Capability of Phenology-Based Sentinel-2 Composites for Rubber Plantation Mapping in a Large Area with Complex Vegetation Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Sentinel-2 Data
2.2.2. MODIS Data
2.2.3. Land Cover Data
2.2.4. Rubber Plantations’ Area Data from Statistical Yearbook
2.2.5. Field Survey Data
2.3. Experimental Design
2.4. Methodology
2.4.1. Phenology-Based Image Compositing
2.4.2. Class Separability Based on Jeffries Matusita Distance
2.4.3. Random Forest Classifier and Feature Importance
2.4.4. Accuracy Assessment
3. Results
3.1. Phenological Stages Delineation of Rubber Trees
3.2. Separability between Rubber Trees and Other Tree Species
3.3. Accuracy Assessment Using Survey Data
3.4. Rubber Plantation Map and Statistical Data Validation
3.5. Feature Importance
4. Discussion
4.1. Capability of Sentinel-2 for Rubber Plantation Mapping
4.2. Phenological Stage Importance
4.3. Band Importance
4.4. Research Limitations and Prospects
- (1)
- Previous studies [28,29,60] have confirmed the usefulness of vegetation indices (such as NDVI and EVI) for tree species classification. In the scope of rubber tree mapping, the spectral-indices-based decision trees have been used to discriminate rubber trees from natural forests. It can be expected that the spectral indices are helpful for rubber tree mapping. In addition, several red-edge-related spectral indices can be obtained based on Sentinel-2 imagery [61], and the importance of red-edge bands can be explored deeply.
- (2)
- In this study, based on the RF algorithm, the MDA was used to evaluate the feature importance of the phenological stages and the Sentinel-2 bands for rubber plantation discrimination. However, the selection of features with high importance does not warrant that this is the best set of features for a given problem [62]. Features with high correlation may reduce the reliability of the RF-based MDA importance, and have a negative effect on the feature selection. Different solutions have been proposed to overcome some of the known flaws of MDA [63], and several methods have been proposed to select the optimal subset of features [64]. These techniques have been used in forest parameter monitoring, such as tree species diversity [65], growing stock volume [66], and forest stand parameters [66]. However, the impacts of dependent input features on the RF-based MDA importance for tree species classification have not been discussed. In this study, there is no doubt that there is a high correlation between the Sentinel-2 imageries with adjacent phenological stages. In addition, the adjacent bands of Sentinel-2 data are possibly correlated to each other because of the continuity of the bands. Therefore, the feature importance of the phenological stages and the Sentinel-2 bands for rubber tree discrimination needs to be explored deeply in the future.
- (3)
- In this study, the four Hainan Sentinel-2 composites were generated based on imageries of three years due to the high cloud cover. This technique is time-consuming and easily affected by the frequent deforestation and reforestation in Hainan Province. Our results showed that any dataset group with two phenological stages was sufficient for rubber tree mapping. Actually, for each Sentinel-2 tile, it is achievable to composite two cloud-free images annually with different phenological stages. Therefore, based on the four Hainan Sentinel-2 composites, future studies should tap the potential of dataset groups with double phenological stages. Standardizing the rule sets for identifying rubber plantations, especially in decision trees, could facilitate the rubber plantation mapping annually.
- (4)
- As we know, the first Sentinel-2 satellite was launched in 2015. If we want to map the rubber plantations in Hainan Province before the Sentinel-2 data was available, we still have to resort to Landsat series data. Given the high cloud cover in Hainan Province and the 16-day repeat cycle of Landsat satellites, it is tough to generate four Hainan compositing Landsat images corresponding to the four phenological stages. Recent studies have shown the harmonization of Landsat and Sentinel-2 data [67], and the combination of Sentinel-2 and Landsat for land surface phenology characterizing [68,69]. Therefore, simulated Hainan Landsat images can be generated by adjusting Sentinel-2 radiometry to replicate the spectral bandpasses of Landsat 5/TM or 8/OLI for the bands common to both sensors. In the future, the rubber tree mapping model based on the simulated Landsat images should be explored and will be used to monitor the dynamics of rubber plantations during 1990–2020.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Aide, T.M.; Ma, Y.; Liu, W.; Cao, M. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers. Conserv. 2007, 16, 1731–1745. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Fox, J.M.; Xu, J. The Rubber Juggernaut. Science 2009, 324, 1024–1025. [Google Scholar] [CrossRef]
- Singh, A.K.; Liu, W.; Zakari, S.; Wu, J.; Yang, B.; Jiang, X.J.; Zhu, X.; Zou, X.; Zhang, W.; Chen, C.; et al. A global review of rubber plantations: Impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation. Sci. Total Environ. 2021, 796, 148948. [Google Scholar] [CrossRef]
- Azizan, F.A.; Kiloes, A.M.; Astuti, I.S.; Aziz, A.A. Application of Optical Remote Sensing in Rubber Plantations: A Systematic Review. Remote Sens. 2021, 13, 429. [Google Scholar] [CrossRef]
- Li, Y.; Lan, G.; Xia, Y. Rubber Trees Demonstrate a Clear Retranslocation Under Seasonal Drought and Cold Stresses. Front. Plant Sci. 2016, 7, 1907. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.K.V. The water relations of rubber (hevea brasiliensis): A review. Exp. Agric. 2011, 48, 176–193. [Google Scholar] [CrossRef]
- Cui, B.; Huang, W.; Ye, H.; Chen, Q. The Suitability of PlanetScope Imagery for Mapping Rubber Plantations. Remote Sens. 2022, 14, 1061. [Google Scholar] [CrossRef]
- Xiao, C.; Peng, L.; Feng, Z.; Liu, Y.; Zhang, X. Sentinel-2 red-edge spectral indices (RESI) suitability for mapping rubber boom in Luang Namtha Province, northern Lao PDR. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102176. [Google Scholar] [CrossRef]
- Xiao, C.; Li, P.; Feng, Z. Monitoring annual dynamics of mature rubber plantations in Xishuangbanna during 1987–2018 using Landsat time series data: A multiple normalization approach. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 30–41. [Google Scholar] [CrossRef]
- Gao, S.; Liu, X.; Bo, Y.; Shi, Z.; Zhou, H. Rubber Identification Based on Blended High Spatio-Temporal Resolution Optical Remote Sensing Data: A Case Study in Xishuangbanna. Remote Sens. 2019, 11, 496. [Google Scholar] [CrossRef] [Green Version]
- Zhai, D.; Dong, J.; Cadisch, G.; Wang, M.; Kou, W.; Xu, J.; Xiao, X.; Abbas, S. Comparison of Pixel- and Object-Based Approaches in Phenology-Based Rubber Plantation Mapping in Fragmented Landscapes. Remote Sens. 2018, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Chen, J.; Han, Y.; Yi, L.; Zhang, Y.; Jiang, X. Monitoring rubber plantation distribution on Hainan Island using Landsat OLI imagery. Int. J. Remote Sens. 2018, 39, 2189–2206. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Ye, H.; Ma, J.; Doughty, R.; Li, X.; Zhao, B.; Wu, Z.; Sun, R.; Dong, J.; et al. Mapping Forest and Their Spatial–Temporal Changes From 2007 to 2015 in Tropical Hainan Island by Integrating ALOS/ALOS-2 L-Band SAR and Landsat Optical Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 852–867. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Sheldon, S.; Biradar, C.; Xie, G. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2012, 74, 20–33. [Google Scholar] [CrossRef]
- Fan, H.; Fu, X.; Zhang, Z.; Wu, Q. Phenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data. Remote Sens. 2015, 7, 6041–6058. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Li, X.; Xiao, X.; Zhao, B.; Dong, J.; Kou, W.; Qin, Y.; Yang, C.; Wu, Z.; Sun, R.; et al. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 117–130. [Google Scholar] [CrossRef]
- Liang, S.; Chen, J.; Wu, B.; Chen, G. Extracting rubber plantation with decision tree model based on object-oriented method. J. Remote Sens. 2015, 19, 485–494. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Chen, Z.; Zhu, N.; Tao, Z. A Primary Study on Rubber Acreage Estimation From MODIS-Based Information in Hainan. Chin. J. Trop. Crops 2010, 31, 1181–1185. [Google Scholar]
- Xiao, C.; Li, P.; Feng, Z.; Lin, Y.; You, Z.; Yang, Y. Mapping rubber plantations in Xishuangbanna, southwest China based on the re-normalization of two Landsat-based vegetation–moisture indices and meteorological data. Geocarto Int. 2021, 36, 1923–1937. [Google Scholar] [CrossRef]
- Xiao, C.; Li, P.; Feng, Z. How Did Deciduous Rubber Plantations Expand Spatially in China’s Xishuangbanna Dai Autonomous Prefecture During 1991–2016? Photogramm. Eng. Remote Sens. 2018, 85, 687–697. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Zhang, J.; Zhang, P.; Xue, Y. Monitoring Spatial and Temporal Patterns of Rubber Plantation Dynamics Using Time-Series Landsat Images and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9450–9461. [Google Scholar] [CrossRef]
- Kou, W.; Dong, J.; Xiao, X.; Hernandez, A.J.; Qin, Y.; Zhang, G.; Chen, B.; Lu, N.; Doughty, R. Expansion dynamics of deciduous rubber plantations in Xishuangbanna, China during 2000–2010. GIScience Remote Sens. 2018, 55, 905–925. [Google Scholar] [CrossRef]
- Azizan, F.A.; Astuti, I.S.; Aditya, M.I.; Febbiyanti, T.R.; Williams, A.; Young, A.; Abdul Aziz, A. Using Multi-Temporal Satellite Data to Analyse Phenological Responses of Rubber (Hevea brasiliensis) to Climatic Variations in South Sumatra, Indonesia. Remote Sens. 2021, 13, 2932. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, A.; Lindberg, E.; Reese, H.; Olsson, H. Tree species classification using Sentinel-2 imagery and Bayesian inference. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102318. [Google Scholar] [CrossRef]
- Hemmerling, J.; Pflugmacher, D.; Hostert, P. Mapping temperate forest tree species using dense Sentinel-2 time series. Remote Sens. Environ. 2021, 267, 112743. [Google Scholar] [CrossRef]
- Kollert, A.; Bremer, M.; Löw, M.; Rutzinger, M. Exploring the potential of land surface phenology and seasonal cloud free composites of one year of Sentinel-2 imagery for tree species mapping in a mountainous region. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102208. [Google Scholar] [CrossRef]
- Ma, M.; Liu, J.; Liu, M.; Zeng, J.; Li, Y. Tree Species Classification Based on Sentinel-2 Imagery and Random Forest Classifier in the Eastern Regions of the Qilian Mountains. Forests 2021, 12, 1736. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Puletti, N.; Chianucci, F.; Castaldi, C. Use of Sentinel-2 for forest classification in Mediterranean environments. Ann. Silvic. Res. 2017, 42, 32–38. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Furtado, E.; Moraes, W.B.; Cintra, W.; dos Anjos, B.B.; da Silva, L. Epidemiology and Management of South American Leaf Blight on Rubber in Brazil. In Horticultural Crops; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Sha, L.Q.; Shen, S.; Zheng, Z. Seasonal change of soil respiration and its influence factors in rubber (Hevea brasiliensis) plantation in Xishuangbanna, SW China. J. Mt. Sci. 2008, 26, 317–325. [Google Scholar]
- Li, Z.; Fox, J.M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250m NDVI and statistical data. Appl. Geogr. 2012, 32, 420–432. [Google Scholar] [CrossRef]
- Gallo, K.; Ji, L.; Reed, B.; Eidenshink, J.; Dwyer, J. Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data. Remote Sens. Environ. 2005, 99, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Ni, G.; Xiaoping, W.; Jia, Y. Comparisons of normalized difference vegetation index from MODIS Terra and Aqua data in northwestern China. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 3390–3393. [Google Scholar]
- Leinenkugel, P.; Kuenzer, C.; Oppelt, N.; Dech, S. Characterisation of land surface phenology and land cover based on moderate resolution satellite data in cloud prone areas—A novel product for the Mekong Basin. Remote Sens. Environ. 2013, 136, 180–198. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Lei, Z.; Wu, B.; Li, X.; Qiang, X. Classification system of China land cover for carbon budget. Acta Ecol. Sin. 2014, 34, 7158–7166. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Zeng, Y.; Zhao, D. Land cover mapping and above ground biomass estimation in China. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3535–3536. [Google Scholar]
- Lei, Z.; Xiaosong, L.; Quanzhi, Y.; Yu, L. Object-based approach to national land cover mapping using HJ satellite imagery. J. Appl. Remote Sens. 2014, 8, 083686. [Google Scholar] [CrossRef]
- SBHP; SONBSH. Hainan Statistical Yearbook. China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Ruefenacht, B. Comparison of Three Landsat TM Compositing Methods: A Case Study Using Modeled Tree Canopy Cover. Photogramm. Eng. Remote Sens. 2016, 82, 199–211. [Google Scholar] [CrossRef]
- Corbane, C.; Politis, P.; Kempeneers, P.; Simonetti, D.; Soille, P.; Burger, A.; Pesaresi, M.; Sabo, F.; Syrris, V.; Kemper, T. A global cloud free pixel-based image composite from Sentinel-2 data. Data Brief 2020, 31, 105737. [Google Scholar] [CrossRef]
- Simonetti, D.; Pimple, U.; Langner, A.; Marelli, A. Pan-tropical Sentinel-2 cloud-free annual composite datasets. Data Brief 2021, 39, 107488. [Google Scholar] [CrossRef]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 23, 18–22. [Google Scholar]
- Xue, X.; Ren, C.; Xu, Z.; Wang, W.; Zhang, Y.; Luo, X.; Zhao, C. Characteristic of Defoliation of Rubber Plantations (Hevea brasiliensis) in Hainan, China. Chin. J. Trop. Crops 2022, 43, 377–384. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Woodcock, C.E. Improved mapping of forest type using spectral-temporal Landsat features. Remote Sens. Environ. 2018, 210, 193–207. [Google Scholar] [CrossRef]
- Schwieder, M.; Leitão, P.J.; da Cunha Bustamante, M.M.; Ferreira, L.G.; Rabe, A.; Hostert, P. Mapping Brazilian savanna vegetation gradients with Landsat time series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 361–370. [Google Scholar] [CrossRef]
- Rufin, P.; Frantz, D.; Ernst, S.; Rabe, A.; Griffiths, P.; Özdoğan, M.; Hostert, P. Mapping Cropping Practices on a National Scale Using Intra-Annual Landsat Time Series Binning. Remote Sens. 2019, 11, 232. [Google Scholar] [CrossRef] [Green Version]
- Golbon, R.; Cotter, M.; Sauerborn, J. Climate change impact assessment on the potential rubber cultivating area in the Greater Mekong Subregion. Environ. Res. Lett. 2018, 13, 084002. [Google Scholar] [CrossRef]
- Zhai, D.L.; Yu, H.; Chen, S.C.; Ranjitkar, S.; Xu, J. Responses of rubber leaf phenology to climatic variations in Southwest China. Int. J. Biometeorol. 2019, 63, 607–616. [Google Scholar] [CrossRef]
- Shi, J.; Xu, H.; Lin, M.; Li, Y. Dynamics of litterfall production in the tropical mountain rainforest of Jianfengling, Hainan Island, China. Plant Sci. J. 2019, 37, 593–601. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, S.; Luo, H.; Li, H.; Li, M.; Zheng, Q.; Yu, X.; Li, N. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001–2015. Remote Sens. Nat. Resour. 2022, 34, 210–217. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Wagner, F.H.; Aragão, L.E.O.C.; Shimabukuro, Y.E.; de Souza Filho, C.R. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis. ISPRS J. Photogramm. Remote Sens. 2019, 149, 119–131. [Google Scholar] [CrossRef]
- Nelson, M. Evaluating Multitemporal Sentinel-2 data for Forest Mapping using Random Forest. Master’s Thesis, Stockholm University, Stockholm, Sweden, 2017. [Google Scholar]
- Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Izquierdo-Verdiguier, E.; Zurita-Milla, R. An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102051. [Google Scholar] [CrossRef]
- Chavent, M.; Lacaille, J.; Mourer, A.; Olteanu, M. Handling Correlations in Random Forests: Which Impacts on Variable Importance and Model Interpretability? ESANN: Bruges, Belgium, 2021; pp. 569–574. [Google Scholar] [CrossRef]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Mallinis, G.; Chrysafis, I.; Korakis, G.; Pana, E.; Kyriazopoulos, A.P. A Random Forest Modelling Procedure for a Multi-Sensor Assessment of Tree Species Diversity. Remote Sens. 2020, 12, 1210. [Google Scholar] [CrossRef] [Green Version]
- Chrysafis, I.; Mallinis, G.; Tsakiri, M.; Patias, P. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 1–14. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Bolton, D.K.; Gray, J.M.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sens. Environ. 2020, 240, 111685. [Google Scholar] [CrossRef]
- Kowalski, K.; Senf, C.; Hostert, P.; Pflugmacher, D. Characterizing spring phenology of temperate broadleaf forests using Landsat and Sentinel-2 time series. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102172. [Google Scholar] [CrossRef]
Coded Name | Tree Species | Training Samples | Validating Samples | Total |
---|---|---|---|---|
RT | Rubber tree | 150 | 200 | 350 |
LC | Lychee | 150 | 225 | 375 |
CA | Casuarina | 150 | 191 | 341 |
CP | Coconut Palm | 150 | 218 | 368 |
EU | Eucalyptus | 150 | 221 | 371 |
AP | Areca Palm | 150 | 212 | 362 |
NF | Natural forest | 150 | 287 | 437 |
Total | 1050 | 1554 | 2604 |
Tree species | LC | CA | CP | EU | AP | NF |
---|---|---|---|---|---|---|
① | 1.50 | 1.98 | 1.96 | 1.21 | 1.62 | 1.70 |
② | 1.58 | 1.97 | 1.98 | 1.57 | 1.67 | 1.77 |
③ | 1.47 | 1.98 | 1.97 | 1.41 | 1.63 | 1.74 |
④ | 1.59 | 1.98 | 1.98 | 1.41 | 1.58 | 1.68 |
①② | 1.88 | 1.99 | 1.99 | 1.84 | 1.93 | 1.96 |
①③ | 1.85 | 1.99 | 1.99 | 1.80 | 1.91 | 1.93 |
①④ | 1.86 | 1.99 | 1.99 | 1.84 | 1.89 | 1.95 |
②③ | 1.86 | 1.99 | 1.99 | 1.87 | 1.90 | 1.94 |
②④ | 1.88 | 1.99 | 1.99 | 1.89 | 1.88 | 1.96 |
③④ | 1.87 | 1.99 | 1.99 | 1.86 | 1.86 | 1.93 |
①②③ | 1.96 | 1.99 | 1.99 | 1.97 | 1.97 | 1.99 |
①②④ | 1.97 | 1.99 | 1.99 | 1.97 | 1.98 | 1.99 |
①③④ | 1.96 | 1.99 | 1.99 | 1.96 | 1.97 | 1.99 |
②③④ | 1.96 | 1.99 | 1.99 | 1.96 | 1.98 | 1.99 |
①②③④ | 1.99 | 1.99 | 1.99 | 1.99 | 1.99 | 1.99 |
Tree | LC | CA | CP | EU | AP | NF | RT | |||
---|---|---|---|---|---|---|---|---|---|---|
Species | EC/EO | EC/EO | EC/EO | EC/EO | EC/EO | EC/EO | TP | PA% | UA | F1 |
① | 10/5 | 1/0 | 1/1 | 18/26 | 14/8 | 14/12 | 142 | 71.00% | 73.10% | 0.72 |
② | 6/5 | 0/1 | 0/0 | 16/13 | 14/14 | 9/8 | 155 | 77.50% | 79.10% | 0.78 |
③ | 13/9 | 1/1 | 1/2 | 18/15 | 11/11 | 6/2 | 150 | 75.00% | 78.90% | 0.77 |
④ | 14/5 | 2/0 | 1/1 | 22/19 | 6/9 | 10/16 | 145 | 72.50% | 73.20% | 0.73 |
①② | 8/5 | 0/0 | 1/1 | 12/13 | 14/14 | 8/11 | 157 | 77.50% | 78.10% | 0.78 |
①③ | 8/3 | 0/0 | 2/1 | 14/12 | 14/16 | 7/9 | 156 | 78.00% | 78.80% | 0.78 |
①④ | 12/2 | 1/0 | 1/0 | 22/14 | 11/13 | 5/11 | 148 | 74.00% | 78.70% | 0.76 |
②③ | 9/3 | 0/0 | 0/0 | 15/14 | 15/13 | 7/7 | 154 | 77.00% | 80.60% | 0.79 |
②④ | 9/3 | 0/0 | 0/0 | 14/17 | 14/12 | 6/6 | 157 | 78.50% | 80.50% | 0.79 |
③④ | 15/6 | 0/0 | 1/0 | 18/17 | 6/4 | 10/5 | 150 | 75.00% | 82.40% | 0.79 |
①②③ | 7/3 | 0/0 | 0/1 | 13/14 | 16/12 | 7/5 | 157 | 78.50% | 81.80% | 0.80 |
①②④ | 8/3 | 0/0 | 0/0 | 12/15 | 16/10 | 6/3 | 158 | 79.00% | 83.60% | 0.81 |
①③④ | 10/2 | 0/0 | 0/1 | 20/12 | 10/10 | 7/8 | 153 | 76.50% | 82.30% | 0.79 |
②③④ | 8/2 | 0/1 | 0/0 | 13/15 | 16/8 | 8/2 | 155 | 77.50% | 84.70% | 0.81 |
①②③④ | 7/3 | 0/0 | 0/0 | 13/12 | 12/12 | 6/3 | 162 | 81.00% | 84.40% | 0.83 |
ID | County | Our Work | Yearbook | Difference | Accuracy | Area Weight | Area-Weighted |
---|---|---|---|---|---|---|---|
(km2) | (km2) | (km2) | (%) | Accuracy | |||
3 | Danzhou | 1055.07 | 870.84 | 184.23 | 78.84 | 0.10 | 7.88 |
18 | Qiongzhong | 595.91 | 559.12 | 36.79 | 93.42 | 0.08 | 7.47 |
13 | Baisha | 579.16 | 632.81 | −53.65 | 91.52 | 0.06 | 5.49 |
11 | Chengmai | 483.52 | 508.47 | −24.95 | 95.09 | 0.06 | 5.71 |
15 | Ledong | 356.14 | 315.88 | 40.26 | 87.25 | 0.08 | 6.98 |
12 | Lingao | 322.54 | 219.91 | 102.63 | 53.33 | 0.04 | 2.13 |
5 | Qionghai | 314.61 | 350.46 | −35.85 | 89.77 | 0.05 | 4.49 |
10 | Tunchang | 279.10 | 364.67 | −85.57 | 76.53 | 0.04 | 3.06 |
7 | Wanning | 228.17 | 265.62 | −37.45 | 85.90 | 0.06 | 5.15 |
14 | Chanjiang | 205.56 | 153.60 | 51.96 | 66.17 | 0.05 | 3.31 |
17 | Baoting | 187.25 | 224.79 | −37.54 | 83.30 | 0.03 | 2.50 |
4 | Wuzhishan | 186.59 | 161.38 | 25.21 | 84.38 | 0.03 | 2.53 |
9 | Dingan | 174.33 | 205.62 | −31.29 | 84.78 | 0.04 | 3.39 |
2 | Sanya | 156.48 | 122.54 | 33.94 | 72.30 | 0.05 | 3.62 |
1 | Haikou | 136.16 | 161.38 | −25.22 | 84.37 | 0.06 | 5.06 |
8 | Dongfang | 94.62 | 99.89 | -5.27 | 94.72 | 0.07 | 6.63 |
16 | Lingshui | 81.22 | 53.52 | 27.70 | 48.24 | 0.03 | 1.45 |
6 | Wenchang | 37.04 | 46.22 | −9.18 | 80.14 | 0.07 | 5.61 |
Total | 5473.47 | 5316.72 | 156.75 | 97.05 | 82.47 |
Resting | Recovery | Vigorous | Slowdown | Sum | ||
---|---|---|---|---|---|---|
Visible | B2 | 17.64 | 16.65 | 7.67 | 14.01 | 55.97 |
B3 | 13.74 | 16.03 | 8.23 | 11.13 | 49.14 | |
B4 | 13.62 | 13.79 | 4.97 | 12.74 | 45.11 | |
Red edge | B5 | 8.12 | 8.39 | 4.53 | 7.26 | 28.29 |
B6 | 3.91 | 9.64 | 13.72 | 8.52 | 35.79 | |
B7 | 3.08 | 11.09 | 12.98 | 5.53 | 32.69 | |
NIR | B8 | 3.4 | 8.92 | 11.06 | 5.18 | 28.55 |
B8A | 3.77 | 9.15 | 10.44 | 4.65 | 28.01 | |
SWIR | B11 | 4.96 | 8.55 | 14.21 | 13.28 | 41.02 |
B12 | 4.46 | 7.67 | 10.95 | 9.63 | 32.71 | |
Sum | 76.71 | 109.88 | 98.76 | 91.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhao, L.; Sun, L.; Li, X.; Wang, J.; Han, Y.; Liang, S.; Chen, J. Capability of Phenology-Based Sentinel-2 Composites for Rubber Plantation Mapping in a Large Area with Complex Vegetation Landscapes. Remote Sens. 2022, 14, 5338. https://doi.org/10.3390/rs14215338
Li H, Zhao L, Sun L, Li X, Wang J, Han Y, Liang S, Chen J. Capability of Phenology-Based Sentinel-2 Composites for Rubber Plantation Mapping in a Large Area with Complex Vegetation Landscapes. Remote Sensing. 2022; 14(21):5338. https://doi.org/10.3390/rs14215338
Chicago/Turabian StyleLi, Hongzhong, Longlong Zhao, Luyi Sun, Xiaoli Li, Jin Wang, Yu Han, Shouzhen Liang, and Jinsong Chen. 2022. "Capability of Phenology-Based Sentinel-2 Composites for Rubber Plantation Mapping in a Large Area with Complex Vegetation Landscapes" Remote Sensing 14, no. 21: 5338. https://doi.org/10.3390/rs14215338
APA StyleLi, H., Zhao, L., Sun, L., Li, X., Wang, J., Han, Y., Liang, S., & Chen, J. (2022). Capability of Phenology-Based Sentinel-2 Composites for Rubber Plantation Mapping in a Large Area with Complex Vegetation Landscapes. Remote Sensing, 14(21), 5338. https://doi.org/10.3390/rs14215338