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Abstract: In this study, the enhancement of the spatial resolution of microwave radiometer mea-
surements is addressed by contrasting the accuracy of a gradient-like antenna pattern deconvolution
method with its accelerated versions. The latter are methods that allow reaching a given accuracy
with a reduced number of iterations. The analysis points out that accelerated methods result in im-
proved performance when dealing with spot-like discontinuities; while they perform in a similar way
to the canonical gradient method in case of large discontinuities. A key application of such techniques
is the research on global warming and climate change, which has recently gained critical importance
in many scientific fields, mainly due to the huge societal and economic impact of such topics over
the entire planet. In this context, the availability of reliable long time series of remotely sensed Earth
data is of paramount importance to identify and study climate trends. Such data can be obtained
by large-scale sensors, with the obvious drawback of a poor spatial resolution that strongly limits
their applicability in regional studies. Iterative gradient techniques allow obtaining super-resolution
gridded passive microwave products that can be used in long time series of consistently calibrated
brightness temperature maps in support of climate studies.

Keywords: microwave radiometer; resolution enhancement; regularization; preconditioning

1. Introduction

Climate studies call for long time series of reliable measurements with a synoptic
point of view. In order to make such a measurement, space observational techniques are of
paramount interest, and sensors onboard low Earth observing (LEO) satellites provide an
essential source of information to measure key geophysical quantities of interest. Among
them, microwave radiometers are sensors that are operated for a long time, ensuring a long
time series at a resolution scale that is usually meant to be adequate for climate studies. In
particular, there is a growing interest to monitor the evolution of fragile ecosystems such as
coastal or polar areas. Coastal areas are usually economically relevant areas both for the
civil infrastructure built and the presence of a large population fraction. For example, 52%
of the U.S. population lives in such areas with a population density that is from 3 to 4 times
the average one [1] and there is a major concern about the climate change impact on such
communities. The interdisciplinary study detailed in [1] calls for reliable and independent
measurements and this role can be played by satellite microwave remote sensing integrating
large-scale sensors such as microwave radiometers and small-scale sensors. In view of
this, it is important to provide microwave radiometer products at a spatial grid that is
comparable with the one resulting from smaller-scale sensors. Another fundamental
scenario is the polar regions. For instance, in Antarctica, there is a major concern about
some specific regions due to the increase of 5° of the upper ocean temperatures. In fact, it
has been established that the Antarctic circumpolar current is warming more rapidly than
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the global ocean as a whole and this has a direct impact on the polar ice system [2]. Again,
the availability of spatial resolution-enhanced products is a key asset to allow a finer spatial
resolution analysis of those areas that may reveal details associated with smaller-scale
phenomena. As a matter of fact, the intrinsic benefits of microwave radiometer products,
i.e., dense temporal and spatial coverage over the years, are strengthened by the capability
to generate new spatially enhanced products.

In addition to the data fusion among different sensors, spatial resolution-enhanced
radiometer products are also key assets to fully exploit the powerful capabilities of multi-
channel microwave radiometers. This category includes instruments that allow collecting
measurements exploiting frequency and polarisation diversity. For example, the seven-
channel four-frequency Special Sensor Microwave/Imager (SSM/I), the 24-channel (rang-
ing from 19 to 183 GHz) Special Sensor Microwave Imager Sounder (SSMIS), the 12-channel
Advanced Microwave Scanning Radiometer 2 (AMSR2), and the 10-channel Microwave
Radiation Imager (MWRI). These multi-channel microwave radiometers enable robust
and effective estimation of the geophysical parameter of interest by a proper combination
of measurements collected at different frequencies and/or polarization. However, since
the footprint size changes according to the adopted frequency channel, multi-frequency
estimation of geophysical parameters is not at all straightforward when the spatial grid of
the finer spatial resolution channel is not degraded to match the coarser resolution grid.
An alternative approach consists, even in this case, of enhancing the spatial resolution of
the microwave radiometer product. In the last decades, several approaches have been
proposed in the literature to achieve microwave radiometer products at an enhanced spatial
resolution. Those products can be generated using operational methods that can be roughly
classified into two groups: data-fusion approaches and methods based on the inversion
of the antenna pattern. The former ones basically consist of introducing additional in-
formation mainly coming from complementary observations [3]. For instance, in [4] the
multi-channel capability of MWRs is exploited to enhance the spatial resolution of the
low-resolution channels using the finer-resolution channels according to a technique called
smoothing filter-based intensity modulation (SFIM). On the other side, methods based on
the inversion of the antenna pattern allow reconstruction of the finer-resolution product
by exploiting the oversampling that comes with the microwave radiometer measurement
mechanism. The improvement in spatial resolution is achieved at the expense of noise
amplification, leading to noisier products.

In this study, the focus is on the second group of methods, which, due to the large-scale
nature of the microwave radiometer measurements, are typically iterative methods, i.e.,
techniques that enhance the spatial resolution of the product through a series of iterations.
Those methods may result in a low convergence rate that triggered the development of
acceleration procedures [5–7] that help limit the computational burden while processing
long time series of radiometer data. Within this context, we first show a typical brightness
field measured by a microwave radiometer with the nominal spatial grid; then, the field
reconstructed at finer spatial resolution using the canonical iterative gradient method
is shown. Finally, we contrast two accelerated versions of the canonical gradient-like
method to discuss their reconstruction’s accuracy with respect to convergence speed and
noise amplification. The remainder of the article is organized as follows: in Section 2, the
iterative schemes used in this study are introduced. Numerical experiments performed
over simulated radiometer profiles are discussed in Section 3 using quantitative metrics. In
Section 4, the conclusions are drawn.

2. Methodology

In this section, first, the theoretical background that underpins antenna pattern de-
convolution for microwave radiometer spatial resolution enhancement is presented. Then,
the two accelerated methods proposed to speed up the convergence rate of the canonical
gradient-like iterative procedure are discussed.
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Neglecting atmospheric effects, the generic t-th measurement provided by a given
channel of an MWR can be represented as a Fredholm operator of the first kind:

TAt = Ḡ−1
t

∫∫
Ω

Gt(s)TB(s)ds (1)

where TA(·) denotes the known radiometer measurements, TB(·) is the unknown brightness
field to be reconstructed, and Ḡt ≡

∫∫
Ω Gt(s)ds, is the normalizing constant value with

Gt(·) being the smooth integral kernel that depends on the projection of the integrated
antenna pattern onto the surface. Here s = (γ, θ) is the integration variable, where γ and θ
are the azimuth and the elevation angle [8]. The linearity of the integral operator and the
band-limited nature of the system function Gt(·) allow recasting (1) in a discrete setting as
follows [9]:

Ax = b + δ , (2)

where x ∈ Rn is the unknown brightness temperature, b ∈ Rm is the measured antenna
temperature, A ∈ Rm×n is the matrix that describes the projected antenna pattern with
m < n, and δ ∈ Rm is the additive Gaussian noise that affects the measurements.

Antenna pattern deconvolution methods attempt at inverting the linear system (2)
to retrieve x on a finer spatial grid. In general, the discrete problem to be solved can be
fully determined, over-determined, or under-determined. The latter is the case of most
remote sensing applications and, in particular, it is the case that applies when dealing with
the enhancement of the spatial resolution of microwave radiometer measurements, since
one aims at reconstructing the unknown function at a finer spatial resolution [10,11]. Since
the problem is underdetermined, i.e., there is no unique solution, additional constraints
must be applied to reconstruct the right unknown function. In addition, due to the ill-
posedness of the continuous problem (1), the corresponding equation (Equation (2)) is an
ill-conditioned discrete problem that requires regularization methods to ensure the stability
of the solution [9,12,13].

The general approach to solve (2) consists of minimizing the square of the 2-norm of
the residual Ax− b, i.e., minimizing the least square functional Ω2 defined as:

Ω2(x) =
1
2
‖Ax− b‖2

2 =
1
2

m

∑
i=1

(Ax− b)2
i (3)

In the past years, several regularization methods have been proposed to deal with
spatial resolution enhancement of microwave remotely sensed products. These methods
can be broadly split into two main categories: direct and iterative. Direct methods, e.g.,
truncated singular value decomposition [8,12], the Tikhonov method [14], and Backus–
Gilbert [15], are based on standard decomposition positions in numerical linear algebra.
The key advantages of direct methods rely on their computer-time effectiveness; however,
they are severely limited by the size of the problem to be inverted. In particular, they
are generally not suitable for large-size problems arising from microwave remote sensing.
On the other side, iterative methods are better suitable for large-scale problems since
they converge to the derived solution through an iterative scheme where the number of
iterations plays the role of regularization parameter. Among the iterative methods, the
basic kernel to minimize (3) is provided by the gradient method, whose k + 1-th iteration is
given by:

xk+1 = xk − λkpk

where x0 is an arbitrary initial brightness temperature field, λk > 0 is the step size, and pk
is an ascent direction at point xk for Ω2. A wide set of popular iterative methods for the
solution of ∇Ω2(x) = 0 belongs to this class, e.g., the Landweber (LW) method that calls
for pk−1 = ∇Ω2(xk−1), and the conjugate gradient (CG) method where pk−1 is a special
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linear combination of ∇Ω2(xk−1) and pk−2. For the purpose of this study, we focus on the
LW whose k + 1-th iteration reads as follows:

xk+1 = xk − λA∗(Axk − b) , (4)

where the so-called step-size 0 < λ < 2/‖A∗A‖2 = 2/‖A‖2
2 ensures that Ω2(xk+1) <

Ω2(xk) as well as the convergence to the generalized inverse x† ∈ N(A)⊥ [16], where here
the symbol † denotes the (Moore–Penrose) generalized inverse [17].

The LW method, which presents very good regularization and robustness features,
results in a slow convergence rate. In the following subsections, two state-of-the-art kernels
introduced to improve the convergence rate of LW are briefly reviewed.

2.1. Tikhonov-like Acceleration Technique (ILW)

In this subsection, the improved LW (ILW) technique introduced in [5] is briefly re-
viewed. The method consists of modifying the functional (5) by introducing a Tikhonov-like
penalty term that aims at de-regularising the gradient method to speed up the convergence
rate. Hence, a new functional is considered as follows:

Ω̄2(x) =
1
2
‖Ax− b‖2

2 +
α

2
‖x‖2

S (5)

where α is a preassigned regularization parameter, and S is a positive semi-definite self-
adjoint operator defined as [5]:

S ≡
(

I − A∗A
‖A‖2

2

)
(6)

In general, in the literature α > 0 is adopted to improve the regularisation capabilities
of the iterative scheme by penalizing significantly noisy components. In the case of ILW, an
opposite paradigm is considered that consists of using a negative α parameter, i.e., the term
‖x‖2 acts as a de-regularization term that results in an opposite behavior with respect to
Tikhonov regularization boosting the convergence speed. Starting from a null initial guess,
i.e., x0 = 0, the k-th iteration of the ILW method can be written as:

xk = xk−1 − λA∗(Axk−1 − b)− βkSxk−1 =

= (1− βk)xk−1 − A∗
((

λ− βk

‖A‖2
2

)
Axk−1 − λb

)
(7)

where βk = λαk < 0 is the so-called de-regularization parameter, whose absolute value de-
termines the weight of the penalty term ‖x‖2

S at the k-th iteration. The iteration-dependency
is to ensure that βk goes to zero asymptotically, in order to make the final result less affected
by noise amplification resulting from an excessive de-regularization.

2.2. Preconditioned Acceleration Technique (LW-P)

In this subsection, the preconditioned LW (LW-P) technique introduced in [6] is briefly
reviewed. The key idea of this method is to reduce the number of iterations to achieve
a given accuracy by using a filtered preconditioner operator [7,18,19]. The latter is an
invertible matrix operator Pf that, exploiting the structured nature of the A matrix, allows
clustering at unity the singular values related to the signal subspace only. This limits the
amplification of the components mainly corrupted by noise. The regularization behavior
of the LW-P method is governed by the choice of the function that is used to build the
preconditioner operator.

Starting from the linear system (2), an equivalent system, i.e., a least square precondi-
tioned system, can be obtained by writing:

P−1
f A∗Ax = P−1

f A∗b . (8)
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thanks to the fact that Pf is invertible. Given (8), the k-th iteration of the LW-P method can
be written as follows [6]:

xk = xk−1 − λP−1
f A∗(Axk−1 − b) . (9)

Equation (9) was constructed so that the solution obtained by the LW-P method is still
consistent with the generalized solution of (2), as well the non-preconditioned scheme (4).
In order to get a better understanding of the regularizing properties of the preconditioner
operator Pf , it must be pointed out that the latter should fulfill the following rationale: it
should approximate the generalized inverse A∗A in the recovered signal subspace while
penalizing the components of the noise subspace. This means that:

Pf '
{

A∗A signal subspace
I noise subspace

(10)

3. Numerical Experiments

In this section, first, a thought numerical example is presented to demonstrate the
ability of the canonical gradient method to reconstruct a brightness field at enhanced spatial
resolution. Two real brightness fields, measured by the Special Sensor Microwave/Imager
(SSM/I) and the microwave L-band radiometer flying onboard the Soil Moisture Active
Passive (SMAP) mission, are considered. Then, the two acceleration procedures discussed
in the previous section are contrasted with the canonical gradient method to analyze their
convergence speed. This analysis is carried out on simulated 1D brightness profiles to
better appreciate the different convergence speeds.

3.1. Spatial Resolution Enhancement with Gradient Methods

In this subsection, the added-value product resulting from the enhancement of the
spatial resolution of microwave radiometer products is showcased using two data sets
coming from the SSM/I and SMAP sensors. SSM-I is a seven-channel, four-frequency,
linearly polarized radiometer that collects both horizontally and vertically polarized ra-
diation at 19.35, 37.0, and 85.5 GHz and vertical only at 22.2 GHz [20]. In this study, we
refer to the lowest spatial resolution channel, namely the 19.35 GHz, which calls for a
spatial resolution equal to 69× 43 km. The SMAP is a US mission equipped with an L-band
microwave radiometer whose spatial resolution is equal to 39× 47 km. In both cases, the
reconstruction problem is formulated according to Equation (2) and reference is made
to the real configurations. In the along-scan direction, the SSM/I radiometer performs
64 measurements over the nominal swath of 1400 km, while for the SMAP case, the sensor is
supposed to perform uniformly spaced (every 11 km) measurements over a 1000 km swath
in the along-scan direction. The aim of this experiment is to show that a super-resolution
brightness temperature product can be obtained for remotely sensed MWR measurements
by means of iterative gradient methods.

The actual SSM/I brightness field measured in 1988 over the Northern Europe area
is shown in Figure 1a while the actual SMAP brightness field, collected in 2021 over an
area that includes part of England, Ireland, and Iceland is shown in Figure 2a. As expected,
both the radiometer measurements call for very blurred edges and coastlines that are not
well defined. Moreover, the two islands enclosed in the red circles of Figures 1a and 2a, i.e.,
the Island of Fionia for the SSM/I case and the Isle of Man for the SMAP case, are not well
separated from the mainland. The reconstructed fields at enhanced resolution obtained
using the LW method are shown in Figures 1b and 2b for the SSM/I and SMAP cases,
respectively. It can be noted that the LW reconstruction provides sharper edges and better-
defined coastlines with respect to the original radiometer measurements. The two islands
enclosed in the red boxes of Figures 1b and 2b are better defined and better separated from
the mainland. These kinds of super-resolution products are very important for regional
studies such as the monitoring of coastal regions and islands, strongly threatened by the
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effects of climate change. In addition, the LW method allows reconstructing the enhanced
resolution product on a given spatial grid that can be chosen in such a way as to generate
spatially consistent time series of measurements collected by microwave radiometers calling
for different native spatial resolutions. This rationale inspired, for instance, the Equal-Area
Scalable Earth (EASE)-Grid 2 map projection [21], allowing us to include measurements
obtained by different sensors or by different channels of the same sensor in long time series
of consistently calibrated brightness temperature images [22]. Such time series can be
employed in generating high-resolution maps of geophysical parameters that are critical
in monitoring the effects of global warming and climate change. Unfortunately, these
added-value enhanced spatial resolution products call for a processing time that is not very
fast due to the low LW convergence speed. This is a key drawback when large time series of
measurements are to be processed. Hence, in the following subsection, two child versions
of LW that accelerate its convergence speed while maintaining the same reconstruction
accuracy are contrasted.

Figure 1. SSM/I 19.35 GHz channel brightness field collected in 1988 over northern Europe: (a) lin-
early interpolated on the native spatial grid; (b) reconstructed at enhanced spatial resolution using
LW. The red circles shows the position of the Isle of Man, England; (c) zoomed-in version of the region
enclosed in the red box of (a); (d) zoomed-in version of the region enclosed in the red box of (b).
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Figure 2. L-band SMAP brightness field collected in 2021 over an area that includes part of England
(right-hand-side), Ireland (left-hand side), and Iceland (upper left-hand side): (a) linearly interpolated
on the native spatial grid; (b) reconstructed at enhanced spatial resolution using LW. The red circles
shows the position of the Island of Fionia, Denmark; (c) zoomed-in version of the region enclosed in
the red box of (a); (d) zoomed-in version of the region enclosed in the red box of (b).

3.2. Comparison between Accelerated Gradient Methods

Once the key advantages of the enhanced spatial resolution added-value product are
discussed, in this sub-section we focus on the numerical issues linked to the algorithmic
implementation of the iterative gradient method. In fact, although the LW method is reliable
and robust, its convergence rate is low. Hence, in this section, we contrast the convergence
rate of LW with its improved versions to discuss the advantages and drawbacks of the
speed-up methods. It is worth noting that all the methods are able to provide the same
reconstruction accuracy with a different number of iterations. Hence, to better discuss these
issues, we design a specific 1D simulation framework that mimics a 1D profile measured
by the SSM/I radiometer at the 19.35 GHz channel [11,20].

3.2.1. Metrics

To qualitatively and quantitatively discuss the enhancement capabilities of the three
methods, four objective metrics are introduced:

• Improvement Factor (IF), defined as the ratio between the -3 dB width of the enhanced
and the non-enhanced spike-like profiles, can assume values in the range [1, ∞).
Following its definition, the larger the IF is, the higher the enhancement capability
achieved by the method.

• Relative Global Error (ERR), defined as:

Errk =

∥∥∥∥∥xrec,k − xre f

xre f

∥∥∥∥∥
2

2

, (11)

where xre f is the value of the reference profile and xrec,k is the reconstruction at the
k-th iteration;

• Brightness Temperature Peak Error (∆TB,p), defined as:

∆TB,p ≡ TRP
B,p − TREC

B,p (12)

with REC = (LW, ILW, LW-P), see Figure 3. It quantifies the accuracy of the methods
to reconstruct the true brightness level of a spot-like discontinuity.
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• Noise Amplification (NA), defined as the RMSE evaluated over a background area of
the signal, see Figure 3. It allows a quantitative analysis of the noise amplification due
to the reconstruction method.

Figure 3. Pictorial sketch of the ∆TB,p and NA quantitative metrics.

3.2.2. Experiments

The first experiment aims at estimating the point spreading function resulting from
the inversion scheme. To estimate the point spreading function, a Dirac delta function
is needed that, according to the guidelines developed in [7,23] we approximate using a
non-realistic reference profile (RP) that consists of a 1-pixel Kronecker function calling for
a 106 K brightness temperature. This allows discussion of the enhancement of the spatial
resolution by contrasting the point spreading function in the non-enhanced and enhanced
cases. The noisy radiometer measured profile (MP), generated using the direct problem
of (2) and adding a zero-mean Gaussian additive noise (AWGN) δ with σnoise = 1.06 K
standard deviation, is depicted together with the LW (yellow line), ILW (green line), and
LW-P (red line) reconstructions in Figure 4a, using a dB scale. Note that the RP (shown as a
cyan line) is interpolated onto the finer spatial grid using conventional linear interpolation.
The relative global error is depicted in Figure 4b.

Figure 4. (a) Reconstruction of the 1-pixel Kronecker-like function using the LW (yellow line),
ILW (green line), and LW-P (red line) methods, in dB scale; (b) relative global error for the three
reconstructions. The zoomed-in panel in the blue box is to show the different behaviors of the three
methods along the first 100 iterations. Please note that the RP is not shown in (a) since it calls for a TB

value significantly larger than the measured and reconstructed ones.

It can be noted that, although all the methods improve the spatial resolution with
respect to the radiometer measurements, LW-P performs best since it results in a brightness
level that is the closest to the RP one. The quantitative proof of this visual analysis is given
in Table 1, where the IF metric is listed for the three methods. The latter confirms that LW-P
(1.57) outperforms both LW and ILW (1.29). Due to the iteration-dependency of the βk
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parameter in (7), the LW and ILW methods achieve the same IF value. In fact, by visually
analyzing the zoomed-in blue panel in Figure 4b, it can be noted that the ILW method
achieves a better performance in the first 100 iterations, but in the subsequent iterations, its
accuracy overlaps with LW method’s one.

Table 1. IF values for the first experiment using the LW, ILW, and LW-P methods.

LW ILW LW-P

IF 1.29 1.29 1.57

The second and third experiments consist of reconstructing two realistic RPs, see
the blue dotted lines in Figure 5a,b. The RP of Figure 5a (dotted line) mimics a spot-like
discontinuity that can be observed in real environments when targeting small islands. The
RP of Figure 5b (dotted line) mimics a large discontinuity that can be observed where
land/sea transitions are present. Again, the corresponding radiometer noisy MPs (see
Figure 5a,b, cyan lines) are generated using the direct problem of (2) with a zero-mean
Gaussian additive noise δ characterized by a σnoise = 1.06 K standard deviation to match
the one that identifies SSM/I measurements. Moreover, since the aim of this study is to
compare the performance of the three methods at a given iteration number, three ERR
thresholds are selected:

[ET1]: ERR = 0.70

[ET2]: ERR = 0.60

[ET3]: ERR = 0.45

(13)

The three methods are contrasted in correspondence with the three ERR values by
analyzing the number of iterations to achieve such an ERR value, the metric NA, and the
metric ∆TB,p. In addition, the metrics NA and ∆TB,p are also evaluated at those ERR values.

The second experiment refers to a single spike-like signal (with a width of 50 samples),
see the dotted blue line in Figure 5a. The LW (yellow line), ILW (green line), and LW-P
(red line) methods’ reconstructions are shown in Figure 6. The reconstructions refer to
ERR equal to ET1 (a), ET2 (b), and ET3 (c). Panel (d) displays the reconstruction achieved
at k = 1000 iterations. The ERR values are depicted in Figure 7, where the three error
thresholds defined in Equation (13) are annotated as dotted horizontal black lines and a
zoomed-in plot of the first 100 iterations is provided in the blue panel on the right side of the
figure. To quantitatively analyze the reconstruction’s performance, the number of iterations
required to reach the three error thresholds ET1, ET2, and ET3, and the metrics are listed in
Table 2. As expected, the ILW method requires fewer iterations to reach the accuracy level
of the first threshold ET1 (23) with respect to LW(42) and LW-P(32), while after the iteration
k = 50 the LW-P starts outperforming the other two methods. By analyzing Figure 6d, i.e.,
the reconstructions at the 1000th iteration, it can be clearly noted that LW-P reconstruction
performs best, achieving a remarkable accuracy in reconstructing the top of the spike
function (∆TB,p = −2), while the LW and ILW methods result in similar performances
(∆TB,p = 34 and ∆TB,p = 32, respectively). This result is achieved at the expense of an
increase in the fluctuations over the signal’s background. In fact, after 1000 iterations,
LW-P calls for a noise amplification value of NA = 7.29 which is significantly larger with
respect to the LW and ILW cases, i.e., NA = 2.98 and NA = 3.05, respectively. In order to
test the consistency of the obtained results in presence of a higher noise level, the same
experiment is repeated using σnoise = 2 K, see Table 2. Experimental results confirm that
the regularization properties of the three methods can deal with a higher noise level even if
the accelerated and preconditioned methods ILW and LW-P exploit de-regularization in
order to outperform LW. Hence, for the σnoise = 2, one can apply the same comments of
the σnoise = 1.06 case (SSM/I nominal AWGN), with the obvious difference that an higher
RMSE is present.
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Figure 5. Simulated RPs. (a) Spot-like discontinuity (dotted line) and MWR MP (continuous line);
(b) pulse-like discontinuity (dotted line) and MWR MP (continuous line).

Figure 6. Reconstruction of the 50-pixel spike signal using the LW (yellow line), ILW (green line), and
LW-P (red line) method corresponding to: (a) ET1; (b) ET2; (c) ET3; (d) at the 1000th iteration.
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Figure 7. Relative global error for the reconstructions in Figure 6. The three error thresholds ET1,
ET2, and ET3 (Equation (13)) are depicted as dotted horizontal black lines, and a zoomed-in plot of
the first 100 iterations is provided in the blue panel.

Table 2. Using two different values for the standard deviation of the noise δ in (2), the table shows
the number of iterations required to reach the three error thresholds ET1, ET2, and ET3, and metrics
related to the reconstruction of Figure 6. The values of the metrics at the 1000th iteration are
also shown.

σnoise = 1.06

ET LW ILW LW-P

Iter # RMSE ∆TB,p Iter # RMSE ∆TB,p Iter # RMSE ∆TB,p

ET1 41 0.32 185.34 22 0.32 190.60 31 0.32 190.13
ET2 85 0.47 131.10 52 0.45 140.85 52 0.47 144.71
ET3 585 0.91 43.72 528 0.92 43.80 169 1.02 53.13

1000 1.14 29 1000 1.17 28 1000 3.66 −2

σnoise = 2

ET LW ILW LW-P

Iter # RMSE ∆TB,p Iter # RMSE ∆TB,p Iter # RMSE ∆TB,p

ET1 42 0.69 185.06 23 0.89 190.01 32 0.84 189.07
ET2 88 1.17 131.14 55 1.22 139.76 54 1.27 143.46
ET3 641 2.52 45.24 584 2.53 45.29 182 2.73 52.48

1000 2.98 34 1000 3.05 32 1000 7.29 −2

The third experiment refers to a pulse-like signal calling for a brightness temperature
TB = 300 K and a width of 600 samples, see the dotted blue line in Figure 8b. The LW
(yellow line), ILW (green line), and LW-P (red line) methods’ reconstructions are shown in
Figure 8, corresponding to ERR values of (a) ET1, (b) ET2, and (d) ET3. Figure 8d shows the
reconstructions after 1000 iterations. The ERR values are depicted in Figure 9, where the
three error thresholds defined in Equation (13) are depicted as dotted horizontal black lines
and a zoomed-in plot of the first 100 iterations is provided in the blue panel on the right side
of the figure. To quantitatively analyze the reconstruction’s performance, the number of
iterations required to reach the three error thresholds ET1, ET2, and ET3, and the metrics are
evaluated (Table 3). In this case, the results are different from the single isolated spike case.
In fact, all three methods manage to achieve an enhancement with respect to the blurred
radiometer measurements with similar performance and accuracy. By analyzing the results
in Table 3, it can be noted that the difference in reaching a given error threshold in terms
of iteration number is negligible with respect to the second experiment’s case. Moreover,
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all three methods achieve similar reconstruction performance after 1000 iterations, with
LW-P suffering from the stronger noise amplification effect on the background area of the
signal. This implies that, in case of large discontinuities, e.g., land/sea transitions, there is
no benefit in accelerating gradient-like methods.

Figure 8. Reconstruction of the 600-pixel pulse signal using the LW (yellow line), ILW (green line)
and LW-P (red line) method corresponding to: (a) ET1; (b) ET2; (c) ET3; (d) at the 1000th iteration.

Figure 9. Relative global error for the reconstructions in Figure 8. The three error thresholds ET1,
ET2, and ET3 (Equation (13)) are depicted as dotted horizontal black lines, and a zoomed-in plot of
the first 100 iterations is provided in the blue panel.
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Table 3. Number of iterations required to reach the three error thresholds ET1, ET2, and ET3, and
metrics related to the reconstruction of Figure 8. In the last row, the values of the metrics at the 1000th
iteration are shown.

ET LW ILW LW-P

Iter # RMSE ∆TB,p Iter # RMSE ∆TB,p Iter # RMSE ∆TB,p

ET1 13 0.18 202.92 13 0.57 187.99 14 0.27 0.27
ET2 19 0.26 166.57 18 0.60 160.47 20 0.37 0.37
ET3 29 0.38 119.32 28 0.67 115.74 31 0.54 0.54

1000 1.65 −23 1000 1.66 −24 1000 3.53 −25

4. Conclusions

A study aimed at contrasting three different iterative gradient schemes is presented:
the classical LW method and two accelerated versions, i.e., the ILW and the LW-P methods.
The latter aim at ameliorating the convergence rate of the LW method, which is intrinsi-
cally slow, and hence could be exploited when processing long time series of microwave
passive data.

The qualitative and quantitative analysis of the reconstruction accuracy with respect
to the number of iterations and the noise amplification shows that all three methods
successfully provide enhanced resolution products. However, the LW-P method allows for
obtaining the highest improvement factor, i.e., IF = 1.57. When dealing with a single hot
spot that resembles an isolated island, the ILW method outperforms the other two methods
within the first 100 iterations, while the LW-P method achieves the best results in terms of
accuracy of the reconstructions, at the expense of stronger noise amplification and a higher
number of iterations with respect to the ILW case. When dealing with a pulse-like signal,
the difference between the three methods is negligible, and LW-P should be avoided due to
a higher noise amplification with respect to LW and ILW.

From an operational viewpoint, these speed-up methods are very important since they
can be used to process the long time series of measurements collected at different spatial
resolutions by microwave radiometers to enable added-value products for climate studies.
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