Multichannel Sea Clutter Measurement and Space-Time Characteristics Analysis with L-Band Shore-Based Radar
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Principle of Multichannel Sea Clutter Measurement System
2.1.1. The Essence of Space-Time Coupling Characteristics
2.1.2. Relationship between DPCA and IDPCA Technology
2.1.3. Implementation of IDPCA Technology for Shore-Based Multichannel Radar
2.2. The Measurement System of Multichannel Sea Clutter
2.2.1. The Measurement System
2.2.2. Space-Time Signal Model of Sea Clutter in a Single Range Cell
2.3. The Method of the Measured Data Processing
3. Results
3.1. Validation Results from the Measurement and Space-Time Processing Method
3.1.1. Method of the Validation
3.1.2. Results of the Validation
3.2. The Results of Measured Sea Clutter Space-Time Processing
4. Discussion
4.1. The Space-Time Characteristics in Different Range Gates with the Same Sea State
4.2. The Space-Time Characteristics in Different Sea States with the Same CNR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Z.; Wang, W.; Dong, F. Effective Sea Clutter Suppression via MIMO Radar Space–Time Adaptive Processing Strategy. IEEE Trans. Instrum. Meas. 2021, 70, 1–16. [Google Scholar] [CrossRef]
- Li, Q.; Yin, Z.; Zhu, X.; Zhang, Y. Measurement and Modeling of Radar Clutter from Land and Sea; National Defense Industry Press: Beijing, China, 2017. [Google Scholar]
- Wang, W.; Wan, P.; Zhang, J.; Liu, Z.; Xu, J. Enhanced Pre-STAP Beamforming for Range Ambiguous Clutter Separation with Vertical FDA Radar. Remote Sens. 2021, 13, 5145. [Google Scholar] [CrossRef]
- Melvin, W.L. A STAP Overview. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 19–35. [Google Scholar] [CrossRef]
- Rosenberg, L.; Giovanneschi, F. Multichannel Target Detection in Heterogeneous Sea Clutter using Online Dictionary Learning. In Proceedings of the 2022 IEEE Radar Conference, New York, NY, USA, 21–25 March 2022; pp. 1–6. [Google Scholar]
- Kemkemian, S.; Degurse, J.; Lupinski, L.; Corretja, V.; Cottron, R.; Watts, S. Performance assessment of multi-channel radars using simulated sea clutter. In Proceedings of the 2015 IEEE International Radar Conference, Washington, DC, USA, 10–15 May 2015; pp. 1015–1020. [Google Scholar]
- Wang, Q.; Xue, B.; Hu, X.; Wu, G.; Zhao, W. Robust Space–Time Joint Sparse Processing Method with Airborne Active Array for Severely Inhomogeneous Clutter Suppression. Remote Sens. 2022, 14, 2647. [Google Scholar] [CrossRef]
- Suresh, B.N.; Torres, J.A.; Melvin, W.L. Processing and evaluation of multichannel airborne radar measurements (MCARM) measured data. In Proceedings of the IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, USA, 11–14 October 1996; pp. 395–399. [Google Scholar]
- Ender, J.H.G.; Brenner, A.R. PAMIR—A Wideband Phased Array SAR/MTI System. Radar Sonar Navig. IEE Proc. 2003, 150, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Gracheva, V.; Cerutti-Maori, D.C. STAP performance of sea clutter suppression in dependency of the grazing angle and swell direction for high resolution bandwidth. In Proceedings of the IET International Conference on Radar Systems, Glasgow, UK, 22–25 October 2012; pp. 1–6. [Google Scholar]
- Gracheva, V.; Ender, J. Multichannel analysis of medium grazing angle sea clutter. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2–6 June 2014; pp. 1065–1068. [Google Scholar]
- Gracheva, V.; Ender, J. Multichannel analysis and suppression of sea clutter for airborne microwave radar systems. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2385–2399. [Google Scholar] [CrossRef]
- McDonald, M.K.; Cerutti-Maori, D. Coherent radar processing in sea clutter environments, part 2: Adaptive normalised matched filter versus adaptive matched filter performance. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1818–1833. [Google Scholar] [CrossRef]
- McDonald, M.; Cerutti-Maori, D. Clairvoyant radar sea clutter covariance matrix modelling. IET Radar Sonar Navig. 2017, 11, 154–160. [Google Scholar] [CrossRef]
- Titi, G.; Marshall, D.F. The ARPA/NAVY Mountaintop Program: Adaptive signal processing for airborne early warning radar. In Proceedings of the 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, GA, USA, 9 May 1996; pp. 1165–1168. [Google Scholar]
- Wan, J.; Luo, F.; Zhang, Y.; Xu, X.; Yin, Y. Research on sea clutter model of emulating aircraft motion based on shore-based multichannel radar. Int. J. Remote Sens. 2022, 43, 2227–2243. [Google Scholar] [CrossRef]
- Xin, Z.; Liao, G.; Yang, Z.; Zhang, Y.; Dang, H. A Deterministic Sea-Clutter Space–Time Model Based on Physical Sea Surface. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6659–6673. [Google Scholar] [CrossRef]
- Huang, P.; Zou, Z.; Xia, X.; Liu, X.; Liao, G.; Xin, Z. Multichannel Sea Clutter Modeling for Spaceborne Early Warning Radar and Clutter Suppression Performance Analysis. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8349–8366. [Google Scholar] [CrossRef]
- Zou., Z.; Huang, P.; Liu, X.; Xin, Z.; Xu, H.; Liu, Z. Multi-channel sea clutter modeling and characteristics analysis for spaceborne early warning radar. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 26–29 November 2019; pp. 1–6. [Google Scholar]
- Rosenberg, L.; Watts, S.; Greco, M.S. Modeling the Statistics of Microwave Radar Sea Clutter. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 44–75. [Google Scholar] [CrossRef]
- Ward, K.D.; Watts, S.; Tough, R.J. Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd ed.; IET: London, UK, 2013. [Google Scholar]
- Vicen-Bueno, R.; Rosa-Zurera, M.; Jarabo-Amores, M.P.; Mata-Moya, D. Coherent Detection of Swerling 0 Targets in Sea-Ice Weibull-Distributed Clutter Using Neural Networks. IEEE Trans. Instrum. Meas. 2010, 59, 3139–3151. [Google Scholar] [CrossRef]
- Rosenberg, L.; Crisp, D.J.; Stacy, N.J. Analysis of the KK-distribution with medium grazing angle sea-clutter. IET Radar Sonar Navig. 2010, 4, 209–222. [Google Scholar] [CrossRef]
- Gregers-Hansen, V.; Mital, R. An improved empirical model for radar sea clutter reflectivity. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3512–3524. [Google Scholar] [CrossRef] [Green Version]
- Ward, J. Space-Time Adaptive Processing for Airborne Radar; Technical Report; Lincoln Laboratory: Lexington, MA, USA, 1994. [Google Scholar]
- Watts, S. Modeling and simulation of coherent sea clutter. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3303–3317. [Google Scholar] [CrossRef]
- Rosenberg, L. Parametric Modeling of Sea Clutter Doppler Spectra. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Skolnik, M.I. Radar Handbook, 3rd ed.; McGraw Hill: New York, NY, USA, 2008. [Google Scholar]
- Greco, M.; Boredoni, F.; Gini, F. X-band sea-clutter nonstationarity: Influence of long waves. IEEE J. Ocean Eng. 2004, 29, 269–283. [Google Scholar] [CrossRef]
Pulse | The Displacement of the Phase Center | ||
---|---|---|---|
Transmitting | Receiving | Total | |
0 | |||
Algorithm | Simulation of Multichannel Sea Clutter |
---|---|
Input | ,,,,, according to Equation (11). |
Step 0 | Divide the -th range ring into sub-patches and , where the center of each patch subtends an angle at the center of the array and . |
Step 1 | Select -th range gate, calculate the slant range subtends the -th range gate. Then, calculate the effective RCS of the -th sub-patch according to Equation (14). |
Step 2 | Calculate the mean intensity of the return in each clutter sub-patch according to Equation (13). |
Step 3 | Generate a complex spectrum with the same normalized power spectral density according to Equation (25). Then, transform the complex spectrum into time domain, giving values of a complex time domain series , where . |
Step 4 | For each channel, apply the appropriate phase weightings to the complex time domain series , and sum over all sub-patches to in Equation (26), where denotes channel number. |
Step 5 | Generate normalized K-distributed data according to Equation (24), then multiply the normalized K-distributed data with the range dimension data. |
Step 6 | Add thermal noise independently to each channel. |
Output | Shaping three dimension data matrix, consisting of channels, range gates and pulses. |
Parameters | Value |
---|---|
Channel number | 12 |
Altitude | 478 m |
Polarization | VV |
Pulse Repetition Frequency | 2000 Hz |
Range bandwidth | 10 MHz |
Pulse width | 5 |
Pulse number in one CPI | 9 |
Transmit sub-array number | 4 |
Transmitting power | 4 kW |
Antenna gain (transmitting) | 20.2 dBi |
Antenna gain (receiving) | 14.2 dBi |
Elevation angle | −4 degrees |
Azimuth beamwidth | 23.4 degrees |
Elevation beamwidth | 6.8 degrees |
Sea State | SWH (m) | Wave Direction (°) | Radar Direction (°) | Wind Speed (m/s) | Wind Direction (°) |
---|---|---|---|---|---|
1 | 0.21 | 137.8 | 130 | 5.3 | 152.1 |
2 | 0.43 | 120.1 | 130 | 6.4 | 162.5 |
3 | 1.27 | 132.1 | 130 | 9.9 | 149.3 |
4 | 1.63 | 123.5 | 130 | 13.1 | 159.2 |
5 | 2.98 | 102.6 | 130 | 15.2 | 149.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Luo, F.; Zhang, Y.; Zhang, J.; Xu, X. Multichannel Sea Clutter Measurement and Space-Time Characteristics Analysis with L-Band Shore-Based Radar. Remote Sens. 2022, 14, 5312. https://doi.org/10.3390/rs14215312
Wan J, Luo F, Zhang Y, Zhang J, Xu X. Multichannel Sea Clutter Measurement and Space-Time Characteristics Analysis with L-Band Shore-Based Radar. Remote Sensing. 2022; 14(21):5312. https://doi.org/10.3390/rs14215312
Chicago/Turabian StyleWan, Jintong, Feng Luo, Yushi Zhang, Jinpeng Zhang, and Xinyu Xu. 2022. "Multichannel Sea Clutter Measurement and Space-Time Characteristics Analysis with L-Band Shore-Based Radar" Remote Sensing 14, no. 21: 5312. https://doi.org/10.3390/rs14215312
APA StyleWan, J., Luo, F., Zhang, Y., Zhang, J., & Xu, X. (2022). Multichannel Sea Clutter Measurement and Space-Time Characteristics Analysis with L-Band Shore-Based Radar. Remote Sensing, 14(21), 5312. https://doi.org/10.3390/rs14215312