF curve of the measured data amplitude after
preprocessing is shown in Figure 7. Due to the limited amount of measured data, we set
N = 8, K = 2 N, Pf a = 10−2. Figure 8a shows the detection probability versus SNR in
matched signal case. The performance loss of the gradient test compared with the PGLRT
is less than 1 dB. Figure 8b plots the detection probability versus cos2 θ for SNR = 20 dB.
We can see that the gradient detector exhibits better robustness than PGLRT, AMF, Wald,
and GLRT and comparable robustness to the Rao test.
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5. Conclusions

In this paper, the adaptive radar target detection problem in Gaussian noise has
been considered. To increase the robustness, we have introduced a random perturbation
under the alternative hypothesis. Under this assumption, the complex parameter gradient
detector is proposed by treating complex parameters as a whole. The proposed gradient
detector has been proven to have CFAR properties with respect to noise CM. The detection
performance analysis based on simulated data and IPIX real data has highlighted that the
gradient detector can achieve better robustness than Kelly’s GLRT, AMF, and PGLRT and
comparable robustness to the Rao test, which suffers severe matched detection performance
loss in matched scenarios. A possible future track may be the investigation of designing
robust detectors in non-Gaussian noise.
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