Analysis of the Spatial and Temporal Distribution of Potential Evapotranspiration in Akmola Oblast, Kazakhstan, and the Driving Factors
Abstract
:1. Introduction
- Together with the P-M model, calculate and assess the spatial and temporal distribution characteristics of PET in Akmola State.
- Using bias correlation analysis and SEM calculations, determine the sources of PET variance in the research area.
- As drought events occur frequently on a global scale and PET is a key indicator in drought monitoring and forecasting, we assume that PET in Alamok Oblast, Kazakhstan will continue to rise from 1991 to 2021 as a result of global warming.
- PET is the theoretical upper limit of net surface evapotranspiration capacity, and we assume that solar radiation (Srad) is the most important meteorological driver of PET change.
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Computational Methods and Statistical Analysis
2.3.1. Penman-Monteith (P–M) Equation
2.3.2. Statistical Analysis
3. Results and Analysis
3.1. Spatial and Temporal Distribution Characteristics of PET in Akmola State
3.2. Drivers of Spatial and Temporal Variability of Potential Evapotranspiration
3.2.1. Spatial and Temporal Distribution Characteristics of Environmental Factors in Akmola State
3.2.2. Analysis of the Correlation between Potential Evapotranspiration and Various Climatic Parameters in Akmola State
3.2.3. Spatial Distribution of Potential Evapotranspiration and Environmental Factor Bias off in Akmola State
3.2.4. Drivers of Potential Evapotranspiration Change in Akmola State
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koutroulis, A.G. Dryland Changes under Different Levels of Global Warming. Sci. Total Environ. 2019, 655, 482–511. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, J.; Shahid, S.; Guan, E.; Wu, Y.; Gao, J.; He, R. Adaptation to Climate Change Impacts on Water Demand. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 81–99. [Google Scholar] [CrossRef]
- Dai, Z.; Yu, M.; Chen, H.; Zhao, H.; Huang, Y.; Su, W.; Xia, F.; Chang, S.X.; Brookes, P.C.; Dahlgren, R.A. Elevated Temperature Shifts Soil N Cycling from Microbial Immobilization to Enhanced Mineralization, Nitrification and Denitrification across Global Terrestrial Ecosystems. Glob. Chang. Biol. 2020, 26, 5267–5276. [Google Scholar] [CrossRef] [PubMed]
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Berg, A.; Sheffield, J.; Milly, P.C.D. Divergent Surface and Total Soil Moisture Projections under Global Warming. Geophys. Res. Lett. 2017, 44, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Durán, J.; Delgado-Baquerizo, M.; Dougill, A.J.; Guuroh, R.T.; Linstdter, A.; Thomas, A.D.; Maestre, F.T. Temperature and Aridity Regulate Spatial Variability of Soil Multifunctionality in Drylands across the Globe. Ecology 2018, 99, 1184–1193. [Google Scholar] [CrossRef] [Green Version]
- Maestre, F.T.; Benito, B.M.; Berdugo, M.; Concostrina-Zubiri, L.; Delgado-Baquerizo, M.; Eldridge, D.J.; Guirado, E.; Gross, N.; Kéfi, S.; Le Bagousse-Pinguet, Y. Biogeography of Global Drylands. New Phytol. 2021, 231, 540–558. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim. 2014, 27, 1143–1167. [Google Scholar] [CrossRef]
- Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The Relationship between Precipitation Anomalies and Satellite-Derived Vegetation Activity in Central Asia. Glob. Planet. Chang. 2013, 110, 74–87. [Google Scholar] [CrossRef]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; De Jeu, R. Recent Decline in the Global Land Evapotranspiration Trend Due to Limited Moisture Supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial Water Fluxes Dominated by Transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, Y.; Liu, X.; Zhao, H.; Wang, G.; Shao, R. Estimating the Evaporation in the Fenghuo Mountains Permafrost Region of the Tibetan Plateau. Catena 2020, 194, 104754. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Zhang, Y. Calibration-free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally. Water Resour. Res. 2021, 57, e2021WR029691. [Google Scholar] [CrossRef]
- Makori, D.M.; Abdel-Rahman, E.M.; Ndungu, N.; Odindi, J.; Mutanga, O.; Landmann, T.; Tonnang, H.E.Z.; Kiatoko, N. The Use of Multisource Spatial Data for Determining the Proliferation of Stingless Bees in Kenya. GIScience Remote Sens. 2022, 59, 648–669. [Google Scholar] [CrossRef]
- El-Mageed, A.; Taia, A.; El-Mageed, A.; Shimaa, A.; El-Saadony, M.T.; Abdelaziz, S.; Abdou, N.M. Plant Growth-Promoting Rhizobacteria Improve Growth, Morph-Physiological Responses, Water Productivity, and Yield of Rice Plants under Full and Deficit Drip Irrigation. Rice 2022, 15, 16. [Google Scholar] [CrossRef]
- Li, D. Assessing the Impact of Interannual Variability of Precipitation and Potential Evaporation on Evapotranspiration. Adv. Water Resour. 2014, 70, 1–11. [Google Scholar] [CrossRef]
- Pascolini-Campbell, M.; Reager, J.T.; Chandanpurkar, H.A.; Rodell, M. Retraction Note: A 10 per Cent Increase in Global Land Evapotranspiration from 2003 to 2019. Nature 2022, 604, 202. [Google Scholar] [CrossRef]
- Tegos, A.; Malamos, N.; Koutsoyiannis, D. RASPOTION—A New Global PET Dataset by Means of Remote Monthly Temperature Data and Parametric Modelling. Hydrology 2022, 9, 32. [Google Scholar] [CrossRef]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Lu, H.; Jin, L.; Du, Y.; Chen, F. Increasing Summer Precipitation in Arid Central Asia Linked to the Weakening of the East Asian Summer Monsoon in the Recent Decades. Int. J. Climatol. 2021, 41, 1024–1038. [Google Scholar] [CrossRef]
- Hao, H.; Chen, Y.; Xu, J.; Li, Z.; Li, Y.; Kayumba, P.M. Water Deficit May Cause Vegetation Browning in Central Asia. Remote Sens. 2022, 14, 2574. [Google Scholar] [CrossRef]
- Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Iwamoto, H. Generation of the 30 m-mesh global digital surface model by alos prism. Int. Arch. Photogramm. Remote Sens. S 2016, XLI B4, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Mensah, S.; du Toit, B.; Seifert, T. Diversity–Biomass Relationship across Forest Layers: Implications for Niche Complementarity and Selection Effects. Oecologia 2018, 187, 783–795. [Google Scholar] [CrossRef] [PubMed]
- van der Sande, M.T.; Peña-Claros, M.; Ascarrunz, N.; Arets, E.J.M.M.; Licona, J.C.; Toledo, M.; Poorter, L. Abiotic and Biotic Drivers of Biomass Change in a Neotropical Forest. J. Ecol. 2017, 105, 1223–1234. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Cheng, J.; Luedeling, E.; Koerner, S.E.; He, J.-S.; Xu, J.; Gang, C.; Li, W.; Luo, R.; Peng, C. Critical Climate Periods for Grassland Productivity on China’s Loess Plateau. Agric. For. Meteorol. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Q.; Ren, X.; Wang, X.; Yan, X.; Li, X.; Wang, L.; Bao, L. Climatic Change Characteristics towards the “Warming–Wetting” Trend in the Pan-Central-Asia Arid Region. Atmosphere 2022, 13, 467. [Google Scholar] [CrossRef]
- Chen, X.; Li, B.; Li, Q. Spatio-Temporal Pattern and Changes of Evapotranspiration in Arid Central Asia and Xinjiang of China. J. Arid Land 2012, 4, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.-Y.; Singh, V.P. Evaluation of Three Complementary Relationship Evapotranspiration Models by Water Balance Approach to Estimate Actual Regional Evapotranspiration in Different Climatic Regions. J. Hydrol. 2005, 308, 105–121. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.; Sun, X.; Hu, Z.; Lin, S.; Wang, F.; Yang, Y. New Cognition on the Response of Reference Evapotranspiration to Climate Change in China Using an Independent Climatic Driver System. Agric. Water Manag. 2022, 262, 107445. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Tang, Y.; Yang, Y. Trends in Pan Evaporation and Reference and Actual Evapotranspiration across the Tibetan Plateau. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Gong, D.-Y.; Ho, C.-H. The Siberian High and Climate Change over Middle to High Latitude Asia. Theor. Appl. Climatol. 2002, 72, 1–9. [Google Scholar] [CrossRef]
- Singh, D.; McDermid, S.P.; Cook, B.I.; Puma, M.J.; Nazarenko, L.; Kelley, M. Distinct Influences of Land Cover and Land Management on Seasonal Climate. J. Geophys. Res. Atmos. 2018, 123, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, X.; Liu, D.; Wu, H.; Lü, X.; Fang, Y.; Cheng, W.; Luo, W.; Jiang, P.; Shi, J. Aridity Threshold in Controlling Ecosystem Nitrogen Cycling in Arid and Semi-Arid Grasslands. Nat. Commun. 2014, 5, 4799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Zhang, Z.-C.; Zhang, X.-N.; Chen, Y.-Q.; Qian, M.-K.; Peng, S.-F. Estimation of Groundwater Recharge from Precipitation and Evapotranspiration by Lysimeter Measurement and Soil Moisture Model. J. Hydrol. Eng. 2008, 13, 333–340. [Google Scholar] [CrossRef]
- Fang, C.; Ye, J.; Gong, Y.; Pei, J.; Yuan, Z.; Xie, C.; Zhu, Y.; Yu, Y. Seasonal Responses of Soil Respiration to Warming and Nitrogen Addition in a Semi-Arid Alfalfa-Pasture of the Loess Plateau, China. Sci. Total Environ. 2017, 590, 729–738. [Google Scholar] [CrossRef]
Land Cover Type | Areas (km2) | Proportion (%) |
---|---|---|
Cropland | 77,254.16 | 52.74 |
Tree cover | 25,995.08 | 17.75 |
Shrubland | 88.45 | 0.06 |
Grassland | 39,868.47 | 27.22 |
Urban areas | 526.48 | 0.36 |
Bare areas | 235.13 | 0.16 |
Water bodies | 2506.75 | 1.71 |
Type | Variable | Abbreviations | Unite | Original Resolution | Data Source |
---|---|---|---|---|---|
Mean annual temperature | MAT | °C | 4638.3 m | https://doi:10.1038/sdata.2017.191 (accessed on 20 September 2022) | |
Climate | Mean annual precipitation | MAP | mm | 4638.3 m | https://doi:10.1038/sdata.2017.191 (accessed on 20 September 2022) |
Aridity | - | - | 4638.3 m | https://doi:10.1038/sdata.2017.191 (accessed on 20 September 2022) | |
Maximum temperature | - | °C | 4638.3 m | https://doi:10.1038/sdata.2017.191 (accessed on 20 September 2022) | |
Minimum temperature | - | °C | 4638.3 m | https://doi:10.1038/sdata.2017.191 (accessed on 20 September 2022) | |
vapor pressure difference | VPD | kPa | 4638.3 m | https://doi:10.1038/sdata.2017.191 (accessed on 20 September 2022) | |
Solar radiation | Srad | W/m2 | 4638.3 m | https://doi:10.1038/sdata.2017.191 (accessed on 20 September 2022) | |
Wind speed | vs | m/s | 4638.3 m | https://doi:10.1038/sdata.2017.191 (accessed on 20 September 2022) | |
Soil water content | SWC | mm | 4638.3 m | https://doi:10.1038/sdata.2017.191 (accessed on 20 September 2022) | |
Soil temperature | ST | °C | 11,132 m | https://doi:10.5067/5NHC22T9375G (accessed on 20 September 2022) | |
NDVI | NDVI | - | - | 30 m | https://glovis.usgs.gov/ (accessed on 20 September 2022) |
Elevation | Elevation | - | m | 30 m | https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm (accessed on 20 September 2022) |
Interannual Rate of Change (mm/yr) | Area (km2) | Percentage (%) |
---|---|---|
−34.03–−24.48 | 14,144.43 | 9.62% |
−24.28–−17.32 | 38,654.57 | 26.29% |
−17.32–−11.43 | 44,050.63 | 29.96% |
−11.43–0 | 40,786.53 | 27.74% |
0–6.39 | 9395.311 | 6.39% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, S.; Wang, Y. Analysis of the Spatial and Temporal Distribution of Potential Evapotranspiration in Akmola Oblast, Kazakhstan, and the Driving Factors. Remote Sens. 2022, 14, 5311. https://doi.org/10.3390/rs14215311
Chen Y, Zhang S, Wang Y. Analysis of the Spatial and Temporal Distribution of Potential Evapotranspiration in Akmola Oblast, Kazakhstan, and the Driving Factors. Remote Sensing. 2022; 14(21):5311. https://doi.org/10.3390/rs14215311
Chicago/Turabian StyleChen, Yusen, Shihang Zhang, and Yongdong Wang. 2022. "Analysis of the Spatial and Temporal Distribution of Potential Evapotranspiration in Akmola Oblast, Kazakhstan, and the Driving Factors" Remote Sensing 14, no. 21: 5311. https://doi.org/10.3390/rs14215311
APA StyleChen, Y., Zhang, S., & Wang, Y. (2022). Analysis of the Spatial and Temporal Distribution of Potential Evapotranspiration in Akmola Oblast, Kazakhstan, and the Driving Factors. Remote Sensing, 14(21), 5311. https://doi.org/10.3390/rs14215311