

  remotesensing-14-05242




remotesensing-14-05242







Remote Sens. 2022, 14(20), 5242; doi:10.3390/rs14205242




Technical Note



Plant and Animal Species Recognition Based on Dynamic Vision Transformer Architecture



Hang Pan[image: Orcid], Lun Xie * and Zhiliang Wang





School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China









*



Correspondence: xielun@ustb.edu.cn; Tel.: +86-13681560734







Academic Editor: Riccardo Roncella



Received: 17 September 2022 / Accepted: 18 October 2022 / Published: 20 October 2022



Abstract

:

Automatic prediction of the plant and animal species most likely to be observed at a given geo-location is useful for many scenarios related to biodiversity management and conservation. However, the sparseness of aerial images results in small discrepancies in the image appearance of different species categories. In this paper, we propose a novel Dynamic Vision Transformer (DViT) architecture to reduce the effect of small image discrepancies for plant and animal species recognition by aerial image and geo-location environment information. We extract the latent representation by sampling a subset of patches with low attention weights in the transformer encoder model with a learnable mask token for multimodal aerial images. At the same time, the geo-location environment information is added to the process of extracting the latent representation from aerial images and fused with the token with high attention weights to improve the distinguishability of representation by the dynamic attention fusion model. The proposed DViT method is evaluated on the GeoLifeCLEF 2021 and 2022 datasets, achieving state-of-the-art performance. The experimental results show that fusing the aerial image and multimodal geo-location environment information contributes to plant and animal species recognition.
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1. Introduction


With the development of computer vision, pattern recognition, and deep learning, plant and animal species recognition technologies [1,2,3,4,5,6] based on aerial images also have been constantly improving, and are being applied in various fields. In the tasks of understanding the geographical distribution of plant and animal species and protecting species diversity, it is of positive significance to identify species and their surrounding environmental characteristics through aerial images.



In contrast to traditional image classification [7,8,9,10,11,12], the discrepancies between aerial images of different plant and animal species categories are small, which is a typical Fine-Grained Visual Categorization (FGVC) task; also, the proportion of plant and animal pixels is relatively small in the global image due to the sparsity of aerial images. Therefore, in the plant and animal species recognition task based on aerial images, even though the aerial images have both RGB and near-infrared (NIR) modal data, it is almost difficult to distinguish species classes if we rely on image information alone. Currently, the optimization of species recognition by introducing additional information has become a hot research topic. Currently, common additional information includes the geographic and temporal information of the image capturing [13,14,15,16,17], and studies have shown that geographic and temporal information can improve the accuracy of FGVC in BirdSnap [18], PlantCLEF [19], FungiCLEF [20], YFCC100M [21], iNaturalist [22,23,24], and GeoLifeCLEF [25] datasets.



However, most of the current research approaches extract potential embedding of images by Convolutional Neural Networks (CNN) and finally classify the concatenation of location, date, and image embedding for species identification [15,26,27,28]. Alternatively, feature summation [13], multiplication [14,29], and dynamic projecting [17] are used to fuse image embedding and location–date features. Although these methods have achieved excellent results, most of these methods only consider the fusion of image and location–date features in a single dimension. While dynamically projecting approaches construct high-dimensional interactions between multimodal representations, mapping similar image features to different locations in the feature space suggests accurate classification accuracy. However, this is also a fusion method after feature extraction from different modal data; also, these methods only consider the enhancement of image features by location–date multimodal embedding of images without considering the influence of the surrounding environment features, which is, of course, related to the common fine-grained image classification dataset.



To further exploit the potential impact of additional information, we propose to incorporate it into the process of extracting image latent embedding while introducing additional information into the fusion of the extracted multimodal features. Due to the similarity in image appearance, the distinguishability of the images’ latent features extracted by the network model is insufficient if the image classes are the same. Especially, when the locations of the aerial images are close to each other, it is still difficult for the existing multimodal fusion methods to distinguish species classes. However, when extracting image embedding by the CNN model, it is again difficult for us to interact with the additional information during the image feature-extraction process. With the widespread use of Visual Transformer (ViT) [30] in the image field [31,32,33,34,35,36,37,38,39], its unique learning approach makes it possible to introduce additional information into the extraction process of image potential embedding. In this paper, we propose a Dynamic Vision Transformer (DViT) architecture to dynamically enhance the latent representation of image embedding by additional environmental information of the location.



Specifically, in the potential embedding extraction of aerial images, the multimodal aerial images of the RGB and NIR are input into the transformer encoder model with the Learnable Mask Token (LMT), respectively. The mask token has learned the attention weight. Then, we mask the low-weight patches to extract the latent representations of the local regions with high attention weights. At the same time, the location environment embedding by multi-layer perceptron (MLP) is added to the process of extracting the latent representation and fused with the token with high attention weights to improve the distinguishability of the aerial images’ latent representation by the dynamic attention fusion (DAF) model. Finally, the enhanced latent representations by additional location environment embedding of RGB and NIR images are fused for multimodal species recognition. We evaluated DViT on the GeoLifeCLEF 2021 and 2022 datasets, achieving state-of-the-art performance.



In summary, this paper attempts to propose a DViT model combining multimodal aerial images and location environment information to reduce the effect of small image discrepancies for multimodal species recognition. The main contributions of this paper are summarized as follows:




	
This paper analyzed the impact of additional location environment information for fine-grained image classification on multimodal species recognition.



	
This paper is the first study that combines a visual transformer with the LMT and DAF and proposes a DViT architecture, which utilizes the multimodal aerial remote sensing image and location environment information to reduce the effect of small image discrepancies.



	
Our approach consistently achieved state-of-the-art (SOTA) results on multiple datasets compared to existing published works, especially with top-30 error rates of 0.7297 and 0.6567 for the GeoLifeCLEF 2021 and 2022 private test sets, respectively.








The remainder of this paper is organized as follows: Section 2 provides a brief review of the related research on species recognition; Section 3 provides a complete introduction to the proposed algorithm; Section 4 shows the datasets, details, and results of the experiment; and, finally, Section 5 presents the conclusions of this research method.




2. Related Work


In this section, we review existing works on species recognition based on FGVC tasks that only deal with images based on CNN. Then, we introduce the development of the ViT model to species recognition. Finally, we summarize multimodal species recognition works that incorporate additional information. This section provides an overview of the relevance of the different methods.



2.1. Image Species Recognition Based on CNN


In image-based species recognition, there are two main types of species recognition: one is species recognition based on ordinary optical images [40,41,42,43,44], and the other is species recognition based on remote sensing images [45,46,47,48,49]. The current research mainly focuses on the species recognition of ordinary optical images; however, both species recognition from optical images and species recognition from aerial images are important. Since there is very little difference between species classes, the current image-based species recognition all belongs to FGVC tasks. To improve the performance of image-based species recognition, the existing works are mainly divided into the following aspects. First, end-to-end learning [50,51,52,53,54,55] is used to extract the global features of images with more robustness. Second, it is shown that recognition performance can be improved by locating discriminative regions of interest in an image and then extracting local minutiae features of interest [56,57,58,59,60,61,62]. Third, additional research extracts more discriminative image representations by contrast learning [63,64,65,66,67].




2.2. Image Species Recognition Based on ViT


With the widespread use of ViT in the image field, the ViT model patched the image and input these patches into the multi-head self-attention (MSA) model to obtain image embedding for classification. The MSA can focus on the weights of local regions of the image, enabling the model to extract local fine features. Researchers have started to introduce ViT to fine-grained image classification tasks [68,69,70,71,72]. He et al. [72] proposed a transformer-based framework, TransFG, which improves the classification performance by accurately and efficiently selecting image blocks with high differentiation by attention weights. Liu et al. [71] proposed a transformer architecture with a peak suppression module and knowledge guidance module. The model learns the most discriminative image local features to enhance the information utilization of the ignored regions by the attention model. Cai et al. [68] proposed a ViT with adaptive attention. The model consists of two main components: attention-weakening and attention-enhancement modules, which improve the performance of key features while capturing more feature information.




2.3. Multimodal Species Recognition


In species recognition, in addition to improving classification performance through models, much of the existing work is now beginning to focus on the extraction of additional information on model performance. The construction of multimodal datasets, such as BirdSnap [18], PlantCLEF [19], FungiCLEF [20], YFCC100M [21], iNaturalist [22,23,24], and GeoLifeCLEF [25], provides more possibilities to improve classification performance. These datasets usually include information such as images, locations, and dates of species. The GeoLifeCLEF also includes more multifaceted metadata, such as land cover, altitude, bioclimatic, pedologic, etc. These multimodal data provide more opportunities to improve classification performance [73,74,75,76,77]. Current research on multimodal species recognition performs multimodal feature fusion by feature concatenation, summation, multiplication, and dynamic weighting.



Kevin et al. [15] used multimodal information for the first time in the FGVC task. They used concatenated image representation extracted by CNN and location representation extracted by multi-layer perceptron (MLP) for classification. Chu et al. [13] proposed a Geo-Aware Network that fuses image representation with geo-location representation in a summation manner. The classification performance is then enhanced by a series of post-processing models. Oisin et al. [14] use geo-location and temporal representation extracted by MLP as effective spatio-temporal prior knowledge to fuse with image representation by multiplication. Terry et al. [29] performed species recognition by multiplying image representation and metadata representation. Yang et al. [17] proposed a Dynamic MLP model to enhance classification performance by projecting multimodal features to image features through dynamic mapping. A summary of the multimodal fusion methods is shown in Table 1.



Although these methods have achieved excellent results by fusing multimodal information, all these methods extract features of different modalities by models before fusion. In contrast, our framework introduces multimodal information into the image feature-extraction process to improve the distinguishability of potential representations of aerial images.





3. Methodology


In this section, we introduce a multimodal fusion framework for species recognition by aerial images and location environment information. The framework contains an RGB image path, an NIR image path, and a location environment path, taking as input the aerial images and the multimodal location environment information, respectively. First, the aerial image embedding is extracted by vision transformers with the LMT module, while the multimodal location environment embedding is derived by the MLP backbone network. Then the geo-location environment information is added to the process of extracting the latent representation. Finally, the DAF module adaptively performs projection location environmental embedding of the latent representations of aerial images to produce final species predictions.



3.1. Framework


The complete network structure we designed is shown in Figure 1. The aerial images used the Dynamic Transformer Encoder model to extract visual embedding, and the location environment embedding is extracted by the MLP block. Then, different from previous embedding fusion works, the DAF is used to enhance the ability of the image patch embedding. We dynamically project multimodal location environment embedding into the image tokens to enhance the image representation.



Following ViT, given the input aerial images, we first divide these aerial images into regular non-overlapping patches. However, the sparsity of the aerial image information creates small discrepancies between different categories of plant and animal species. If the patches are directly input to the transformer encoder, it will bring information redundancy. Therefore, the Masked Autoencoders (MAE) [35] model uses random sampling with a high masking ratio to remove a high percentage of patches to eliminate redundancy. Although, random sampling can construct efficient feature representations with highly sparse inputs compared to block-wise sampling and grid-wise sampling. However, the uncertainty of random sampling may remove some patches with high representation power. Therefore, we use the LMT to sample a subset of patches for RGB and NIR aerial images, respectively. We remove patches with low impact on species recognition by the LMT. We simply refer to this as “learnable sampling”. A detailed introduction to the LMT model can be found in Section 3.2.



Specifically, given the input aerial images, we can obtain this embedding without a mask token through the transformer encoder with the LMT model, following each modal image path. Simultaneously, the multimodal location environment path accepts latitude, longitude, bioclimatic, and pedologic data as input. This environment information is added to the process of extracting the latent embedding and fused with the token with high attention weights to improve the distinguishability of the latent embedding of aerial images. Then, the multimodal features are obtained through the MLP backbone network. After the multimodal images and location environment features are obtained, they are fused via the DAF model. In the DAF network, we fused the multimodal localization environment features with aerial image tokens through the multiplication method. The multimodal fusion latent representation    z m    is obtained via a map of the environment features in each image token to enhance the aerial image representations in the MLP backbone network. We also concatenated the class token of the multimodal aerial image to further enhance the multimodal fusion latent representation for species recognition.




3.2. Learnable Mask Token


The sparsity of aerial image information creates small discrepancies between different categories of species; thus, how to efficiently extract the distinguishing local area embedding for species recognition is the focus of research. Therefore, this paper proposes the LMT (LMT) to sample a subset of patches on aerial images in a learnable way and extract a latent representation of local regions with distinguishability. The patch tokens of the RGB and NIR multimodal image are learned by LMT in the visual transformer model. Then the patch tokens with high weights on RGB and NIR modalities are input into the transformer encoder to extract the latent representation of the multimodal images.



In this section, we first describe the elementary implementation of the transformer encoder model with the LMT. Specifically, given the input aerial images, we divided them into regular non-overlapping patches,    x p   . Then, these patches were input into LMT to sample a subset of patches to remove patches with low representability. The model architecture of LMP is shown in Figure 2.



The LMP model is a fully connected layer in which the input is a one-hot encoder vector of the same length as the image patches. The output of LMP is sorted to remove those corresponding images with low weights, which is specifically expressed as


   x s  =  x p  ×  w  l m t   ,  {       w k  = 1 , r a n k  (   w  l m t    )  × 0.25        w k  = 0 , r a n k  (   w  l m t    )  × 0.75       , k =  [  0 , ⋯ , p − 1  ]  ,  



(1)




where    x s    is the patches without masks,    w  l m t     is the parameter of the LMT model, and    w k    is the mask token projection of binarization corresponding to each image patch. These image patches with high weights were mapped to a high-dimensional embedding and fused to the positional embedding.



For multimodal embedding of RGB and NIR images, we added the LMT as a class token to generate a new embedding. At the same time, we fused the multimodal location environment embedding with multimodal image embedding to improve the distinguishing ability. The new embedding is as follows:


   z 0  =  [   z  0 _ r g b   ;  z  0 _ n i r    ]  ,  



(2)






   z  0 _ m   =  [   x  c l a s s _ m   ;  x  s _ m  1  E ;  z  s _ m  2  E ; ⋯ ;  z  s _ m  N  E  ]  +  E  p o s _ m   , m ∈  [  r g b ,   n i r  ]  ,  



(3)






   x  c l a s s _ m   = r a n k  (   w  l m t _ m    )  ∗ 0.25 ,  



(4)




where  N  is the length of patches through the LMT,    x  c l a s s _ m     is the top 25% sorted by the learned mask token,   E ∈  R   (   P 2  · C  )  × D     is the multimodal image patches embedding by convolution mapped, and    E  p o s   ∈  R   (  N + 1  )  × D     is the positional embedding.



In a different MAE model, we do not randomly remove image patches but remove low-weight image patches through the LMT, and after each backpropagation, we arrange the learned mask tokens in the order of deletion token. Finally, the low-weight mask token is selected again for deletion. This reciprocates until the optimal high-weight region is selected for species identification.



Based on this, we use the LMT to sample a subset of patches for RGB and NIR images, respectively. We replaced random sampling with the LMT model; we simply refer to this as “learnable sampling”. The learnable way of the mask token largely eliminates redundancy by removing a high percentage of patches.




3.3. Dynamic Attention Fusion Model


The added class token is used to learn the attention weight of each patch before inputting multimodal image paths into the transformer encoder model. The impact of the high-dimensional features of each patch on species recognition is attended to through the attention weights, in which we represent the positional relationship of each patch with the LMT. The transformer encoder module contains L layers of MSA, DAF, and MLP blocks.



In this section, we first describe the elementary implementation of our proposed dynamic attention fusion (DAF-A) model and its improved variant DAF-B. Inspired by dynamic filters [17,78,79,80], we propose a DAF model that introduces multimodal location environmental embedding,    z e   , into the visual transformer encoder adaptively to enhance the distinguishability of aerial image representations. In Figure 3 on the left, we show a single unit of DAF-A, the most concise implementation of DAF-A. The classification process is as follows:


   z l ′  = M S A  (  L N  (   z  l − 1    )   )  +  z  l − 1   , l ∈ 1 , … , L ,  



(5)






   z l  ″   = DAF  (  L N  (   z l ′   )   )  +  z l ′  , l ∈ 1 , … , L ,  



(6)






   z l  = M L P  (  L N  (   z l  ″    )   )  +  z l  ″   , l ∈ 1 , … , L ,  



(7)






  M S A = S o f t m a x  (    Q  K T       d k       )  V ,  



(8)






  DAF = R e s h a p e  (  L N  (   z e   )   )  ×  z l ′  ,  



(9)






  p = S o f t m a x  (   z L 0   )  ,  



(10)




where  Q ,  K , and  V  are the query, key, and value of the   M S A   model,    z e    is the patch of multimodal location environment,   R e s h a p e ( )   reformulates a 1-d feature into a 2-d matrix,   L N ( )   denotes the fully connected layer,    z L 0    is the class token concatenation of the RGB and NIR image, and  p  is the prediction result of the model.



Finally,    z L 0    are replaced by the corresponding positions in the LMT, and the patches with high weights are extracted again for the next iteration. Aerial image embedding and multimodal location environment embedding have the potential to complement each other. Therefore, we concatenated image embedding and multimodal location environment embedding in DAF-B, which is an extended version of DAF-A, and then dynamically mapped them to the image embedding.


  DAF − B = R e s h a p e  (  L N  (   [   z e  ,  z i   ]   )   )  ×  z l ′  ,  



(11)






   z i  = P o o l  (   z l ′   )  ,  



(12)







In the DViT model training process, we used focal loss to reduce the impact of category imbalance. The loss function is defined as follows:


   l  f o c a l   = −  α t     (  1 −  p t   )   r  l o g  (   p t   )  ,  



(13)




where    α t    and  r  are hyperparameters,    α t    is the balance factor, and γ is to adjust the rate at which the weight of simple samples is reduced. To verify the ability of multimodal location environment information to enhance the distinguishability of image features, we verified the robustness of the model using RGB, NIR, and RGB+NIR, and the experimental results are shown in table in Section 4.3.





4. Experiments


This section, we will introduce the detailed analysis of the experiment, including datasets, performance metrics, experimental details results, and ablation experiment analysis. In addition, the ablation experimental analysis is conducted to better illustrate the effectiveness of the DViT architecture.



4.1. Dataset


We conducted experiments on a species dataset with additional location environment information (GeoLifeCLEF 2021, 2022). GeoLifeCLEF 2021 and 2022 are part of the LifeCLEF 2021 and 2022 evaluation campaigns, respectively, as well as part of the Eighth Workshop on Fine-Grained Visual Categorization (FGVC8) on CVPR 2021 and FGVC9 on CVPR 2022.



The observation data in GeoLifeCLEF 2021 and 2022 are given latitude and longitude coordinates, the remote sensing imagery in RGB and NIR, and the cover and altitude data of the surrounding environment within 256 m × 256 m, which is 1 m per pixel in these data. In addition, bioclimatic and pedologic data corresponding to each observational data sample is also given, as extracted, preprocessed environmental variable features. The observation data of the location [43.779, 3.812] in GeoLifeCLEF 2021 and [32.957, −96.470] in GeoLifeCLEF 2022 are shown in Figure 4 and Figure 5.



Due to the sparseness of the land cover and altitude data, only RGB and NIR images in the dataset were used in the training process of the DViT model. Additional information selected regarded species location and preprocessed environmental embedding. The sample statistics of species number, train, validation, and test of GeoLifeCLEF 2021 and 2022 are shown in Table 2.



Due to the category imbalance of the species recognition dataset, the visualization of species observation distribution in the two datasets is shown in Figure 6. It can be seen that the long-tailed distributions problem of the GeoLifeCLEF 2021 dataset is more obvious. This dataset includes 31,179 observed species and only species category labels are given. The 17,037 observed species in the GeoLifeCLEF 2022 removed species categories with a small sample from GeoLifeCLEF 2021; this includes 9080 plants and 7957 animals. The species, genus, family, and kingdom category labels are also given for each observed data sample.




4.2. Implementation Details and Performance Metrics


We iteratively update the parameters of the RGB and NIR paths of DViT on the MAE pre-training model, to accelerate the model convergence during the training process. During the training process, we applied random cropping, random rotation, random vertical and horizontal flips, and 5–10% brightness and contrast adjustment to perform data augmentation on the image dataset. We applied center cropping to the image as a data-augmentation operation during the inference. Meanwhile, we trained with the Stochastic Gradient Descent (SGD) algorithm with momentum for DViT model optimization with an effective batch size of 512 on the 800 epochs. The learning rate was set to 0.0024 and the learning rate decayed to 0.95. The proposed model was trained and predicted using PyTorch on the GeForce RTX A6000 platform.



In the experiment, we used the top-30 error rate in the two public multimodal species recognition datasets (GeoLifeCLEF 2021 and 2022) to validate the performance of the DViT model. The top-30 error rate is expressed as follows:


  T o p − 30   e r r o r   r a t e =  1 N    ∑   i = 1  N   e i  ,   w h e r e        e i  =  {     1    i f   ∀ k ∈  {  1 , ⋯ , 30  }  ,   y ^   i , k   ≠  y i       0    o t h e r w i s e       ,  



(14)




where    y i    is the ground-truth label of observation  i . For each observation  i , it provides 30 candidate labels     y ^   i , 1   ,   y ^   i , 2   , ⋯ ,   y ^   i , 30     to compute the top-30 error rate.




4.3. Ablation Experiment Analysis


Mask Sampling Strategies: We first examined the impact of mask sampling strategies on DViT architecture performance. The experimental results are shown in Table 3. Specifically, we compared the impact of four mask sampling strategies: learnable sampling (our default), random sampling, lock-wise sampling, and grid-wise sampling. Random sampling is a large-scale random removal of small image blocks, lock-wise sampling removes large random blocks, and grid-wise sampling keeps one of every four patches.



The experiments are conducted based on the ViT backbone of the GeoLifeCLEF 2022 dataset. The experimental results show that learnable sampling reduces the error rate of recognition compared to random sampling strategies. We believe that the strategies of learnable sampling can better extract the local region of interest representation with high differentiation. In the MAE model, the random sampling strategies have been shown to achieve better results than lock-wise sampling and grid-wise sampling. In this paper, we also show that random sampling strategies can achieve good results in multimodal species identification.



Comparison of Backbone: We trained different ViT backbones based on learnable mask strategies of the GeoLifeCLEF 2022 dataset, achieving a very competitive top-30 error rate of 0.6594. Furthermore, comparing ViT-Huge to ViT-Base and ViT Large, it was seen that the larger-scale backbone model achieves more competitive results. The experimental results are shown in Table 4.



Comparison of Structures: We compared DAF-A and DAF-B (Figure 3) based on the ViT backbone and learnable sampling strategies with GeoLifeCLEF 2022. The results are shown in Table 5. The experimental results show that DAF-B can obtain better experimental results by fusing the embedding of aerial images and multimodal location environment embedding.




4.4. Comparisons with State-of-the-Arts


Our model was compared with five multimodal fusion schemes. We performed the implementation under a unified backbone for a fair comparison. In the ConcatNet [15] model, the species class was predicted by concatenating the image latent feature representation extracted from the VIT model of the backbone network with the features of multimodal location information. In PriorsNet [14], GeoNet [13], EnsembleNet [29], and Dynamic MLP [17], we similarly combined the original method embedding in the original method with the same replacement to ensure the fairness of the experiments. The experimental results—the top-30 error rates for classification of DViT and other methods using the GeoLifeCLEF dataset for species identification—are shown in Table 6.



For our proposed DViT model, the backbone structure adopts the ViT [30] model and the LMT for aerial images to sample a subset of patches, and fused the patches’ subsets of RGB, NIR, and multimodal location environmental embedding into the transformer encode model to obtain the final classification results.



In the GeoLifeCLEF 2021 dataset, the top-30 recognition error rates of the proposed DViT on the private test set are lower than those of the baseline method using only aerial images (ResNet, DenseNet, and VIT), by 0.0371, 0.0241, and 0.0319, respectively. Compared with the Dynamic MLP, which is the optimal fusion model of aerial images and multimodal location environment embedding, it is lower by 0.0074, 0.0099, and 0.0057, respectively. The DViT proposed also achieves SOTA recognition performance in the GeoLifeCLEF 2022 dataset.



Because the test results of GeoLifeCLEF 2021 and 2022 were submitted to Kaggle to obtain the top-30 error rate, the accuracy, precision, and recall metrics could not be obtained. Therefore, we further evaluated the DViT model with the RGB and NIR fusion (ResNet 50, DenseNet 161, ViT-Huge) and multimodal fusion Dynamic MLP in the validation set. The results are shown in Table 7 and Table 8.




4.5. Limitation and Discussion


The proposed DViT model improves the discrimination of image features by dynamically fusing aerial image embedding and geo-location environment information, achieving state-of-the-art performance in plant and animal species recognition. However, this method still has three limitations. First, for each aerial image and set of environmental information of each observed species, there may be other plants and animals. In this situation, the local image region of observed species may be removed through LMT to reduce recognition performance. Second, the influence of the positional relationship between MSA and DAF in the DViT model was not considered, which is also one of the main issues to be considered in future studies. Finally, the training of DViT starts with the pre-trained model of MAE, which may affect feature extraction from aerial images. In future research, unsupervised learning can be introduced for feature extraction of aerial images to increase the robustness of image embedding to improve the performance of species recognition.





5. Conclusions


In this paper, we propose a DViT model to reduce the effect of small image discrepancies for multimodal species recognition by combining aerial image and location environment information. Our method used the LMT to sample a subset of patches with high attention weights to reduce the complexity of the aerial image representation extraction calculation. The multimodal location environment information is added to the process of extracting the latent representation to improve the distinguishability of images’ latent representation using the DAF module. This study is the first to introduce multimodal location environment information to the visual transformer model for plant and animal species recognition. The many experiments conducted using the GeoLifeCLEF 2021 and 2022 datasets were validated with our analysis, which showed that the DViT achieved SOTA recognition performance.
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Figure 1. The architecture of our proposed DViT. The RGB and NIR image is input into the LMT module to sample a subset of patches to remove patches with low representability. Then, the multimodal geo-location environment embedding is fused with multimodal image patches to enhance the distinguishability of the image latent representation by the dynamic transformer encoder module. Finally, the enhanced multimodal image representation is used for species recognition. 
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Figure 2. The architecture of the LMP model in the RGB image path. The RGB image is divided into regular non-overlapping patches,    x p   , and these patches are input into LMT to sample a subset of patches,    x s   . 
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Figure 3. Comparisons between the two versions of the DAF model. DAF-A is the basic version and DAF-B is the concatenated image embedding and multimodal location environment embedding. 
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Figure 4. The observation data of the location [43.779, 3.812] in GeoLifeCLEF 2021. 
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Figure 5. The observation data of the location [32.957, −96.470] in GeoLifeCLEF 2022. 
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Figure 6. The species observation distribution of the GeoLifeCLEF 2021 and 2022 datasets. 
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Table 1. The summary of multimodal fusion methods for species recognition.
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Methods

	
Input

	
Method

	
Advantages

	
Drawbacks






	
ConcatNet

	
Image, Longitude, Latitude

	
Concat

	
The prior knowledge of the location and environmental information can help improve species recognition performance

	
Embedding redundancy




	
GeoNet

	
Image, Longitude, Latitude

	
Add

	
These methods do not consider the correlation between image and location context information




	
PriorsNet

	
Image, Longitude, Latitude, Date

	
Multiply




	
EnsembleNet

	
Image, Longitude, Latitude, Date, Weather, Habitat, Recorder




	
Dynamic MLP

	
Image, Longitude, Latitude, Date

	
Dynamic projecting

	
The location environment information dynamic enhancement of the image embedding

	
The method does not consider the effect of metadata on the distinguishability of image local embedding
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Table 2. The sample statistics of GeoLifeCLEF 2021 and 2022.
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	GeoLifeCLEF 2021
	GeoLifeCLEF 2022





	Plantae
	N/A
	9080



	Animalia
	N/A
	7957



	Species
	31,179
	17,037



	Train
	1,833,272
	1,587,395



	Validation
	45,446
	40,080



	Test
	42,405
	36,421
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Table 3. Comparisons with previous results for mask sampling strategies based on the ViT backbone of GeoLifeCLEF 2022.
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	Mask Sampling Strategies
	Public
	Private





	Block
	0.6824
	0.6972



	Grid
	0.6738
	0.6785



	Random
	0.6626
	0.6647



	Learnable
	0.6594
	0.6567
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Table 4. Comparisons with previous results for the backbone of GeoLifeCLEF 2022. The ViT models are B/16, L/16, and H/14.
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	DAF
	Public
	Private





	ViT-B/16
	0.6946
	0.6946



	ViT-L/16
	0.6742
	0.6742



	ViT-H/14
	0.6594
	0.6567
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Table 5. Comparisons between different DAF models. RGB”, “NIR”, and “L-E” indicate the input feature type for the RGB path, NIR path, and multimodal location environment path.
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	DAF
	RGB
	NIR
	L-E
	Public
	Private





	ViT
	√
	
	
	0.6954
	0.6938



	ViT
	
	√
	
	0.7106
	0.7135



	ViT
	√
	√
	
	0.6924
	0.6893



	DAF-A
	√
	
	√
	0.6816
	0.6842



	DAF-A
	
	√
	√
	0.6687
	0.6719



	DAF-A
	√
	√
	√
	0.6603
	0.6594



	DAF-B
	√
	
	√
	0.6754
	0.6719



	DAF-B
	
	√
	√
	0.6645
	0.6623



	DAF-B
	√
	√
	√
	0.6594
	0.6567
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Table 6. The top-30 error rate with image-only and multimodal fusion models using the GeoLifeCLEF 2021 and 2022 public dataset (left) and private dataset (left).
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Backbone

	
Methods

	
GeoLifeCLEF 2021

	
GeoLifeCLEF 2022




	
Public

	
Private

	
Public

	
Private






	
ResNet

	
RGB

	
0.7567

	
0.7683

	
0.7258

	
0.7325




	
NIR

	
0.7743

	
0.7794

	
0.7354

	
0.7468




	
RGB+NIR

	
0.7528

	
0.7668

	
0.7338

	
0.7334




	
ConcatNet [15]

	
0.7574

	
0.7583

	
0.7316

	
0.7310




	
PriorsNet [14]

	
0.7569

	
0.7514

	
0.7303

	
0.7283




	
GeoNet [13]

	
0.7451

	
0.7447

	
0.7285

	
0.7258




	
EnsembleNet [29]

	
0.7417

	
0.7403

	
0.7251

	
0.7196




	
Dynamic MLP [17]

	
0.7399

	
0.7371

	
0.7039

	
0.6974




	
DenseNet

	
RGB

	
0.7563

	
0.7547

	
0.6889

	
0.6807




	
NIR

	
0.7583

	
0.7556

	
0.7024

	
0.7124




	
RGB+NIR

	
0.7524

	
0.7538

	
0.6824

	
0.6810




	
ConcatNet [15]

	
0.7405

	
0.7496

	
0.6879

	
0.6775




	
PriorsNet [14]

	
0.7430

	
0.7404

	
0.6876

	
0.6791




	
GeoNet [13]

	
0.7479

	
0.7461

	
0.6867

	
0.6759




	
EnsembleNet [29]

	
0.7465

	
0.7423

	
0.6803

	
0.6673




	
Dynamic MLP [17]

	
0.7360

	
0.7396

	
0.6723

	
0.6658




	
ViT

	
RGB

	
0.7937

	
0.7950

	
0.7887

	
0.7889




	
NIR

	
0.7968

	
0.7890

	
0.7893

	
0.7913




	
RGB+NIR

	
0.7845

	
0.7616

	
0.7584

	
0.7507




	
ConcatNet [15]

	
0.7726

	
0.7754

	
0.7398

	
0.7334




	
PriorsNet [14]

	
0.7605

	
0.7627

	
0.7291

	
0.7225




	
GeoNet [13]

	
0.7598

	
0.7546

	
0.7176

	
0.7107




	
EnsembleNet [29]

	
0.7427

	
0.7447

	
0.6801

	
0.6810




	
Dynamic MLP [17]

	
0.7320

	
0.7354

	
0.6681

	
0.6689




	
DViT (ours)

	
0.7278

	
0.7297

	
0.6594

	
0.6567
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Table 7. For the validation set: the top-1 accuracy, top-30 accuracy, precision, and recall metrics comparison of the DViT with the image-only and multimodal fusion Dynamic MLP using GeoLifeCLEF 2021.
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	Methods
	Params
	Acc@1
	Acc@30
	Precision
	Recall





	ResNet on RGB+NIR
	58 M
	3.78
	26.31
	0.0100
	0.0054



	ResNet on Dynamic MLP
	64 M
	4.16
	28.56
	0.0124
	0.0079



	DenseNet on RGB+NIR
	82 M
	3.88
	26.38
	0.0111
	0.0053



	DenseNet on Dynamic MLP
	86 M
	4.29
	29.35
	0.0132
	0.0086



	ViT on RGB+NIR
	640 M
	3.27
	24.61
	0.0074
	0.0048



	ViT on Dynamic MLP
	642 M
	4.36
	28.92
	0.0129
	0.0074



	DViT (ours)
	163 M
	4.63
	30.82
	0.0143
	0.0096
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Table 8. For the validation set: the top-1 accuracy, top-30 accuracy, precision, and recall metrics comparison of the DViT with the image-only and multimodal fusion Dynamic MLP using GeoLifeCLEF 2022.






Table 8. For the validation set: the top-1 accuracy, top-30 accuracy, precision, and recall metrics comparison of the DViT with the image-only and multimodal fusion Dynamic MLP using GeoLifeCLEF 2022.





	Methods
	Params
	Acc@1
	Acc@30
	Precision
	Recall





	ResNet on RGB+NIR
	58 M
	4.23
	28.44
	0.0127
	0.0057



	ResNet on Dynamic MLP
	64 M
	4.48
	31.94
	0.0143
	0.0072



	DenseNet on RGB+NIR
	82 M
	5.06
	34.72
	0.0154
	0.0084



	DenseNet on Dynamic MLP
	86 M
	5.47
	35.64
	0.0178
	0.0111



	ViT on RGB+NIR
	640 M
	3.72
	26.31
	0.0099
	0.0052



	ViT on Dynamic MLP
	642 M
	5.75
	36.81
	0.0216
	0.0132



	DViT (ours)
	163 M
	5.98
	37.56
	0.0234
	0.0141
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