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Abstract: Potential evapotranspiration (PET) is the capacity of the sub-surface evapotranspiration
process, which is determined by weather and climate conditions. As an important component of the
surface energy balance and hydrological cycle, PET determines hydrothermal transport in surface
ecosystems and is an important factor in regional water resource evaluation, water use efficiency, and
drought prediction. Most of the existing studies have focused on the impact of PET on the ecological
environment and regional climate, providing limited information on the characteristics of the regional
distribution of potential evapotranspiration itself and the associated drivers. In this study, we use
the Penman-Monteith (P–M) model to calculate the PET in Akmola Oblast, combined with relevant
climate data, partial correlation analysis, and structural equation modelling (SEM) to investigate
the spatial and temporal distribution characteristics of PET in the study area and its driving factors,
as well as the influence of meteorological activity on PET after the implementation of the Green
Ring Project in the capital area of Kazakhstan. The results of the study show that: (1) The PET in
Akmola State presented a decreasing trend from 1991 to 2021, with a multi-year average value of
835.87 mm. There is large heterogeneity in the spatial distribution of PET, being significantly higher
in the southwestern and northeastern regions of the study area than in the central region. (2) Simple
and partial correlation analyses indicate that most of the correlations between meteorological and
PET were significant, with strong spatial heterogeneity in the number of biased relationships between
different meteorological activity and PET. The spatial characteristics of the correlations between PET
and Srad (Solar radiation), VS (wind speed), and MAT (Mean annual temperature) were similar, with
the strongest correlations observed in the southwestern part of Akmola State. Furthermore, the spatial
distribution of the correlations between PET and SWC (soil water content) and ST (soil temperature)
was similar, with stronger correlations in the central part of the study area than elsewhere. (3) The
SEM demonstrated that the main drivers of PET change across the study area are Srad (0.59) and
VS (0.37). In the metropolitan area, MAP (mean annual precipitation) is also a major driver of PET
change, due to the implementation of the Green Ring Project, which has increased vegetation cover
and improved the local environment. The results of this study highlight the impact of climate change
on PET in Akmola Oblast, Kazakhstan, contributing to a better understanding of PET evolution and
providing guidance for water management planning.

Keywords: potential evapotranspiration; partial correlation analysis; Penman-Monteith (P–M) model;
climate change; structural equation modelling
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1. Introduction

Drylands, which comprise hyper-arid, arid, semi-arid, and dry sub-humid climate
zones, account for 47% of the world’s geographical area and are home to 39% of the world’s
population [1]. Dryland ecosystems are more fragile and highly susceptible to climate
change, with global semi-arid climate change escalating over the past 60 years. Global dry-
lands are expanding due to global warming and intensive human activities, and changes in
temperature and precipitation patterns have been observed in many parts of the world [2]).
Increasing aridity is a major indicator of climate change in drylands globally [3], and total
annual and seasonal potential evapotranspiration are increasing [4]. Drought results in soil
moisture deficiencies [5] and declines in agricultural production, affecting the livelihoods of
agriculturally reliant communities. Moreover, it contributes substantially to land degrada-
tion and biodiversity loss [6]), and multiple structural and functional characteristics of the
ecosystem will be impacted [7]. Consequently, it is crucial to increase the monitoring and
management of ecological settings in arid regions. Kazakhstan is the largest and most pop-
ulous of the five Central Asian countries, and Akmola Oblast—where its capital, Nursultan,
is located—in the steppes of Kazakhstan is the political and cultural center of Kazakhstan,
as well as an important base for agriculture, forestry, and economic development. Its
agricultural cultivation area accounts for one-fourth of Kazakhstan’s national agricultural
cultivation area, which has been undergoing dramatic expansion. Temperatures have risen
at a rate of 0.4 ◦C−10yr−1 in Central Asia over the past 30 years, which is significantly higher
than in neighboring regions and the Northern Hemisphere as a whole (0.3 ◦C−10yr−1) [8].
This is likely to have extremely significant effects on the ecological quality of Akmola
Oblast. During the same time period, different regions of Central Asia had severe droughts,
and precipitation has exhibited large regionally diverse patterns and interannual variabil-
ity [9]. In the context of global climate change, it is crucial to investigate changes in the
geographical and temporal patterns of hydrological drought in the Akmola region. Evapo-
transpiration is a crucial process bridging the soil–vegetation–atmosphere continuum and
serves as an essential link between Earth system components [10]. The mechanisms of
evapotranspiration consist of evaporation from soil and moist plant surfaces, transpiration
from plant leaves, and evaporation from plant surfaces [11]. In arid locations, as much as
90% of precipitation is returned to the environment by evapotranspiration [12]. Globally,
evapotranspiration returns roughly 60% of precipitation to the atmosphere [13]. In the
meantime, 50% of the solar radiation absorbed by the earth is converted into latent heat [14].
Potential Evapotranspiration (PET) is the capacity of the sub-surface evapotranspiration
process, which is determined by weather and climate conditions. It is the theoretical upper
limit of the actual evapotranspiration and has been widely used in agricultural water use
studies, ecological process modeling, and evaluations of regional dry and wet conditions.
Due to a substantial increase in temperature, PET production has increased in the dry
regions of Asia (IPCC, 2013). A gradual decrease in precipitation has also been observed in
the arid regions of West Asia [15]. The increase in PET and decrease in precipitation have
led to decreased soil moisture, a decrease in the water table, and changes in land cover, ulti-
mately leading to an expansion of the region’s arid lands. PET not only affects ecosystems
at the macro-scale, but also impacts natural animal life activities; for example, PET and
temperature seasonality contribute 21.12% of the information required to predict the spatial
distribution of stingless bees affecting Kenya [16]; furthermore, Taia et al. have investigated
the effects of full irrigation (100% evapotranspiration, ETc) and deficit irrigation (80% ETc)
of rice in the 2017 and 2018 seasons [17]. As a key component of the surface energy balance
and hydrological cycle [18], PET governs the hydrothermal transport of surface ecosystems.
Estimating continuous PET over extended time-series and assessing its geographical and
temporal patterns and affecting factors are crucial for regional water resource appraisal,
water usage efficiency, and drought prediction [10].

Most current PET measurement and estimation techniques are limited to a single-point
scale, and do not represent a regional scale [12,19,20]. Based on the construction method,
these models can be categorized as empirical or mechanical, and include the Penman-
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Monteith, Stanghellini, Priestly–Taylor, Hargreaves, and Samani models [21]. Additionally,
based on the contrast between soil evaporation and plant transpiration, these models can
be split into single-source and dual-source models [22]. Due to its great accuracy, the
Penman-Monteith (P–M) model has been utilized extensively. In recent years, climate
warming has become more prominent, with a prominent effect on the ecohydrological
cycle. Arid and semi-arid watersheds, as the watershed types experiencing the most
significant ecohydrological changes, present large regional and seasonal differences in
evapotranspiration trends. Prior research has focused primarily on the effects of PET on the
regional variability of drought or on ecosystems, ignoring the characteristics and sources
of PET’s spatial and temporal variability. Nurdan, the capital of Kazakhstan, has been
carrying out large-scale plantation forest construction projects for the past three decades.
These projects have artificially altered the vegetation cover of Sultan and surrounding areas,
which has had a significant effect on the local potential evapotranspiration [23]. In this
paper, we use the Penman-Monteith (P–M) model to calculate the spatial and temporal
variation of potential evapotranspiration (PET) in Akmola Oblast, Kazakhstan over the
past three decades, as well as combining bias-off analysis and structural equation modeling
(SEM) to calculate the driving effects of various environmental factors on PET changes.

The objectives of this paper are as follows:

1. Together with the P-M model, calculate and assess the spatial and temporal distribu-
tion characteristics of PET in Akmola State.

2. Using bias correlation analysis and SEM calculations, determine the sources of PET
variance in the research area.

Based on the preceding analysis, the following hypotheses are proposed:

1. As drought events occur frequently on a global scale and PET is a key indicator in
drought monitoring and forecasting, we assume that PET in Alamok Oblast, Kaza-
khstan will continue to rise from 1991 to 2021 as a result of global warming.

2. PET is the theoretical upper limit of net surface evapotranspiration capacity, and we
assume that solar radiation (Srad) is the most important meteorological driver of
PET change.

2. Materials and Methods
2.1. Overview of the Study Area

We consider Akmola Oblast (49.9–53.8◦N, 65.3–74.4◦E) as the study area(Figure 1).
Akmola Oblast is located in the upper reaches of the Khim River, in north-central Kaza-
khstan. It has an area of approximately 1.46 × 105 km2, a population of approximately
747,600, an average altitude of 229 m, and an average annual precipitation of less than
500 mm. The average annual temperature in Akmola Oblast is between 2–6 ◦C. The lowest
temperature in Winter may reach −41 ◦C. On its territory, the city of Nursultan is regarded
as the second-coldest capital in the world.

From October until March of the following year, Akmola prefecture is covered in snow.
Every year in April, the temperature rises and the snow melts. This provides favorable
hydrothermal conditions, which are advantageous for the growth of crops. About 25%
of Kazakhstan’s agricultural land is devoted to grain cultivation in this region. It is a
significant agricultural and forestry production center in the nation.
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Figure 1. Overview map of the study area.

2.2. Data Sources

Google Earth Engine (GEE) is a highly developed cloud platform for the scientific
processing of geographically relevant data. The Google Earth Engine platform contains an
extensive repository of remote sensing data. We used the GEE platform to obtain the tem-
perature and weather data necessary for the Penman-Monteith (P–M) model calculations.
Furthermore, we downloaded land cover classification data of the study area from the ESA
website (https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover, URL
(accessed on 25 August 2022)) with 300 m spatial resolution.

Terra Climate data is a global land surface monthly mean climate and climate water
balance data set from 1958 to 2021, published by the University of Idaho (https://doi.org/
10.1038/sdata.2017.191, URL (accessed on 25 August 2022)), with a spatial resolution of
4638.3 m. It encompasses global climate water balance and land surface climate data and
consists of temperature-related information such as solar radiation (SRad), precipitation
(MAP), surface temperature (MAT), wind speed (VS), and water vapor pressure (VPR).

We collected NDVI values by de-clouding and banding Landsat data, then supple-
mented and corrected the missing values with the NASA- and NOAA-published NOAA
CDR AVHRR NDVI data set (https://doi.org/10.7289/V5PZ56R6, URL (accessed on
25 August 2022)), in order to study the contribution of vegetation cover to PET.

ALOS World 3D-30 m (AW3D30) is a global digital surface model (DEM) data set with
a spatial resolution of approximately 30 m [24].

The aforementioned data were used for Penman-Monteith (P–M) computations in
GEE by reprojection cropping procedures, among others, with respect to the years and
spatial resolution of the data stated in Table 1.

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover
https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.7289/V5PZ56R6
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Table 1. Area and proportion of different land cover types.

Land Cover Type Areas (km2) Proportion (%)

Cropland 77,254.16 52.74
Tree cover 25,995.08 17.75
Shrubland 88.45 0.06
Grassland 39,868.47 27.22

Urban areas 526.48 0.36
Bare areas 235.13 0.16

Water bodies 2506.75 1.71

2.3. Computational Methods and Statistical Analysis
2.3.1. Penman-Monteith (P–M) Equation

The Penman–Monteith (P–M) equation, initially proposed by the Food and Agriculture
Organization (FAO-56), is regarded as a standard method for estimating PET [25–28]. This
method is a climatic data-based strategy that does not require calculation of other specific
parameters and, as a result, may be applied globally (Zomer). In 1948, Penman was the
first to combine radiant energy balance and aerodynamic mass transfer methods to derive
equations for calculating evaporation from open water surfaces, based on standard climatic
records of insolation, temperature, humidity, and wind speed. This integrated approach
eliminated the need to measure the most difficult parameter: surface temperature [29]. The
Penman-Monteith (P–M) equation for estimating PET is as follows:

ET0 =
∆(Rn − G) + ρacp

(es − ea)

ra

∆ + γ

(
1 +

rs

ra

) , (1)

where ET0 is the evapotranspiration of the reference crop (in millimeters per day), Rn
is the daily net crop surface radiation (in MJ m−2), G is the soil heat flow density (in
MJ m−2 day−1), cp is the specific heat of dry air at constant pressure, ρa is the air’s density
under constant air pressure, es is the saturated vapor pressure (in kPa), ea is the actual
vapor pressure (in kPa), (es − ea) is the saturated vapor pressure deficit (in kPa), ∆ is the
Vapor pressure slope curve (in kPa·◦C−1), γ is the wetness constant (in kPa·◦C−1), rs is the
surface resistance (in m/s), and ra is the aerodynamic drag (in m/s).

2.3.2. Statistical Analysis

When two variables are simultaneously correlated with a third variable, bias corre-
lation analysis is the process of removing the effect of the third variable and examining
the degree of correlation between the other two variables. The R value of the correlation
coefficient is the decisive factor: the greater the value of R, the more correlated the variables
are; the lower the value, the lower the correlation.

Rij·h =
rij − rihrjh√(

1− r2
ih
)(

1− r2
jh

) , (2)

where rij represents the simple correlation coefficient between xi and xj, rih represents the
simple correlation coefficient between xi and xh, and rjh represents the simple correlation
coefficient between xj and xh.

The null hypothesis for the test of the bias correlation coefficient is that the aggregate
bias correlation coefficient between the two variables is 0. The following formula is applied
in the t-test methodology:

t =
√

n− k− 2·R√
1− R2

, (3)
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where R is the partial correlation coefficient, n is the number of sample observations, k is
the number of controllable variables, and n – k − 2 is the number of degrees of freedom.
The original hypothesis is rejected when t > t0.05(n – k − 2) or p < 0.05.

Compared with the traditional multivariate statistical method, structural equation
modeling is based on the researcher’s a priori knowledge of predetermined dependencies
among factors in the system, which not only can discern the strength of the relationship
between factors (path coefficients), but also can fit and judge the overall model, thus
enabling a more comprehensive understanding of the natural system. In this study we used
structural equation modeling (SEM) to analyze the direct and indirect effects of different
environmental variables on PET by establishing an a priori SEMS to test the importance of
multiple variables on PET, based on previous studies to determine the logical relationships
between variables. Higher chi-square values (Chi square values) and higher p-values in
the SEM indicated a better model fit [25]. The root mean square error of approximation
(RMSEA) was equal to zero and the relative fit index (CFI) > 0.95 for the 90% confidence
interval. We selected the best SEM as the one with the highest R2 value for PET [26].
The “ggRandomForests” package in R (version 4.1.1, Peter Dalgaard, Professor, Statistical
Center, Copenhagen Business School) was utilized to filter the covariance of environmental
factors and rank the relative importance of random forests, in order to determine the
relative contribution of each environmental element to the geographical variation of PET.
The “lavaan” software was utilized to generate structural equation models (SEMs), in order
to study the principal causes of spatial variation of PET in Akmola State.

3. Results and Analysis
3.1. Spatial and Temporal Distribution Characteristics of PET in Akmola State

Figure 2 depicts the regional distribution of potential evapotranspiration in the study
area from 1991 to 2021 in Akmola Oblast, Kazakhstan. This report includes data on
potential evapotranspiration outcomes for five time periods: 1991, 1998, 2005, 2013, and
2021. The spatial distribution characteristics of potential evapotranspiration in the region
generally varied consistently throughout the study period. Figure 2a–e demonstrate that
the annual mean PET presented substantial regional variability and was generally similar
to the distribution of wind speed, solar radiation, and soil temperature gradients, with a
pattern of high values in the east and west and low values in the center and north. From
1991 to 2021, the multi-year average value of Akmola Oblast’s potential evapotranspiration
was 837.99 mm (±160), the precipitation was higher in the northern part of Akmola Oblast
in the Huichinsk region and the central part of Akko compared to other regions, and the
wind speed, solar radiation, and soil temperature were lower than in other regions. In
the eastern and western portions of the study area, the predominant land cover types are
arable land, grassland, and bare land; the climate is windy year-round; solar radiation is
high; and the average annual potential evapotranspiration is greater than 900 mm, with the
highest value exceeding 1000 mm.

As shown in Figure 3, Tables 2 and 3, in Akmola Oblast, only 6.39% of the regions
presented an increase in potential evapotranspiration from 1991–2021, located in Imeni
Kostycheva in the western part of the oblast and Kokshetau and Valikhanovo in the
northern part of the oblast, with the highest interannual variation rate of 6.39 mm/yr. The
regions with a decrease in annual potential evapotranspiration in the study area accounted
for a relatively small annual rate of change in PET in the study area. Overall, the PET in the
study area showed a decreasing trend (Figure 3i), and the PET fluctuated more frequently
in magnitude and trend over time.
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Table 2. Data sources and basic parameters.

Type Variable Abbreviations Unite Original
Resolution Data Source

Mean annual
temperature MAT ◦C 4638.3 m https://doi:10.1038/sdata.2017.191

(accessed on 20 September 2022)

Climate Mean annual
precipitation MAP mm 4638.3 m https://doi:10.1038/sdata.2017.191

(accessed on 20 September 2022)

Aridity - - 4638.3 m https://doi:10.1038/sdata.2017.191
(accessed on 20 September 2022)

Maximum temperature - ◦C 4638.3 m https://doi:10.1038/sdata.2017.191
(accessed on 20 September 2022)

Minimum temperature - ◦C 4638.3 m https://doi:10.1038/sdata.2017.191
(accessed on 20 September 2022)

vapor pressure
difference VPD kPa 4638.3 m https://doi:10.1038/sdata.2017.191

(accessed on 20 September 2022)

Solar radiation Srad W/m2 4638.3 m https://doi:10.1038/sdata.2017.191
(accessed on 20 September 2022)

Wind speed vs m/s 4638.3 m https://doi:10.1038/sdata.2017.191
(accessed on 20 September 2022)

Soil water content SWC mm 4638.3 m https://doi:10.1038/sdata.2017.191
(accessed on 20 September 2022)

Soil temperature ST ◦C 11,132 m https://doi:10.5067/5NHC22T9375G
(accessed on 20 September 2022)

NDVI NDVI - - 30 m https://glovis.usgs.gov/ (accessed on
20 September 2022)

Elevation Elevation - m 30 m
https://www.eorc.jaxa.jp/ALOS/en/aw3

d30/data/index.htm (accessed on
20 September 2022)

Note: All abbreviations in this manuscript are consistent.

Table 3. Percentage of annual average change in PET in Akmola State.

Interannual Rate of Change (mm/yr) Area (km2) Percentage (%)

−34.03–−24.48 14,144.43 9.62%
−24.28–−17.32 38,654.57 26.29%
−17.32–−11.43 44,050.63 29.96%
−11.43–0 40,786.53 27.74%

0–6.39 9395.311 6.39%

3.2. Drivers of Spatial and Temporal Variability of Potential Evapotranspiration
3.2.1. Spatial and Temporal Distribution Characteristics of Environmental Factors in
Akmola State

The meteorological parameters and soil data for the state of Akmola from 1991 to
2021 are depicted in Figure 4. The average annual precipitation in the research area was
305.153 mm (±90), with increasing interannual variance (Figure 4a) and a significant west–
east tendency in geographical distribution (Figure 5). The average annual precipitation
north of the study area was less than 300 mm, whereas the highest multi-year average was
more than 360 mm in the south. The region’s multi-year mean annual temperature was
2.98 ◦C (±1.54), with a steady increase in spatial distribution from north to south (Figure 4b),
showing a minimum of 1.69 ◦C in the northern portion of Akmola State and a maximum of
4.48 ◦C in the southwestern portion of the study area (Figure 5b). The NDVI values in the
study area did not change significantly from 1991 to 2021, with a multi-year average value
of 0.11 (±0.003), without a significant trend of increase or decrease (Figure 4c). Spatially
the NDVI showed a different distribution of vegetation cover, with higher vegetation cover
and higher NDVI values in the northern part of Akmola Oblast, around the Huichinsk area
and the Ishim River basin, whereas the rest of the areas were dominated by low values
(Figure 5c).
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Figure 4. Environmental variables: (a) average annual precipitation; (b) average annual tempera-
ture, annual maximum temperature and annual minimum temperature; (c) NDVI; (d) soil water
content; (e) solar radiation; (f) soil temperature; (g) differential vapor pressure; (h) wind speed; and
(i) potential evapotranspiration during 1991–2021.

The multi-year mean soil water content in the study area was 12.89 m3/m3, which did
not vary significantly in the time-series (Figure 4d). However, there was significant spatial
heterogeneity (Figure 5e), the soil water content northwest of the study area was generally
greater than 15.05 m3/m3, significantly greater than that in the southeast of study area
(with soil content generally less than 10.43 m3/m3). The multi-year mean value of solar
radiation in the research area was 1710.33 W/m2 (±110), with increasing variation over time
(Figure 4f), and the geographical distribution exhibited features of high in the southwest
and low in the northeast (Figure 5f). The multi-year mean value of soil temperature was
4.15 ◦C (±1.5), with an increasing trend (Figure 4f) and, in spatial distribution, with the
Isim River as the boundary, the multi-year mean value of soil temperature was greater than
7.57 ◦C to the southwest of the Akmola State and less than 6.69 ◦C to the northeast of the
Akmola State (Figure 5g). The multi-year mean pressure difference in the research area
was 0.60 kPa (±0.05), with no interannual variation (Figure 4g) and no obvious pattern of
spatial distribution (Figure 5h). The multi-year mean wind speed in Akmola oblast was
3.85 m/s (±0.4), with considerable interannual variation (Figure 4h), and geographical
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characteristics of higher in the east and west (more than 3.92 m/s) and lower in the middle
(less than 3.83 m/s; Figure 5i).
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3.2.2. Analysis of the Correlation between Potential Evapotranspiration and Various
Climatic Parameters in Akmola State

There are numerous climatic elements that influence PET. In particular, climate change
influences PET in a variety of ways, including through increased air flow above the sur-
face, increased in temperature, alterations to air humidity, and land-use change (e.g., the
expansion of forest cover influences the local microclimate cycle). To quantify the effects of
numerous factors on PET, a comparative analysis of PET and several influencing factors in
the study region was carried out.

As shown in Figure 6, the simple correlations between PET and MAP, NDVI, and SWC
within the state of Akmola were significantly negative (p < 0.001), with correlation coeffi-
cients of −0.908, −0.325, and −0.218, respectively, whereas the simple correlations between
PET and MAT, Srad, ST, and VS were significantly positive (p < 0.001), with correlation
coefficients of 0.796, 0.482, 0.700, and 0.357, respectively. However, the correlations between
PET and numerous climate parameters in the metropolitan region were slightly varied, as
were the correlation coefficients and the simple connection between NDVI and PET, which
was positive with a correlation coefficient of 0.111.

3.2.3. Spatial Distribution of Potential Evapotranspiration and Environmental Factor Bias
off in Akmola State

In view of the different correlations exhibited between PET and impact factors in
Akmola State and the metropolitan area within its territory, we found that different regions
had different correlations between PET and the various impact factors. Therefore, in
order to explore the spatial distribution characteristics of climate factors that play a major
role in PET changes, we calculated the partial correlation coefficients between potential
evapotranspiration and the different impact factors at the level of α = 0.05. The significance
test was performed at the level of α = 0.05 to exclude the mutual influence between different
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elements and to select the elements closely related to PET; the results for factors passing
the significance test are shown in Figure 7.
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Figure 7. Spatial distribution of bias correlation coefficients between PET and environmental factors
passing significance test throughout Akmola State: (a) PET and MAT bias correlation coefficient;
(b) PET and NDVI bias correlation coefficient; (c) PET and SWC bias correlation coefficient; (d) PET
and Srad bias correlation coefficient; (e) PET and ST bias correlation coefficient; and (f) PET and wind
speed bias correlation coefficient.

Figure 7 depicts the relationships between PET and the various elements that passed
the significance test, whereas the gray areas represent areas that failed the significance test
(i.e., areas where they were not significantly correlated). MAT and PET demonstrated a
significant positive correlation in the western part of the study area and, to a lesser extent,



Remote Sens. 2022, 14, 5311 12 of 16

in the eastern part (42.81% of the study area passed the significance test), with skewed
correlation coefficients concentrated in the range of [0.32, 0.69], as shown in Figure 7a, with
the strongest correlation between PET and MAT in the southwestern part of Akmola State
and weaker correlations in the western, northern, and other parts of the state. The regional
heterogeneity of the association between PET and NDVI in the studied area is evident. As
depicted in Figure 7b, the area of PET and NDVI passing the significance test accounted for
6.29% of the state of Akmola, while the area of significant negative correlation accounted
for 3.60% of the state, primarily in the state’s northwest and middle east. The region
with significant positive correlation accounted for 2.69% of the state of Akmola, primarily
distributed in the south, middle, and east. Figure 7c illustrates the regional distribution
of the PET–SWC partial correlation coefficients. The area that passed the significance test
amounted to 56.44%, and the partial correlation coefficients fell between −0.76 and −0.32.
The highest negative link between PET and SWC occurred in the southwestern portion
of Akmola State, whereas the correlation was weaker in the middle and northern regions.
As shown in Figure 7d, PET and Srad were predominantly positively correlated, with
94.58% of the area passing the significance test and biased relationships having values in
the range of [0.32, 0.84], with the strongest positive correlation between PET and Srad in
the southwest, followed by the central region, and the weakest correlation in the north. As
depicted in Figure 7e, PET and ST were predominantly positively correlated, with 81.57%
of the study area passing the significance test, having partial correlation coefficients in
the range of [0.31, 0.78], with the strongest correlation between PET and ST in the central
portion of the study area and the weakest correlation in the west. As shown in Figure 7f,
PET and VS were predominantly positively correlated, with 64.02% of the area passing
the significance test, with correlation coefficients in the range of [0.32, 0.85]. The strongest
correlation between PET and VS was in the southwestern portion of the study area, and a
significant decreasing spatial gradient of correlation coefficients can be observed from the
southwestern to the northeastern direction.

3.2.4. Drivers of Potential Evapotranspiration Change in Akmola State

To further investigate the driving effects of different influencing factors on PET change
in the study area, different climatic factors were screened through a covariance assessment.
In this way, the importance of the contribution of different environmental factors to PET
change was ranked, and the drivers of PET change in the study area were quantified by
structural equation modeling (SEM). Figure 8 depicts the principal drivers of PET change
in Akmola State and the metropolitan area.
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Figure 8. SEM used to assess the effect of environmental factors on PET. The solid line represents a
significant positive effect, the dashed line represents a significant negative effect and, if there is no
significant relationship between variables, the line is omitted. *: p < 0.1; ** p < 0.05; *** p < 0.01.

Figure 8a demonstrates that the SEM analysis explained 31% of the PET variation in
Akmola State. Srad (0.59 ***), VS (0.37 ***), and MAT (0.32 *) had a direct beneficial influence
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on PET in Akmola, whereas NDVI (−0.11 *) and MAP (−0.34 **) had direct negative effects.
In addition, we observed that NDVI and MAT had direct effects on PET changes, while
Srad, VS, and MAP had direct and indirect effects on PET changes. As shown in Figure 8a,
both Srad and MAP had direct effects on PET that were statistically significant, but also had
favorable impacts on MAT and NDVI, leading to indirect effects on PET: Srad presented
loadings of 0.44 *** and 0.36 * and MAP presented loadings of −0.41 * and 0.21 ** on MAT
and NDVI, respectively.

Nursultan City and its surrounding areas (i.e., the capital circle) in Akmola Prefecture
have been planted with huge areas of plantations since the 1990s, drastically altering the
regional vegetation coverage. We employed SEM to investigate the driving mechanisms of
local PET change. As depicted in Figure 8b, the interpretation of PET changes in the capital
region by the model reached 53%, differing from overall Akmola State, in terms of the
driving forces of PET changes. VT, SWC, and MAT had direct beneficial effects on PET in
this location, with loadings of 0.14 ***, 0.11 ***, and 0.38 **, respectively; meanwhile, NDVI
and MAP had direct detrimental impacts on PET, with loadings of −0.15 * and −0.41 **,
respectively. In addition, NDVI, SWC, and MAT have direct impacts on PET, while VS
and MAP presented both direct or indirect effects, and Srad had only indirect effects. As
shown in Figure 8b, Srad has no direct significant impact on PET in the capital circle region,
though it had an indirect impact on PET by affecting MAT, SWC, and NDVI (loadings of
0.52 ***, −0.31 **, and 0.11 *, respectively); VS not only directly promoted the increase in
PET, but also exerted different effects on PET by inhibiting SWC and promoting the growth
of NDVI. In a similar manner, MAP not only had direct negative impacts on PET, but also
indirectly affected PET by reducing MAT and increasing SWC.

4. Discussion

The theoretical upper limit of real evapotranspiration (or PET) is an essential com-
ponent of the energy balance. It is frequently employed in the analysis of dry and wet
climate conditions, water resource management, agricultural water demand and produc-
tion management, ecological and environmental governance, and the regional water cycle
and water resources [27]. We calculated PET in the study area from 1991 to 2021 using the
Penman-Monteith (P–M) model and analyzed its spatiotemporal changing characteristics.
The results indicated that PET in the state of Akmola maintained a high value over time.
The southwest of the state presented the highest values of PET, exceeding 1000 mm. More-
over, it is the only region in which PET grew from 1991 to 2021, whereas other regions
showed a declining trend. Yan et al. (2022) have also noted that the Pan Central Asia Dry
Area has become typically wetter since the middle of the 20th century, which contradicts
Hypothesis 1 in this study [28]. It is influenced by the water vapor in the Atlantic Ocean
and Arctic Ocean as a result of the northwest circulation [29]. The relative humidity of
the air has increased throughout the entirety of Central Asia, lessening the likelihood of
potential evapotranspiration. This demonstrates that the potential evapotranspiration is
affected by regional and topographic variables, and that there are regional disparities in
the impact of climate on PET in various locations [30].

Consistent with Hypothesis 2, partial correlation analysis and SEM analysis demon-
strated that the primary drivers of PET change in Akmola were Srad and VS; in addition to
SRAD, VS had a strong positive effect on PET (p < 0.001). An increase in wind speed will
enhance air fluidity and hasten the evaporation of water. The typical annual precipitation
in the study area is less than 500 mm, and increased rain substantially encourages the
growth of PET [31]; In recent years, as the monsoon regional circulation system in Asia
and India has weakened, the wind speed in Central Asia has decreased gradually [32,33]
and the increase in aerosol concentration in the atmosphere has caused global dimming,
which is the primary factor affecting the decrease in Srad. Significant causes of the decline
in potential evapotranspiration in Akmola State are the aforementioned global influences,
particularly the reduction in wind speed and solar radiation.
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Changes in land cover, particularly in vegetation cover, have an effect on the regional
microclimate [34]. In Akmola State, around the capital of Kazakhstan (Nur Sultan) and its
adjacent areas, 879.7 km2 of artificial forest have been planted since 1997, following more
than 20 years of labor. This has had a significant impact on the environment of the capital
circle. Using SEM, we estimated the driving effect of environmental elements in the capital
circle region, in order to investigate the influence of anthropogenic land cover changes
on local PET. Figure 8b demonstrates that VS was the primary driver of PET change near
the capital circle, whereas Srad had no direct effect on PET in this location. Although
PET in the capital circle was not directly or considerably affected by Srad, it was more
strongly affected by other factors than in the rest of Akmola. Compared to the entire state
of Akmola, SWC, MAT, and NDVI exerted a greater influence on PET near the capital.
According to Wang et al. (2014), evapotranspiration in arid regions is extremely sensitive
to soil surface water concentration [35]. When the soil surface is generally dry, there is
a considerable positive correlation between evapotranspiration and soil water content.
Significantly negative correlations exist between evapotranspiration and soil surface water
content when the soil is relatively moist. In the hydrological balancing model proposed
by Chen et al. (2008), groundwater recharge in the Huaihe River Plain accounted for 25%
of the potential evapotranspiration [36]. The link between soil water content and PET
varies with geography and climate. In the vicinity of the capital circle, Srad was seen to
decrease the soil water content and have an indirect effect on PET. MAT had a greater
influence on PET. Sudan has an abundance of groundwater resources, and the use efficiency
of groundwater in this region has been improved by growing extensive tracts of artificial
forests. Simultaneously, the MAP in the research area is also gradually growing. Under
the condition of adequate water, a rise in temperature may extend the growing season of
plants [37]. Through transpiration, when the NDVI increases, the local climate becomes
wetter than the surrounding areas. This plays a significant part in the decrease in PET.

5. Conclusions

We used the P–M model to calculate and analyze the spatiotemporal distribution char-
acteristics of PET in Akmola, a key agricultural and animal husbandry production center in
Kazakhstan, and combined it with biased correlation analysis and SEM to investigate the
driving factors of PET change in the study area. Simultaneously, we investigated the impact
of meteorological activity on PET following the execution of the Green Environment Project
in Kazakhstan’s capital region. From 1991 to 2021, the data indicated that the multi-year
average PET in Akmola was 835.87 mm, indicating a declining trend. Regarding the spatial
distribution, PET exhibited a high degree of regional heterogeneity, being substantially
greater in the southwest and northeast of the research area than in the center. The majority
of meteorological activity in the study area had a substantial association with PET, and
there was a high degree of spatial variation in the number of environmental factor–PET
biased relationships. Similar regional characteristics characterized the links between PET
and Srad, VS, and MAT, and the correlations were highest in the southwestern region of
Akmola State. The spatial distribution of the associations between PET and SWC, and PET
and ST were comparable, with the correlation being strongest in the center of the research
area. The SEM indicated that Srad (0.59) and VS (0.37) were the primary determinants of
PET change over the whole study region. With the expansion of man-made public forest
space in the capital circle, the local environment has been enhanced; here, MAP is also a
primary element influencing local PET change.

The present study calculates the spatial and temporal variation of potential evapo-
transpiration in Alamok Oblast, Kazakhstan for the last three decades at the regional scale,
which is no longer limited to the estimation of PET at a single point scale and fills in the
research on the variation of regional PET and the effect of its influence. The limitation is
the lack of in-depth study of spatial and temporal distribution of meteorological data, and
also the effect of local land cover type changes on PET should be studied in depth first
Figure S1.



Remote Sens. 2022, 14, 5311 15 of 16

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14215311/s1, Figure S1: Comparison of satellite grid data and
ground station data.

Author Contributions: Y.C. and S.Z. were the main contributors to this work. Y.C. and S.Z. are the
co-first authors of this article. Y.C.: data curation; conceptualization; supervision; formal analysis.
S.Z.: validation; software. Y.W.: funding acquisition; investigation. All authors commented on
previous versions of the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Strategic priority research project of Chinese Academy of
Sciences (Grant number [XDA20030102]) and The Key Technical Talent Project of Chinese Academy
of Sciences (Research on desertification technology along the “Belt and Road”). The author Yusen
Chen received research support from Xinjiang Institute of Ecology and Geography Chinese Academy
of Sciences.

Data Availability Statement: The Meteorological data were obtained from the Terra Climate dataset
published by the University of Iowa (https://doi:10.1038/sdata.2017.191, URL (accessed on 25 August
2022), which include global land surface, monthly mean climate, and climate water balance datasets, in
addition to climate data such as Srad, PET, VS, MAP, VPD, and actual evapotranspiration. Land cover
data were obtained from ESA’s global land cover database with coverage at 300-m spatial resolution
from 1992 to 2020 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover, URL
(accessed on 25 August 2022), which classifies the global land surface into 22 categories based on the
UN FAO Land Cover Classification System (LCCS). NDVI data comes from USGS official website
(https://glovis.usgs.gov/, URL (accessed on 25 August 2022). Other relevant data are listed in
Table 1.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Koutroulis, A.G. Dryland Changes under Different Levels of Global Warming. Sci. Total Environ. 2019, 655, 482–511. [CrossRef]

[PubMed]
2. Wang, X.; Zhang, J.; Shahid, S.; Guan, E.; Wu, Y.; Gao, J.; He, R. Adaptation to Climate Change Impacts on Water Demand. Mitig.

Adapt. Strateg. Glob. Chang. 2016, 21, 81–99. [CrossRef]
3. Dai, Z.; Yu, M.; Chen, H.; Zhao, H.; Huang, Y.; Su, W.; Xia, F.; Chang, S.X.; Brookes, P.C.; Dahlgren, R.A. Elevated Temperature

Shifts Soil N Cycling from Microbial Immobilization to Enhanced Mineralization, Nitrification and Denitrification across Global
Terrestrial Ecosystems. Glob. Chang. Biol. 2020, 26, 5267–5276. [CrossRef] [PubMed]

4. Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Chang. 2013, 3, 52–58. [CrossRef]
5. Berg, A.; Sheffield, J.; Milly, P.C.D. Divergent Surface and Total Soil Moisture Projections under Global Warming. Geophys. Res.

Lett. 2017, 44, 236–244. [CrossRef]
6. Durán, J.; Delgado-Baquerizo, M.; Dougill, A.J.; Guuroh, R.T.; Linstdter, A.; Thomas, A.D.; Maestre, F.T. Temperature and Aridity

Regulate Spatial Variability of Soil Multifunctionality in Drylands across the Globe. Ecology 2018, 99, 1184–1193. [CrossRef]
7. Maestre, F.T.; Benito, B.M.; Berdugo, M.; Concostrina-Zubiri, L.; Delgado-Baquerizo, M.; Eldridge, D.J.; Guirado, E.; Gross, N.;

Kéfi, S.; Le Bagousse-Pinguet, Y. Biogeography of Global Drylands. New Phytol. 2021, 231, 540–558. [CrossRef]
8. Hu, Z.; Zhang, C.; Hu, Q.; Tian, H. Temperature Changes in Central Asia from 1979 to 2011 Based on Multiple Datasets. J. Clim.

2014, 27, 1143–1167. [CrossRef]
9. Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The Relationship between Precipitation Anomalies and

Satellite-Derived Vegetation Activity in Central Asia. Glob. Planet. Chang. 2013, 110, 74–87. [CrossRef]
10. Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.

The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural
Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [CrossRef]

11. Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [CrossRef] [PubMed]
12. Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; De Jeu, R. Recent

Decline in the Global Land Evapotranspiration Trend Due to Limited Moisture Supply. Nature 2010, 467, 951–954. [CrossRef]
[PubMed]

13. Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial Water Fluxes Dominated by Transpiration. Nature
2013, 496, 347–350. [CrossRef] [PubMed]

14. Yang, W.; Wang, Y.; Liu, X.; Zhao, H.; Wang, G.; Shao, R. Estimating the Evaporation in the Fenghuo Mountains Permafrost
Region of the Tibetan Plateau. Catena 2020, 194, 104754. [CrossRef]

https://www.mdpi.com/article/10.3390/rs14215311/s1
https://www.mdpi.com/article/10.3390/rs14215311/s1
https://doi:10.1038/sdata.2017.191
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover
https://glovis.usgs.gov/
http://doi.org/10.1016/j.scitotenv.2018.11.215
http://www.ncbi.nlm.nih.gov/pubmed/30476829
http://doi.org/10.1007/s11027-014-9571-6
http://doi.org/10.1111/gcb.15211
http://www.ncbi.nlm.nih.gov/pubmed/32614503
http://doi.org/10.1038/nclimate1633
http://doi.org/10.1002/2016GL071921
http://doi.org/10.1002/ecy.2199
http://doi.org/10.1111/nph.17395
http://doi.org/10.1175/JCLI-D-13-00064.1
http://doi.org/10.1016/j.gloplacha.2012.09.007
http://doi.org/10.1002/2016WR020175
http://doi.org/10.1126/science.1128845
http://www.ncbi.nlm.nih.gov/pubmed/16931749
http://doi.org/10.1038/nature09396
http://www.ncbi.nlm.nih.gov/pubmed/20935626
http://doi.org/10.1038/nature11983
http://www.ncbi.nlm.nih.gov/pubmed/23552893
http://doi.org/10.1016/j.catena.2020.104754


Remote Sens. 2022, 14, 5311 16 of 16

15. Ma, N.; Szilagyi, J.; Zhang, Y. Calibration-free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally.
Water Resour. Res. 2021, 57, e2021WR029691. [CrossRef]

16. Makori, D.M.; Abdel-Rahman, E.M.; Ndungu, N.; Odindi, J.; Mutanga, O.; Landmann, T.; Tonnang, H.E.Z.; Kiatoko, N. The Use
of Multisource Spatial Data for Determining the Proliferation of Stingless Bees in Kenya. GIScience Remote Sens. 2022, 59, 648–669.
[CrossRef]

17. El-Mageed, A.; Taia, A.; El-Mageed, A.; Shimaa, A.; El-Saadony, M.T.; Abdelaziz, S.; Abdou, N.M. Plant Growth-Promoting
Rhizobacteria Improve Growth, Morph-Physiological Responses, Water Productivity, and Yield of Rice Plants under Full and
Deficit Drip Irrigation. Rice 2022, 15, 16. [CrossRef]

18. Li, D. Assessing the Impact of Interannual Variability of Precipitation and Potential Evaporation on Evapotranspiration. Adv.
Water Resour. 2014, 70, 1–11. [CrossRef]

19. Pascolini-Campbell, M.; Reager, J.T.; Chandanpurkar, H.A.; Rodell, M. Retraction Note: A 10 per Cent Increase in Global Land
Evapotranspiration from 2003 to 2019. Nature 2022, 604, 202. [CrossRef]

20. Tegos, A.; Malamos, N.; Koutsoyiannis, D. RASPOTION—A New Global PET Dataset by Means of Remote Monthly Temperature
Data and Parametric Modelling. Hydrology 2022, 9, 32. [CrossRef]

21. Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open
and Closed Agricultural Field Applications. Water 2021, 13, 2523. [CrossRef]

22. Chen, C.; Zhang, X.; Lu, H.; Jin, L.; Du, Y.; Chen, F. Increasing Summer Precipitation in Arid Central Asia Linked to the Weakening
of the East Asian Summer Monsoon in the Recent Decades. Int. J. Climatol. 2021, 41, 1024–1038. [CrossRef]

23. Hao, H.; Chen, Y.; Xu, J.; Li, Z.; Li, Y.; Kayumba, P.M. Water Deficit May Cause Vegetation Browning in Central Asia. Remote Sens.
2022, 14, 2574. [CrossRef]

24. Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Iwamoto, H. Generation of the 30 m-mesh global digital surface model by alos prism.
Int. Arch. Photogramm. Remote Sens. S 2016, XLI B4, 157–162. [CrossRef]

25. Mensah, S.; du Toit, B.; Seifert, T. Diversity–Biomass Relationship across Forest Layers: Implications for Niche Complementarity
and Selection Effects. Oecologia 2018, 187, 783–795. [CrossRef] [PubMed]

26. van der Sande, M.T.; Peña-Claros, M.; Ascarrunz, N.; Arets, E.J.M.M.; Licona, J.C.; Toledo, M.; Poorter, L. Abiotic and Biotic
Drivers of Biomass Change in a Neotropical Forest. J. Ecol. 2017, 105, 1223–1234. [CrossRef]

27. Guo, L.; Cheng, J.; Luedeling, E.; Koerner, S.E.; He, J.-S.; Xu, J.; Gang, C.; Li, W.; Luo, R.; Peng, C. Critical Climate Periods for
Grassland Productivity on China’s Loess Plateau. Agric. For. Meteorol. 2017, 233, 101–109. [CrossRef]

28. Yan, X.; Zhang, Q.; Ren, X.; Wang, X.; Yan, X.; Li, X.; Wang, L.; Bao, L. Climatic Change Characteristics towards the “Warming–
Wetting” Trend in the Pan-Central-Asia Arid Region. Atmosphere 2022, 13, 467. [CrossRef]

29. Chen, X.; Li, B.; Li, Q. Spatio-Temporal Pattern and Changes of Evapotranspiration in Arid Central Asia and Xinjiang of China.
J. Arid Land 2012, 4, 105–112. [CrossRef]

30. Xu, C.-Y.; Singh, V.P. Evaluation of Three Complementary Relationship Evapotranspiration Models by Water Balance Approach
to Estimate Actual Regional Evapotranspiration in Different Climatic Regions. J. Hydrol. 2005, 308, 105–121. [CrossRef]

31. Sun, J.; Wang, G.; Sun, X.; Hu, Z.; Lin, S.; Wang, F.; Yang, Y. New Cognition on the Response of Reference Evapotranspiration to
Climate Change in China Using an Independent Climatic Driver System. Agric. Water Manag. 2022, 262, 107445. [CrossRef]

32. Zhang, Y.; Liu, C.; Tang, Y.; Yang, Y. Trends in Pan Evaporation and Reference and Actual Evapotranspiration across the Tibetan
Plateau. J. Geophys. Res. Atmos. 2007, 112. [CrossRef]

33. Gong, D.-Y.; Ho, C.-H. The Siberian High and Climate Change over Middle to High Latitude Asia. Theor. Appl. Climatol. 2002, 72,
1–9. [CrossRef]

34. Singh, D.; McDermid, S.P.; Cook, B.I.; Puma, M.J.; Nazarenko, L.; Kelley, M. Distinct Influences of Land Cover and Land
Management on Seasonal Climate. J. Geophys. Res. Atmos. 2018, 123, 12–17. [CrossRef]

35. Wang, C.; Wang, X.; Liu, D.; Wu, H.; Lü, X.; Fang, Y.; Cheng, W.; Luo, W.; Jiang, P.; Shi, J. Aridity Threshold in Controlling
Ecosystem Nitrogen Cycling in Arid and Semi-Arid Grasslands. Nat. Commun. 2014, 5, 4799. [CrossRef] [PubMed]

36. Chen, X.; Zhang, Z.-C.; Zhang, X.-N.; Chen, Y.-Q.; Qian, M.-K.; Peng, S.-F. Estimation of Groundwater Recharge from Precipitation
and Evapotranspiration by Lysimeter Measurement and Soil Moisture Model. J. Hydrol. Eng. 2008, 13, 333–340. [CrossRef]

37. Fang, C.; Ye, J.; Gong, Y.; Pei, J.; Yuan, Z.; Xie, C.; Zhu, Y.; Yu, Y. Seasonal Responses of Soil Respiration to Warming and Nitrogen
Addition in a Semi-Arid Alfalfa-Pasture of the Loess Plateau, China. Sci. Total Environ. 2017, 590, 729–738. [CrossRef]

http://doi.org/10.1029/2021WR029691
http://doi.org/10.1080/15481603.2022.2049536
http://doi.org/10.1186/s12284-022-00564-6
http://doi.org/10.1016/j.advwatres.2014.04.012
http://doi.org/10.1038/s41586-022-04525-3
http://doi.org/10.3390/hydrology9020032
http://doi.org/10.3390/w13182523
http://doi.org/10.1002/joc.6727
http://doi.org/10.3390/rs14112574
http://doi.org/10.5194/isprs-archives-XLI-B4-157-2016
http://doi.org/10.1007/s00442-018-4144-0
http://www.ncbi.nlm.nih.gov/pubmed/29691648
http://doi.org/10.1111/1365-2745.12756
http://doi.org/10.1016/j.agrformet.2016.11.006
http://doi.org/10.3390/atmos13030467
http://doi.org/10.3724/SP.J.1227.2012.00105
http://doi.org/10.1016/j.jhydrol.2004.10.024
http://doi.org/10.1016/j.agwat.2021.107445
http://doi.org/10.1029/2006JD008161
http://doi.org/10.1007/s007040200008
http://doi.org/10.1029/2018JD028874
http://doi.org/10.1038/ncomms5799
http://www.ncbi.nlm.nih.gov/pubmed/25185641
http://doi.org/10.1061/(ASCE)1084-0699(2008)13:5(333)
http://doi.org/10.1016/j.scitotenv.2017.03.034

	Introduction 
	Materials and Methods 
	Overview of the Study Area 
	Data Sources 
	Computational Methods and Statistical Analysis 
	Penman-Monteith (P–M) Equation 
	Statistical Analysis 


	Results and Analysis 
	Spatial and Temporal Distribution Characteristics of PET in Akmola State 
	Drivers of Spatial and Temporal Variability of Potential Evapotranspiration 
	Spatial and Temporal Distribution Characteristics of Environmental Factors in Akmola State 
	Analysis of the Correlation between Potential Evapotranspiration and Various Climatic Parameters in Akmola State 
	Spatial Distribution of Potential Evapotranspiration and Environmental Factor Bias off in Akmola State 
	Drivers of Potential Evapotranspiration Change in Akmola State 


	Discussion 
	Conclusions 
	References

