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Abstract: Using a shape model (SM) is a typical method to determine the phenological phases of
crops with long-time-series satellite remote sensing data. The average AGDD-based shape model
(AAGDD-SM) takes temperature into account compared to SM, however, the commonly used daily
average temperature is not sufficient to determine the exact AGDD owing to the possibly significant
changes in temperatures throughout the day. In this paper, a modified shape model was proposed
for the better estimation of phenological dates and it is incorporated into the continuous AGDD
(CAGDD) which was calculated based on temperatures from a continuous 24 h within a day, different
from the calendar day or the average AGDD indicators. In this study, the CAGDD replaced the
abscissa of the NDVI growth curve over a 5-year period (2014 to 2018, excluding 2015) for a test site of
early rice in Jiangxi province of China. Four key phenological phases, including the reviving, tillering,
heading and anthesis phases, were selected and determined with reference to the field-observed
phenological data. The results show that compared with the AAGDD-SM, the method proposed in
this paper has basically improved the prediction of each phenological period. For those cases where
the average temperature is lower than the minimum temperatures (K1) but the effective accumulated
temperature is not zero, more accurate AGDD can be calculated according to the method in this paper.

Keywords: phenological period; shape model; accumulated growing degree days (AGDD); MODIS;
early rice; remote sensing

1. Introduction

The phenology of plants refers to a series of seasonal regular changes in the growth
and development that adapt to the climate, such as germination, branching out, leaf devel-
opment, flowering, fruiting, defoliation, and dormancy, and the corresponding dynamic
phases of plants, which are called the phenological phases [1]. Phenology was widely
applied in the agricultural field; accurate phenological information can help to develop rea-
sonable agricultural production plans and facilitate crop cultivation and pest control [2–8].
In addition, the phenological phase is also one of the indispensable parameters for crop
yield estimation [9–15].

Generally, there are three methods for observing the phenological phases [16]: manual
observation, near-ground sensors and satellite-based remote sensing. Manual observation
is the most common way for phenological phase determination over the past centuries and
several phenological observation networks have been established across the world, such as
the National Phenology Network (NPN) in the United States and the China Phenological
Observation Network (CPON) in China [17–19]. Although the phenological network can
provide accurate phenological information, it is time-consuming and lacks the capability of
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wide coverage. Near-surface sensors are able to conduct the observation for a long duration,
however, it is also not applicable for regional or global missions and the obtained data are
not accessible to all researchers [20,21]. Therefore, satellite-based remote sensing data have
become an important resource for researchers to monitor the phenology of crops [22–25].

Studies of phenological phase detection with satellite remote sensing data have been
conducted by researchers over decades and numerous algorithms have been proposed, such
as threshold-based methods [26–28], phenological indexes [29–31], shape models, and so
on [32,33]. The principle of threshold-based methods is to set a fixed value for a specific phe-
nological period in advance, and then extract the phenological period from the vegetation
indexes (VI) curve according to these values. Many VI curves obtained from satellite remote
sensing observation have been extracted by threshold-based methods [34–36]. Although
this method is simple, the selected threshold has no potential biophysical significance, and
a single threshold may not be suitable for various crops in different areas. Phenological
index-based methods extract phenology according to the changing characteristics of the VI
curve. There are many applications of phenological indexes combined with remote sensing
images [31,37]. However, this method is easily disturbed by local outliers. In recent years,
the shape model has attracted much attention owing to its ability to accurately extract
phenological phases. Generally, the shape model is generated by averaging the annual
growth trajectory curves which are obtained by fitting the calculated sequential VI. The
shape of the model matches the growth curve of a single year through the curve obtained
after averaging, which can eliminate the interference of abnormal values caused by the
climate difference between years using traditional methods. Averaging is used to reduce the
influence of local outliers of curves in specific years. Given the generated shape model and
its corresponding preliminary-defined phenological parameters, the annual phenological
dates can be determined by matching the shape model with the fitted VI curve. The shape
model was first proposed by Sakamoto [38] for detecting maize and soybean phenology
with time-series MODIS data under the assumption that the growth rate of the crop was
correlated with the growth time. Therefore, the calendar day was used as the independent
variable with the VI when fitting the growth trajectory curves. However, the calendar day
may not be a suitable indicator to measure the growth situation of crops. According to
the law of accumulated growing degree days (AGDD) of crops [39], the crops can only
continue to grow under the circumstance that a certain accumulative heat is reached for a
certain phenological phase. Moreover, the AGDD required for each growth stage of crops
is usually constant [40,41]. The transformation of different phenological phases needs to
meet their respective AGDD. Therefore, the AGDD indicator is better than the calendar
day to generate the growth trajectory curves and shape model. Therefore, it is necessary
to calculate the value of AGDD accurately. Zeng et al. [42] incorporated the influence of
environmental factors into the shape model and used the nonlinear model to calculate
the accumulated photothermal time of crops as the independent variable, to better fit the
shape model, thus achieving a higher phenological period extraction accuracy. Due to the
computational complexity of the nonlinear model, Zhou et al. [43] introduced the AGDD,
which was calculated based on the daily average temperature, to replace the calendar day
in shape model generation. In this way, higher accuracy can be achieved for phenological
phase extraction. However, the daily average temperature is still not sufficient to determine
the exact AGDD owing to the possibly significant changes in temperatures throughout the
day [44]. For example, for a specific date, the average temperature is less than the minimum
temperature. According to the calculation of the average temperature method, the GDD on
that day is 0, but the plants have not stopped growing.

In this paper, a modified shape model was proposed for the better estimation of
phenological dates, and it incorporated the continuous AGDD (namely CAGDD) which
was calculated based on the temperatures of a continuous 24 h within a day, which is
different from the calendar day or the average AGDD indicators. The advantage of this
method is to use the whole-day duration combined with the sine method to calculate a more
accurate AGDD. It is believed that the CAGDD can depict the contribution of temperature
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factors appropriately and reflect the growth of crops accurately. Compared with CD-SM
and AAGDD-SM, the accuracy of CAGDD-SM is obviously improved, and this method
can extract phenology more accurately. In addition, in order to prove the rationality of the
combination of SM and the sine method in calculating AGDD, this paper also made two
comparative experiments, which fully demonstrated the reasonableness of the proposed
CAGDD-SM.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

The research area (117◦4′43.38”E, 28◦57′24.96”N) is located in Leping city, Jiangxi
Province of China, covering an area of about 13 hectares (Figure 1). Rice is planted all year
round in rotation of early rice and late rice.
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Figure 1. Study area. (a) Location. (b) Google Earth image. (c) Field survey images. (d) Phenological
observation stations.

Taking early rice as an example, the transplanting period of early rice usually starts
from the end of April to the beginning of May, and early rice matures at the end of July (due
to climate reasons, early rice is transplanted while not sown directly). The local early rice
(Jiangxi Zhongzao 33) did not change in variety from 2013–2018. The reason for choosing
this area was that this paddy field is the closest to the phenological observation station set
by the Leping city Meteorological Bureau, which could therefore provide accurate ground
observation phenological information of early rice. The observation station is located
southeast of the paddy field, about 1.5 km away. Compared with previous research, the
most prominent characteristic of this study area is that the selected area is not a standard
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and unified experimental field, but an ordinary piece of cultivated land, which is more
practical. In addition, the Leping city Meteorological Bureau also provided daily hourly
temperature data from 2014 to 2018. These years were consistent with the observation data
of phenology that they could provide. The reliability of the data has been validated by
professional departments.

2.1.2. Remote Sensing Data

The remote sensing data used in this paper was MODIS daily products-MOD09GQ
(collection6, title: h28v06, 250 m) and MOD09GA (collection 6, title: h28v06, 500 m) from
April to July 2014–2018. The main purpose of the MOD09GA products was to generate
cloud masks to eliminate MOD09GQ products in which the study area was often covered
by clouds. The mask file was generated by using the quality evaluation band in MOD09GA
and then resampled to the same resolution as MOD09GQ. Finally, the cloud-containing
images of MOD09GQ products in the study area were filtered by the mask file. Finally,
the cloudless image of the study area could be obtained to generate the growth curve.
The NDVI [45–47] values were calculated using band 1 (red band) and band 2 (near the
red band) in MOD09GQ (Equation (1)). Taking the images of the study area in 2014 as
an example, Figure 2 gives the NDVI images at different imaging times and it is shown
that that the brighter pixels, which indicate higher NDVI values, can be observed in July
compared to that in April.

NDVI = (ρnir − ρred)/(ρnir + ρred) (1)
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Figure 2. NDVI images generated from MODIS products, the red ROI refers to the corresponding
study area. (a) Image of 30 April 2014, which indicates the smallest NDVI value in the growing
period of that year. (b) Image of 8 July 2014, which indicates the largest NDVI value in the growing
period of that year.

2.2. Methods

Cloud detection was conducted on the daily MOD09GQ product obtained from April
to July between 2014 and 2018, and seventy-seven images were left (2015 was excluded
due to the existence of too many cloudy images). The framework of the proposed method
was shown in Figure 3. Firstly, the AGDD value for a certain day was obtained by the
sine fitting method from the continuous 24 h temperatures, and the NDVI-AGDD growth
curve was obtained in which the AGDD value was the independent variable and the NDVI
value was the dependent variable. Then this NDVI-AGDD growth curve was smoothed
using the double-sine fitting method [48]. These smoothed curves from different years
were then further averaged to obtain the improved shape model. Finally, the generated
shape model was used to match the smoothed growth curve of another year to obtain the
optimal matching parameters and was then combined with the predefined phenological
parameters of the shape model to estimate the phenological period of the area.
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2.2.1. Calendar Day-Based Shape Model

The calendar day-based shape model [38] assumes that the growth of the crop is
correlated to the growth time, and therefore utilizes the calendar day as the independent
variable to fit a growth trajectory curve of the crop for each year. Furthermore, the shape
model can be built from the crop’s multi-year growth curves. After that, the optimal
matching parameters between the generated shape model and the growth curve for another
year can be calculated, and these parameters are used to estimate the phenological dates.
This kind of method mainly consists of the following steps:

(1) Given the temporal NDVI values obtained from image sequences of the study
area in year i, where i ∈ [1, M] and M is the number of years to generate the shape model,
the growth trajectory curve of year i can be fitted and further smoothed, as illustrated in
Figure S1.

(2) The fitted curves for M years are then averaged to obtain the shape model, which
can effectively suppress the inter-annual differences between the growth curves, as Figure 4
shows. With the constructed shape model, another growth curve from the target area for
year j, where j /∈ [1, M], can be matched with the shape model to generate the optimal
matching parameters, as Equation (2) shows:

RMSE = [
1
N

N

∑
x=1,2,3,...

( f (x)− g(x))2]

1
2

(2)

where x is the calendar day which is temporally resampled at equally spaced intervals
and N is the corresponding number of sample points. f(x) is the growth curve from the
target area for year j, and g(x) is a function of the generated shape model, as illustrated in
Equation (3):

g(x) = yscale× h(xscale× (x + tshi f t)) (3)
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where h(·) is the obtained shape model, xscale, yscale and tshift are the matching parameters
to be calculated by minimizing Equation (2). The search ranges for each parameter were
empirically determined as follows: 0.3 < xscale < 1.5, 0.3 < yscale < 1.5 and −100 < tshift < 100.
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An example of the matching procedure is demonstrated in Figure S2.
(3) With the generated optimal matching parameters, the phenological phases of year

j can be determined as Equation (4).

xest = xscale× (Xs
0 + tshi f t) (4)

where xest is an estimated phenological date of year j, and Xs
0 is the preliminary defined

phenological date of the shape model which can be obtained by averaging field phenological
data of M years in the study area.

2.2.2. The Continuous Accumulated Growing Degree Days

According to the law of AGDD [39], the growth rate of a crop has a strong correlation
with the temperature, and the crop can only continue its development state within a specific
temperature range. Generally, a three-cardinal temperature system was commonly used
to estimate the growth of crops in which three different temperature thresholds (K1–K3)
were considered [44]. Given that the current temperature at any time is T, K1 and K3 are the
minimum and maximum temperatures, respectively, allowing for the growth of the crop,
which means the crop will not grow if T < K1 or T > K3. K2 is the optimum temperature
which means the growth rate of the crop will increase with the current temperature if
K1 < T < K2, but remains unchanged if K2 < T < K3. Table 1 gives the three-cardinal
temperatures of the early rice which are provided by the local Meteorological Bureau.

Table 1. The three-cardinal temperatures of the early rice.

Phenology Stage K1 (◦C) K2 (◦C) K3 (◦C)

Reviving 12 32 42
Tillering 15 32 42
Heading 22 30 40
Anthesis 22 30 40

Considering the influence of temperature, Zhou et al. [43] introduced the AGDD value,
which was calculated from the daily average temperature, to replace the calendar day as
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the independent variable of the shape model to reflect the contribution of temperature to
the growth of the crops (Equation (5)). This method is named as AAGDD-SM in this paper.

AGDD =
n
∑

k=1
GDDk

Tavg = (Tmin + Tmax)/2
GDD = 0 Tavg ≤ K1
GDD = Tavg − T1 K1 < Tavg < K3
GDD = T3 − T1 Tavg ≥ K3

(5)

where GDD is the calculated growing degree day value for day k, and AGDD is the sum of
GDD values from day 1 to day n. Tavg is the daily average temperature, Tmin and Tmax are
the lowest and highest temperatures of day k, respectively.

However, the average temperature used often underestimates the possible huge dif-
ference in the temperatures within a day. Moreover, the given assumption of Equation (5)
is also flawed. For example, if the temperatures in one day are all greater than K3, it is
deduced by Equation (5) that the crop will continue to grow, which is not supported by
the AGDD law or common sense. In this paper, another criterion was designed for the
proposed CAGDD-SM method according to the three-cardinal temperature system strictly,
as shown in Equation (6).

GDD = 0 T ≤ K1 or T ≥ K3
GDD = T − K1 K1 < T < K2
GDD = K2 − K1 K2 < T < K3

(6)

where T is the temperature at any moment of the continuous 24 h. Therefore, a modified
GDD value can be calculated by fitting the temperature curve with the hourly temperatures
in one day (02:00 a.m. of day k to 02:00 a.m. of day k + 1). The sine fitting method was
used to generate the temperature curve by determining three key points, as explained in
Figure S3. The red curve is the fitted daily temperature curve. The general procedure was
as follows:

(1) Firstly, find the time with the highest temperature in the middle period of the 24-h
sequence, defined as the center point O.

(2) Secondly, find the turning points A and B which have an equal distance from point O
in 1/4 of a cycle. Given the lowest temperature in the 24-h sequence is Tmin and the
temperature value of center point O as TO, assign the average value of Tmin and TO to
both A and B.

(3) With the determined three key points A, B and O, a sine curve can be obtained to
represent the 24-h temperatures.

Given the fitted daily temperature curve, eight cases were considered giving the three-
cardinal temperature thresholds listed in Table 1, as shown in Figure S4. The red curve is
the fitted temperature curve and the daily GDD value was represented by the shaded area
which can be calculated, as Equation (7) shows, taking case F as an example:

GDD = 1
24 [

∫ t2
t1

(t(x)− K1)dx +
∫ t3

t2
(K2 − K1)dx +

∫ t4
t3

(0)dx
+
∫ t5

t4
(K2 − K1)dx +

∫ t6
t5

(t(x)− K1)dx]
(7)

where t(x) is the fitted temperature curve and ti is the intersection point of t(x) with the
cardinal temperature lines.

Finally, the AGDD value for day k can be calculated by accumulating the GDD values,
and it was further used to replace the calendar day in the shape model as the independent
variable, to better reflect the correlation between the shape model and the development
of the crop, thereby obtaining more accurate information about the phenological phases.
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The generated shape models with the proposed continuous AGDD and the average AGDD
(namely CAGDD-SM and AAGDD-SM) are shown in Figure 5.
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Furthermore, the newly proposed CAGDD-SM method was used to match the growth
curve of each year, and the optimal matching parameters of the corresponding year were
obtained. These matching parameters can therefore be used to estimate the AGDD value
for each phenological period of a certain year, as Equation (8) shows:

AGDDest = xscale× (AGDDXs
0 + tshi f t) (8)

in which AGDDXS
0 is obtained by averaging the AGDD values corresponding to the ground

observation dates of each phenological period in multiple years. Then, we can estimate the
phenology in calendar date from AGDD. The specific conversion between them is described
in Section 3.1. With the estimated phenological periods of different years, the accuracies of
different phenological extraction methods for the years 2014–2018 (excluding 2015) can be
calculated, as Equation (9) shows:

RMSE = [
1
4 ∑

i=1,2,3,4
(Xi

0 − Xi
est)

2
]

1
2 (9)

where i represents the number of observation years, Xi
0 refers to the actual observation

value of the phenological period, and Xi
est refers to the predicted value of the phenology.

2.2.3. Supplement of Continuous Accumulated Growing Degree Days Model

According to the sine method, the daily temperature curve was fitted. Due to the
influence of some abnormal weather, it seems that the fitted curve was not very reasonable,
as shown in Figure S5a. Therefore, when fitting the temperature curve, it should be as close
as possible to the real temperature curve. Then, according to the rule of calculating the
growing degree day by the sine method, the integral of the temperature curve under this
fitting method was calculated in combination with the cardinal temperatures, which was
the growing degree day of this method. This fitting method was called the curve fitting
method. As shown in Figure S5c,d, the curve fitting method was the sum of three sine
functions, which was the closest fitting to the original curve.

In addition, because the daily hourly temperature in these years was known, the
hourly GDD can be calculated by combining the cardinal temperatures, and the GDD of
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the day can be obtained by adding up the hourly value for 24 h and dividing it by 24
(Equation (10)). This method was called the time interval control method.

GDD = (
24

∑
j=1

HGDDj)/24 (10)

in which HGDD represents the hourly GDD of the day.

3. Results and Discussions
3.1. Phenological Extraction

In this experimental part, the observed phenological periods of years 2014–2018
(excluding 2015) were used to generate the averaging phenological parameters of the shape
model, and also to evaluate different phenological extraction methods by matching their
growth curves with the shape model to obtain the estimated phenological periods. In this
way, the observed phenological periods of the years 2014–2018 (excluding 2015) can be
used as the ground truth. Two shape model-based methods, CD-SM and AAGDD-SM
were introduced for comparison with the proposed CAGDD-SM method. The generated
average phenological periods, Xs

0, and their corresponding AGDDXs
0 values for the CD-SM

and CAGDD-SM methods are listed in Table 2, respectively. Given the obtained optimal
matching parameters for the different shape models with the annual growth curve, the
estimated phenological periods of CD-SM can be obtained directly with Equation (4), while
that of CAGDD-SM and AAGDD-SM can be obtained, as Tables 3 and 4 illustrates.

Table 2. The predefined AGDDXS
0 and Xs

0 of different shape models for early rice.

Phenology Stage Xs
0/d AGDDXs

0/◦C

Reviving 7 65.68
Tillering 28 305.38
Heading 58 622.33
Anthesis 61 634.84

Table 3. The estimated accumulated growing degree days in 2018.

Year 2018 Reviving Tillering Heading Anthesis

The estimated
AGDD 133.18 336.92 606.33 616.97

Table 4. AGDD calculated from daily 24-h temperatures of the year 2018.

Year 2018 Day 1 Day 2 ... Day 9 Day 10 Day 11 Day 12

AGDD value 11.15 21.65 ... 99.15 112.15 126.80 143.30

Based on the GDD calculation, the relationship between the calendar day of dif-
ferent phenological dates and its corresponding AGDD value can be built, as shown in
Tables 3 and 4. For example, the estimated AGDD value of the reviving phase of the year
2018 using the shape model is 133.18, and it is calculated from the daily 24-h temperatures
that this AGDD value is between days 11–12. Therefore, the estimated calendar day of the
Reviving phase for the year 2018 can be determined as the 11th day.

It can be seen from Table 5 that the total accuracy error of method CAGDD-SM
(RMSE = 23.64) is better than that of method AAGDD-SM (RMSE = 25.31) and CD-SM
(RMSE = 27.87); this has obvious advantages in the reviving and tillering phases. The error
of tillering obtained by CAGDD-SM is 2.27 times smaller than that obtained by CD-SM. In
any year, the maximum value, minimum value and average value of daily growing degree
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day in the first two phenological periods were much higher than those in the latter two
phenological periods, especially in 2016, where the minimum value of growing degree day
in the first two phenological periods was three times that in the latter two phenological
periods (Figure 6). In other words, the difference in AGDD obtained by observation
between two adjacent days is much larger in the first two phenological periods than in
the last two phenological periods. Because the GDD of the last two phenological phases is
smaller than that of the first two phenological phases, it leads to the greater floating range
of the predicted calendar day after the conversion of the last two phenological periods.
Therefore, the estimation errors of the heading date and anthesis date will be relatively
high. By observing the daily growing degree day in each phenological period, it was found
that the daily growing degree day in the vegetative growth period was generally high, but
the growing degree day in the reproductive growth period was relatively low. Therefore,
when the estimated error of accumulated growing degree days was the same, the error of
calendar time after conversion in the vegetative growth period will be smaller.

Table 5. Precisions of different phenological extraction methods.

Phenology Stage
RMSE (Day)

CD-SM AAGDD-SM CAGDD-SM

Reviving 6.80 4.12 4.15
Tillering 6.64 3.35 2.92
Heading 7.20 8.34 7.78
Anthesis 7.23 9.50 8.79

All 27.87 25.31 23.64

It can be seen from Figure 7a that the error range of the phenological period estimated
by the shape model based on calendar time was 0–10 days, and the error was about 10 days
from the reviving period to the anthesis period. Compared with the former, most of
the estimation errors of each phenological period in Figure 7b tended to be closer to the
centerline, that is, the errors were smaller. The result shown in Figure 7b is illustrated in
Figure 6, and it is also the conversion error caused by the difference between the GDD in
different stages. Compared with the other two phenological periods, the daily GDD of the
heading and anthesis are smaller, so when it is converted from AGDD to the calendar date,
its floating days are larger, resulting in larger errors. Therefore, in the last two phenological
periods in Figure 7b, there are some cases with large deviation days.

3.2. Verification of Rationality of Extracting Phenological Period by CAGDD-SM Method

In Figure 8, the red curve is the temperature curve fitted by the CAGDD-SM method,
the blue curve is the temperature curve fitted by the curve fitting method (CFAGDD-SM),
and the three horizontal lines refer to the cardinal temperatures.

It can be seen from Figure 8 that for some abnormal temperature curves, the curve
fitted by the sine method was not as close to the original temperature curve as the curve
fitting method. Therefore, in this paper, the curve fitting method (CFAGDD-SM) and time
interval method (HAGDD-SM) were used to calculate the accumulated growing degree
days, and the other steps were the same as the CAGDD-SM, and the phenological errors of
these two methods were obtained (Table 6).
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Figure 6. Comparison of statistical indicators of the first two phenological periods and the last two
phenological periods of each year. (a–d) indicate the statistical indicators of each year. The blue
bars indicate the period between the reviving and tillering stages, while the yellow bars indicate the
period between the heading and anthesis stages.
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derived from the CD-SM and CAGDD-SM. (a) CD-SM. (b) CAGDD-SM.
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It can be seen from Table 6 that the effect of CAGDD-SM was the best, which was better
than CFAGDD-SM. This was contrary to the expected result of CFAGDD-SM. The reason
was that the law of accumulated growing degree days assumes that the temperature during
the day and at night has the same effect on crop development, which was unreasonable.
According to the daily hourly temperature data, the lowest temperature is at around
5:00 to 6:00 in the morning and the highest temperature is at around 2:00 to 4:00 in the
afternoon. It can be seen from Figure 8 that the sinusoidal method enlarged the weight
of the daytime and weakened the influence of night on the GDD (it was assumed that
daytime is 6–18 o’clock). Therefore, CAGDD-SM was more effective than CFAGDD-SM.
The date in Figure 8 was just an example. Any date can be used to explain that CAGDD-SM
is better than CFAGDD-SM. For example, the two unusual date curves in Figure S5 can
also be explained in this way. Similarly, this explains why HAGDD-SM was less effective
than AAGDD-SM, because AAGDD-SM calculated GDD by the lowest and highest average
values, and the average temperature was in the daytime range, which enlarged the daytime
weight. While HAGDD-SM was calculated based on the same influence of day and night
on GDD. Therefore, CAGDD-SM had the best effect.

Remote Sens. 2022, 14, 5337  12  of  16 
 

 

3.2. Verification of Rationality of Extracting Phenological Period by CAGDD‐SM Method 

In Figure 8, the red curve is the temperature curve fitted by the CAGDD‐SM method, 

the blue curve is the temperature curve fitted by the curve fitting method (CFAGDD‐SM), 

and the three horizontal lines refer to the cardinal temperatures. 

 

Figure 8. Comparison of temperature curves fitted by the CAGDD‐SM method and the CFAGDD‐

SM method. 

It can be seen from Figure 8 that for some abnormal temperature curves, the curve 

fitted by the sine method was not as close to the original temperature curve as the curve 

fitting method. Therefore, in this paper, the curve fitting method (CFAGDD‐SM) and time 

interval method (HAGDD‐SM) were used to calculate the accumulated growing degree 

days, and the other steps were the same as the CAGDD‐SM, and the phenological errors 

of these two methods were obtained (Table 6). 

Table 6. Estimation errors of CAGDD‐SM, CFAGDD‐SM and HAGDD‐SM. 

Phenology Stage 
RMSE (Day) 

CAGDD‐SM  CFAGDD‐SM  HAGDD‐SM 

Reviving  4.15  4.53  4.15 

Tillering  2.92  3.35  3.35 

Heading  7.78  8.67  8.67 

Anthesis  8.79  9.22  9.66 

All  23.64  25.77  25.83 

It can be seen from Table 6 that the effect of CAGDD‐SM was the best, which was 

better than CFAGDD‐SM. This was contrary to the expected result of CFAGDD‐SM. The 

reason was that the law of accumulated growing degree days assumes that the tempera‐

ture during the day and at night has the same effect on crop development, which was 

unreasonable. According to the daily hourly temperature data, the lowest temperature is 

at around 5:00 to 6:00 in the morning and the highest temperature is at around 2:00 to 4:00 

in  the afternoon.  It can be seen  from Figure 8  that  the sinusoidal method enlarged  the 

weight of the daytime and weakened the influence of night on the GDD (it was assumed 

that daytime is 6–18 o’clock). Therefore, CAGDD‐SM was more effective than CFAGDD‐

SM. The date  in Figure  8 was  just  an  example. Any date  can be used  to  explain  that 

CAGDD‐SM  is better than CFAGDD‐SM. For example, the two unusual date curves  in 

5 10 15 20 25Hour

22

24

26

28

30

32

34

36

38

40

42
18 July 2014

Temperature curves fitted by  sine method
Temperature value for 24 hours
Temperature curves fitted by curve fitting method
The cardinal temperatures

K2

K3

K1

Figure 8. Comparison of temperature curves fitted by the CAGDD-SM method and the CFAGDD-
SM method.

Table 6. Estimation errors of CAGDD-SM, CFAGDD-SM and HAGDD-SM.

Phenology Stage
RMSE (Day)

CAGDD-SM CFAGDD-SM HAGDD-SM

Reviving 4.15 4.53 4.15
Tillering 2.92 3.35 3.35
Heading 7.78 8.67 8.67
Anthesis 8.79 9.22 9.66

All 23.64 25.77 25.83

4. Conclusions

Temperature is the most important factor, which is used to extract phenology instead
of calendar day as a dependent variable. As for the index of temperature-accumulated
growing degree days, it is assumed that the growth rate of crops is positively correlated
with temperature, and only when the active growing degree day exceeds the minimum
temperature of crops will the crops begin to grow. The active growing degree day defined
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by accumulated temperature theory is the average value of daily minimum temperature
and maximum temperature, which ignores the difference of daily temperature and misses
the growing degree day for some days; although the average temperature is lower than the
minimum temperature of crops, there are some moments when the temperature is higher
than the minimum temperature of crops. Therefore, the sine method is used to calculate
the growing degree day every day, which can avoid the above situations.

The daily GDD can be calculated more accurately using the sine method, and the
accumulated growing degree days calculated using this method are combined with the
shape model (CAGDD-SM). Compared with the accumulated growing degree days cal-
culated using the traditional and common average temperature method, the estimation
errors of each phenological period extracted by CAGDD-SM are better than that of the
AAGDD-SM method, and the overall error is also better than that of the shape model with
calendar time as the dependent variable. CAGDD-SM reduces the situation that some
AGDD in AAGDD-SM are calculated as 0 but plants are still growing, so the prediction
of the phenology of the former is improved compared to that of the latter. Although the
precision of the heading date and anthesis date extracted by CAGDD-SM were worse
than that without temperature, this phenomenon appears not only in this experiment;
Zhou (2020) also showed that the precision of the reproductive growth period extracted by
AAGDD-SM was worse than that of the vegetative growth period.

To verify the rationality of the CAGDD-SM method, this paper also uses the HAGDD-
SM method and the CFAGDD-SM method to compare with CAGDD-SM, and the results
show that the CAGDD-SM method is still the best. In addition, different from previous
studies, the farmland in this study area is an area of ordinary cultivated land, which has
neither advanced irrigation equipment nor unified and strict planting density planning.
Agricultural producers rely on their own experience to plant and irrigate this cultivated
land. Therefore, the research in this paper has more practical significance and achieved
good results. Although the method in this paper needs daily hourly temperature data,
which may be more difficult to obtain than the average temperature method, the method
provided in this paper is based on a more accurate and reasonable AGDD calculation
method to predict, and the obtained phenological period is more accurate. For example,
for a specific date, the average temperature is less than K1. According to the calculation
of the AAGDD-SM, the GDD on that day is 0, but the plants have not stopped growing.
CAGDD-SM can greatly reduce these situations. Taking early rice as an example, the
transplanting period of early rice usually starts from the end of April to the beginning
of May, and the early rice matures at the end of July. The daily temperature difference
during this period is not as obvious as that in winter, so the advantages of method A are
not so prominent. The emphasis of this paper is to provide a more accurate phenological
prediction method.

Therefore, the research in this paper has great potential in crop phenology estimation
at a regional scale and provides a lot of useful information for agricultural production.
Accurate phenological information can help to make a reasonable agricultural production
plan, and facilitate work such as crop cultivation, pest control, and crop yield estimation.
The research in this paper has the potential to be applied to the phenological period
estimation of other crops, such as cotton, soybean, and corn. Future work is based on the
existing research, considering the difference of accumulated growing degree days between
day and night, to further improve the estimation of crop phenological period. In addition,
the emphasis of this paper is to consider more reasonable and accurate temperatures based
on SM, and more factors can be considered in the future, such as the influence of water, soil
and different vegetation indexes. This paper adopts a more reasonable method to calculate
AGDD and combines it with the shape model to get a more accurate estimation of the
phenological period. Finally, the rationality of this proposed method (CAGDD-SM) is also
verified and can provide useful help for agricultural production planning.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14215337/s1, Figure S1: The fitted growth curve from MODIS
NDVI data for year i; Figure S2: Matching of shape model with growth curve; Figure S3: An example
of 24-h temperature fitting; Figure S4: Eight cases to calculate the GDD value. (A,B) refer to the case
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