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Abstract: Mapping rubber plantations in a large area is still challenging in high-cloud-cover and
complex-vegetation landscapes. Existing studies were often confined to the discrimination of rubber
trees from natural forests and rarely concerned other tropical tree species. The Sentinel-2 constellation,
with improved spatial, spectral, and temporal resolution, offers new opportunities to improve
previous efforts. In this paper, four Hainan Sentinel-2 composites were generated based on the
detailed phenological stages delineation of rubber trees. The random forest classifier with different
phenological stage combinations was utilized to discuss the capability of Sentinel-2 composites to
map rubber plantations. The optimal resultant rubber plantation map had a producer’s accuracy,
user’s accuracy, and F1 score of 81%, 84.4%, and 0.83, respectively. According to the rubber plantation
map in 2020, there was a total of 5473 km2 rubber plantations in Hainan, which was 2.93% higher
than the statistical data from the Hainan Statistical Yearbook. According to the Hainan Statistical
Yearbook, the area-weighted accuracy at the county level was 82.47%. The mean decrease in accuracy
(MDA) was used to assess the feature importance of the four phenological stages. Results showed
that the recovery growth stage played the most important role, and the resting stage was the least
important. Moreover, in terms of the combinations of phenological stages, any dataset group with two
phenological stages was sufficient for rubber tree discrimination. These findings were instrumental
in facilitating the rubber plantation mapping annually. This study has demonstrated the potential
of Sentinel-2 data, with the phenology-based image-compositing technique, for mapping rubber
plantations in large areas with complex vegetation landscapes.

Keywords: rubber plantations; Sentinel-2; feature importance; phenology; image compositing

1. Introduction

The rubber tree (Hevea brasiliensis) is the primary source of natural rubber, an essential
industrial raw material. With the increasing demand for natural rubber, rubber plantations
have expanded to almost every tropical forest region in the world. The expansion of rubber
plantations has contributed to local economic development. However, the transition from
natural forests to rubber plantations has significant ecological impacts on the water balance,
carbon cycle, biodiversity, and ecosystem function [1–4]. Knowledge of the spatial extent
and dynamic of rubber plantations is significant to ensure the sustainability of the natural
rubber industry, including plantation management, rubber futures, national economic
policy, and ecological conservation.

Remote sensing technology is an important tool in mapping rubber plantations at
local and regional scales [5]. Since 2012, rubber’s unique phenological characteristics have
been widely exploited in the delineation of rubber plantations [5]. When rubber trees were
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introduced from the Amazon to Southeast Asia in the nineteenth century, rubber trees
became deciduous in the winter or dry season with seasonal drought and cold stresses [6].
For rubber trees, most leaves fall off during the defoliation process before new leaves
emerge in the refoliation process [7]. In contrast, most other tropical forests are evergreen
forests, having strong resistance against influences from the physical environment, such
as temperature and precipitation. Multiple phenology-based features using vegetation
indices [8–16] have been exploited to map rubber plantations and have shown some
advantages [5]. (1) It is easier to distinguish rubber trees from cropland and natural
forest [17]; (2) it helps to identify and outline rubber plantations within fragmented tropical
mountainous lands [12].

Hainan Province is China’s second-largest natural rubber planting area after Yunnan
Province. Several studies have been published to map rubber plantations in Hainan
Province [8,13,15,16,18–20]. Among these studies, the decision tree classifier with multiple
phenology vegetation indices was the most common approach. Dong et al. [16] and
Chen et al. [18] utilized the L-band PALSAR product to map forests and then extracted
rubber plantations from the forest map according to their phenological features based
on MODIS and Landsat data, respectively. Han et al. [13] developed a simple decision
rule based on band value changes, vegetation index changes, and phenological phase
changes (defoliation and foliation) to distinguish rubber plantations from other land-
cover types. Cui et al. [8] explored the suitability of Planet Scope imagery for mapping
rubber plantations, and the spectral features, index features, and textural features were
comprehensively utilized. These studies obtained high classification accuracies of 85%,
95.2%, 92.17%, and 95.18%, respectively, but there are still three major issues that influence
the rubber plantation mapping results. (1) The mapping of rubber plantations in previous
studies was mainly based on MODIS [16] or Landsat data [13,15,18]. The 250 m spatial
resolution of MODIS products is relatively coarse, making it difficult to delineate the
border of rubber plantations in Hainan Province with fragmented vegetation landscapes.
As for Landsat data, it is difficult to obtain valid cloud-free imageries due to the cloudy
weather condition in Hainan Province, the short period of rubber defoliation, and the
16-day repeat cycle of Landsat satellites. (2) Previous studies [8,9,13,15,16,21] focused on
the discrimination of deciduous rubber plantations from evergreen natural forests, but
little consideration was given to other tropical tree species. Hainan Province is abundant
with tropical tree species, such as Eucalyptus, Areca Palm, and Coconut Palm, and they
are widely distributed. Some tropical economic forests were mentioned briefly [16,22], but
the difference between rubber tree plantations and the economic forests has not yet been
explored. (3) The defoliation and foliation periods were regarded as the optimal timing
for distinguishing rubber trees from evergreen natural forests [8,11,23]. These two key
periods were also called the rubber defoliation and foliation (RDF) period [18], leaf-off and
leaf-on phases [24], senescence and regreening periods [22], and the wintering period [5,25].
However, the timing of the two periods was defined differently, for example, late February
to April [15], January to March [10,15], January to April [8], December to late February [23],
and November to March [11]. This confusion may affect the selection of imageries.

As stated above, Hainan Province is a large cloudy area with complex vegetation
landscapes. Cloud-free multiphenology imageries are necessary to generate an accurate
map of rubber plantations, and these imageries must be able to distinguish rubber trees
from other tropical tree species. Compared to MODIS and Landsat data, Sentinel-2 can
acquire optical imagery at high spatial (maximum 10 m) and temporal resolution (2–5 days
revisit time at the equator). The combination of freely available satellite imagery, high
resolution, a swath width of 290 km, and frequent revisit times has greatly enhanced the
feasibility of mapping rubber plantations in large cloudy areas. In addition, Sentinel-2
incorporates three new spectral bands in the red-edge region, centered at 705, 740, and
783 nm, respectively. Recently, many studies have investigated the utility of Sentinel-2
imageries for precise regional-tree-species mapping [26–30]. The novel red-edge bands are
significant for tree species classification [26,31–33]. Particularly, multitemporal Sentinel-
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2 [26], dense Sentinel-2 time series [28], and phenology/seasonal Sentinel-2 composites [29]
can improve the classification of tree species. For rubber plantation mapping, Xiao et al.
showed the significant potential of Sentinel-2 imageries with red-edge spectral indices [9].
However, the nonrubber tree species distinguished from rubber plantations were still only
natural forests.

This study’s main objective was to investigate the utility of phenology-based Sentinel-2
composites for rubber plantation mapping in a large cloudy area with complex vegetation
landscapes. Specifically, the following questions were addressed: Which phenological
stage of rubber trees is important for rubber plantation mapping? What combinations of
rubber tree phenological stages contribute to increasing mapping results? Which bands of
Sentinel-2 are important for rubber plantation mapping? How does the band importance
of Sentinel-2 vary over the phenological stages of rubber trees?

2. Materials and Methods
2.1. Study Area

Hainan Province is located in the southern part of China (Figure 1). It is characterized
by a marine tropical monsoon climate. The annual average precipitation is more than
1600 mm, and the mean annual temperature is 23~25 ◦C. The annual minimum temperature
is generally above 5 ◦C.

Figure 1. Location of Hainan Province in China and field samples.

Before the 20th century, Hainan Province was dominated by tropical natural forests,
and rubber trees were introduced from British Malaysia. Since the 1950s, rubber trees have
been planted in large quantities through the deforestation of natural forests. After half a
century of development, Hainan Province has become the second-largest rubber-planting
area in China after Yunnan Province, and natural rubber production accounts for about
40.5% of China’s total production.

The deciduous habit of rubber trees is one of its most critical phenological characteris-
tics, allowing annual leaf renewal [34]. Generally, the defoliation periods of rubber trees last
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for about one month between February and March [21]. In this study, according to rubber
trees’ phenology and growth rhythms [35], the growth cycle of rubber trees was divided
into four phenological stages: 1© resting phase, 2© recovery growth phase, 3© vigorous
growth phase, and 4© slowdown growth phase. The photos in Figure 2 show the status of
rubber trees at the four phenological stages, respectively. Detailed descriptions of the four
phenological stages and their timing will be presented in Section 3.1.

Figure 2. Photos of rubber plantations at different phenological stages. (a) Resting phase. (b) Recovery
growth phase. (c) Vigorous growth phase. (d) Slowdown growth phase.

In addition to rubber trees, there are a variety of tropical economic tree species in
Hainan Province, such as Eucalyptus, Coconut, Areca nut, and Litchi. All the economic
forests, including rubber trees, are widely distributed in the study area, with complex and
fragmented landscapes.

2.2. Data
2.2.1. Sentinel-2 Data

The Sentinel-2 mission is based on a constellation of two satellites, Sentinel-2A (S2A)
and Sentinel-2B (S2B). Combining S2A and S2B can provide a five-day revisit time at the
equator and better temporal resolution at higher latitudes. In this study, we collected
all the Sentinel-2 Level 2A products of the study area acquired from 1 January 2019 to
31 December 2021. The Sentinel-2 Level 2A products were downloaded from the Coper-
nicus Open Access Hub of the European Space Agency (ESA). The Level-2A product is
composed of 100 × 100 km2 tiles, and Hainan Province is covered by eight tiles, as shown
in Figure 3.

Hainan Province has cloudy weather all year round. The average percentages of
Sentinel-2 images with cloud cover (CC) less than 10% for the four phenological stages
were 29.57%, 14.36%, 14.21%, and 16.65%, respectively. Therefore, for each phenological
stage, it is tough to obtain less-cloud or cloud-free Sentinel-2 images for all eight tiles. In
this study, to obtain four cloud-free composites for the entire study area in Section 2.4.1,
Sentinel-2 images with an estimated CC ≤ 75% were selected for further preprocessing.

The preprocessing of Sentinel-2 imageries included cloud and cloud shadow masking.
The cloud masks were converted from the layers of Sentinel-2 cloud probability, and the
cloud shadow masks were generated based on the intersection of cloud projection and near-
infrared (NIR) band darkness. Finally, the 20 m bands were resampled to 10 m resolution
using nearest neighbor resampling, and the 10 Sentinel-2 10/20 m bands (B2, B3, B4, B5, B6,
B7, B8, B8A, B11, and B12) were merged into a single raster dataset.
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Figure 3. Hainan land cover from “ChinaCover2020” and Sentinel-2 tiles for the study area.

2.2.2. MODIS Data

Due to the frequent cloudy weather in Hainan Province, it is tough to construct
consistent year-long Sentinel-2 time series with reliable data quality. Therefore, in this study,
we used coarse spatial resolution MODIS data to delineate the phenological stages of rubber
trees. The timing of the lowest NDVI according to the MODIS-NDVI time series curve
has been used to determine the periods of rubber tree defoliation and foliation [8,13,36].
This study used two MODIS-NDVI products with 250 m resolution, MOD13Q1-NDVI and
MYD13Q1-NDVI. The two products showed high compatibility [37,38], and it has been
shown that they can be used in combination [25,39]. These products were obtained through
the online MODIS data repository (https://modis.gsfc.nasa.gov/data/dataprod/mod13.
php, accessed on 3 March 2022).

The two NDVI products for the study area from January 2019 to December 2021 were
rearranged by the property of start time. Subsequently, the combined NDVI time series
were smoothed using the locally linear regression smoothing technique [40].

2.2.3. Land Cover Data

The main objective of this study was to distinguish rubber plantations from other trop-
ical tree species. Therefore, we used the Hainan land cover dataset from “ChinaCover2020”
to mask non-forest land (Figure 3). The “ChinaCover” product was generated based on an
object-based approach [41,42], and the latest version is “ChinaCover2020” with a 10 m reso-
lution. The classification accuracy of the Hainan land cover dataset was evaluated using
1200 independent ground survey samples (712 samples for forest and 488 for non-forest)
that were collected using a random sampling approach [43]. The producer’s accuracy and
user’s accuracy for the forest category were higher than 95%. Therefore, the forest map can
serve as a reliable base dataset for rubber plantations’ delineation.

https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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2.2.4. Rubber Plantations’ Area Data from Statistical Yearbook

The Statistical Bureau of Hainan Province (SBHP) published annual reports on the
rubber plantations’ statistical data [44]. The data on rubber plantations were from the
Statistical Survey System on Agriculture, Forestry, Animal Husbandry and Fishery of
Hainan Province. Statistical departments at all levels collected data by means of sample
surveys, key surveys, or comprehensive surveys and reported them layer by layer according
to the actual local conditions.

The area of rubber plantations was recorded for each of the 18 counties in Hainan
Province. According to the statistical yearbook, in 2020, the rubber plantation area was
5316.72 km2. In this study, this dataset was used to assess the accuracy of the resultant
rubber plantation map at the county level.

2.2.5. Field Survey Data

Two field works were conducted in August 2017 and October 2020. The primary
purpose of the field surveys was to collect samples for updating the “ChinaCover” product.
As shown in Figure 1, the field surveys cover all counties in Hainan Province. The reference
samples were selected following two rules: the samples were located at the center of
homogeneous forest patches, and all the trees in a plot were mature forests.

The typical tropical tree species in Hainan Province are Rubber tree, Eucalyptus,
Litchi, Coconut Palm, Areca Palm, and Casuarina. In addition, the natural forest is mainly
distributed in the central mountainous areas of Hainan, which the field surveys did not
cover, so we collected the natural forest samples from the high-resolution images in Google
Earth, as shown in Figure 1.

In total, 2604 reference samples were collected. All samples were divided into two
sets, one designed for training and the other for assessing classification accuracy. For
convenience, coded names were given for each tree species, as shown in Table 1.

Table 1. Number of training and validating samples.

Coded Name Tree Species Training Samples Validating Samples Total

RT Rubber tree 150 200 350
LC Lychee 150 225 375
CA Casuarina 150 191 341
CP Coconut Palm 150 218 368
EU Eucalyptus 150 221 371
AP Areca Palm 150 212 362
NF Natural forest 150 287 437

Total 1050 1554 2604

2.3. Experimental Design

A comprehensive overview of this study is shown in Figure 4. First, the temporal
behaviors based on MODIS-NDVI were studied to delineate the phenological features of
rubber trees and determine the timing of the four phenological stages. Next, phenology-
based image compositing was used to generate four Sentinel-2 composites, and 15 dataset
groups were generated with different phenological stage combinations. Then, using the
random forest classifier and Jeffries Matusita distance, the classification accuracy and class
separability were analyzed for the 15 dataset groups. After that, the spatial distribution of
the resultant rubber plantation map was further validated based on the Statistical Yearbook
of Hainan Province in 2020. At last, the mean decrease in accuracy was used to assess the
feature importance of Sentinel-2 bands and rubber trees’ phenological stages for rubber
plantation mapping.
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Figure 4. The framework of rubber plantation mapping for the study area using phenology-based
Sentinel-2 composites.

2.4. Methodology
2.4.1. Phenology-Based Image Compositing

Image compositing is an approach to reduce a series of images into a single image [45].
Recently, it has been introduced to generate cloud-free Sentinel-2 composite datasets at
large scales [46,47]. Additionally, the phenological and seasonal Sentinel-2 composites have
been used for tree species mapping [29].

In this study, we adopted the technique of median compositing to generate composit-
ing images for each Sentinel-2 tile and phenological stage. The temporal intervals in the
compositing process were set following the timing of the corresponding phenological
stages, which will be presented in Section 3.1. When there was no good-quality observa-
tion during the phenological stage, we filled the data gap with the nearest good-quality
observation in the Sentinel-2 time series. At last, four Hainan Sentinel-2 composites were
generated based on the seamless mosaic tool in ENVI 5.3. The four composites were named
as 1© Resting, 2© Recovery, 3© Vigorous, and 4© Slowdown, respectively, corresponding to
the four phenological stages.

To further evaluate the importance of the different phenological stages and the poten-
tial of multistage combinations for rubber plantation mapping, the four Hainan Sentinel-2
composites were rearranged as 15 dataset groups: four mono-stage images, six double-
stage combinations, four three-stage combinations, and one all-stage combination. For
convenience, the 15 dataset groups were named by the serial numbers of the corresponding
phenological stages. Taking the all-stage combination as an example, it was called 1© 2© 3© 4©
for short.
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2.4.2. Class Separability Based on Jeffries Matusita Distance

The performance of the 15 dataset groups in separating rubber trees from other tree
species was assessed using the Jeffries Matusita (JM) distance in this study. The JM distance
is the average distance between two class density functions, and it can be calculated as [48]:

JMij = 2
(

1 − e−Bij
)

(1)

where the Bij is Bhattacharyya distance as

Bij =
1
8
(
µi − µj

)T
( ci + cj

2

)−1(
µi − µj

)
+

1
2

ln

1
2

det
(
ci + cj

)√
det(ci)det

(
cj
)
 (2)

where µi and ci are the mean and covariance matrix of the i-th category. The JM distance
is a parametric test, ranging between 0 and 2. It provides an easy comparison of class
separability, with 0 indicating no separability and 2 complete separation.

2.4.3. Random Forest Classifier and Feature Importance

In this study, the random forest (RF) classifier was used to map rubber plantations.
RF is a supervised machine learning algorithm for classification and regression. It is
an ensemble of decision trees, which are constructed based on the bootstrap aggregated
sampling (bagging). RF takes the majority vote of the decision trees for classification. In
this study, the randomForest package in the software R was employed to build the RF
model [49]. Unified parameters were set in the RF model for all 15 dataset groups. The
number of features for each split (parameter mtry) was set as the square root of the total
feature number. The number of decision trees (ntree) in the RF model was set to 500, as this
value was commonly used for remote sensing classification [29].

In addition, the mean decrease in accuracy (MDA) was used to assess the importance
of the 10 Sentinel-2 bands and four phenological stages for rubber plantation discrimina-
tion. MDA, also known as permutation importance, is one of the most efficient feature
importance measures for the random forest.

2.4.4. Accuracy Assessment

To assess the performance of Sentinel-2 images on rubber plantations discrimination,
we carried out two levels of classification accuracy. (1) Confusion matrix based on the
validating samples, with the estimated user’s accuracy (UA), producer’s (PA) accuracy, and
F1 score; (2) statistical data validation at the county scale.

3. Results
3.1. Phenological Stages Delineation of Rubber Trees

The temporal profile of rubber trees from 2019 to 2021 was plotted based on the
MODIS-NDVI, as shown in Figure 5. The blue and orange curves represent the original
and smoothed NDVI time series. The troughs of the smoothed curve are indicated with red
arrows and the corresponding dates.

In Figure 5, the four phenological stages are labeled by the corresponding numbers,
and the vertical blue dotted lines separate the timings of the stages. The resting stage lasts
for about 50 days [50]. During this stage, the old leaves of rubber trees have turned red
and yellow, and concentrate on falling off the rubber trees. According to the long-term
collection of fallen leaves on a field, the amount of fallen leaves accounts for more than 70%
of the whole year [50]. In this study, the resting stage’s start date and end date were set
25 days before and after the dates of troughs. In the recovery growth stage, the rubber trees
sprout new leaves, and the first awning leaves complete the process of leaf development.
During this stage, the number of leaves accounts for about 70% of the whole year [20]. This
stage lasts for about 50 days after the resting stage. The slowdown growth stage lasts for
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about 50 days before the resting stage. In this stage, affected by cold air masses, the rubber
trees gradually enter the defoliation period. The rubber growth tends to stop, and the
old leaves begin to turn red. The vigorous growth stage is the longest stage in the rubber
trees’ growth cycle, lasting for about 210 days, from middle May to late November. In this
stage, the rubber trees’ leaf area index maintains a high level. The main causes of NDVI
fluctuation are atmospheric conditions and precipitation.

Figure 5. MODIS-NDVI variation curves for rubber plantations from 2019 to 2021. 1©: Resting stage,
2©: Recovery growth stage, 3©: Vigorous growth stage, 4©: Slowdown growth stage.

3.2. Separability between Rubber Trees and Other Tree Species

Table 2 shows the J m distance between rubber trees and other tree species. In this
study, we separated the J m distance into four levels and marked it with different colors:
strong (1.9–2.0, blue), good (1.8–1.9, green), weak (1.7–1.8, yellow), and poor (<1.7, pink).
Taking the dataset group 1© 3© (combination of the resting stage and vigorous growth stage)
as an example, the J m distance between rubber trees and Lychee was 1.85, corresponding
to the level of good separability.

The J m distance in Table 2 varied greatly with tree species and dataset groups (pheno-
logical stage combination). Casuarina and Coconut Palm were most easily distinguishable
from rubber trees among the six tree species. For all the 15 dataset groups, the J m distances
were larger than 1.9, which indicates strong separability. As for natural forest, when the
dataset groups contained two or more phenological stages, it was easily distinguishable
from rubber trees with strong separability. However, when only one phenological stage
was contained, the separability between natural forest and rubber trees was less than 1.8,
corresponding to weak or poor separability. As for Lychee, Areca Palm, and Eucalyptus,
when three or more phenological stages were contained, the J m distance was at the level of
strong separability. When a single phenological stage was contained, the J m distance was
less than 1.7, and these three tree species were difficult to distinguish from rubber trees.

A J m distance larger than 1.8 is regarded as satisfactory discrimination between
different classes. In general, based on Sentinel-2 data, any combination of two pheno-
logical stages was good enough for distinguishing rubber plantations from the other six
tree species.
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Table 2. Class separability between rubber trees and other tree species based on J m distance.

Tree
species LC CA CP EU AP NF

1© 1.50 1.98 1.96 1.21 1.62 1.70
2© 1.58 1.97 1.98 1.57 1.67 1.77
3© 1.47 1.98 1.97 1.41 1.63 1.74
4© 1.59 1.98 1.98 1.41 1.58 1.68

1© 2© 1.88 1.99 1.99 1.84 1.93 1.96
1© 3© 1.85 1.99 1.99 1.80 1.91 1.93
1© 4© 1.86 1.99 1.99 1.84 1.89 1.95
2© 3© 1.86 1.99 1.99 1.87 1.90 1.94
2© 4© 1.88 1.99 1.99 1.89 1.88 1.96
3© 4© 1.87 1.99 1.99 1.86 1.86 1.93

1© 2© 3© 1.96 1.99 1.99 1.97 1.97 1.99
1© 2© 4© 1.97 1.99 1.99 1.97 1.98 1.99
1© 3© 4© 1.96 1.99 1.99 1.96 1.97 1.99
2© 3© 4© 1.96 1.99 1.99 1.96 1.98 1.99

1© 2© 3© 4© 1.99 1.99 1.99 1.99 1.99 1.99

. LC: Lychee, CA: Casuar-
ina, CP: Coconut Palm, EU: Eucalyptus, AP: Areca Palm, NF: Natural Forest. 1©: Resting stage, 2©: Recovery
growth stage, 3©: Vigorous growth stage, 4©: Slowdown growth stage.

3.3. Accuracy Assessment Using Survey Data

The rubber plantation mapping results based on the 15 dataset groups were validated
using the 1554 validating samples. The measures UA, PA, F1 score, and true positive (TP)
for rubber plantations are shown in Table 3. In addition, the sources of commission and
omission errors for rubber plantations are also included in Table 3.

Table 3. Accuracy assessment of rubber plantation mapping results.

Tree LC CA CP EU AP NF RT

Species EC/EO EC/EO EC/EO EC/EO EC/EO EC/EO TP PA% UA F1

1© 10/5 1/0 1/1 18/26 14/8 14/12 142 71.00% 73.10% 0.72
2© 6/5 0/1 0/0 16/13 14/14 9/8 155 77.50% 79.10% 0.78
3© 13/9 1/1 1/2 18/15 11/11 6/2 150 75.00% 78.90% 0.77
4© 14/5 2/0 1/1 22/19 6/9 10/16 145 72.50% 73.20% 0.73

1© 2© 8/5 0/0 1/1 12/13 14/14 8/11 157 77.50% 78.10% 0.78
1© 3© 8/3 0/0 2/1 14/12 14/16 7/9 156 78.00% 78.80% 0.78
1© 4© 12/2 1/0 1/0 22/14 11/13 5/11 148 74.00% 78.70% 0.76
2© 3© 9/3 0/0 0/0 15/14 15/13 7/7 154 77.00% 80.60% 0.79
2© 4© 9/3 0/0 0/0 14/17 14/12 6/6 157 78.50% 80.50% 0.79
3© 4© 15/6 0/0 1/0 18/17 6/4 10/5 150 75.00% 82.40% 0.79

1© 2© 3© 7/3 0/0 0/1 13/14 16/12 7/5 157 78.50% 81.80% 0.80
1© 2© 4© 8/3 0/0 0/0 12/15 16/10 6/3 158 79.00% 83.60% 0.81
1© 3© 4© 10/2 0/0 0/1 20/12 10/10 7/8 153 76.50% 82.30% 0.79
2© 3© 4© 8/2 0/1 0/0 13/15 16/8 8/2 155 77.50% 84.70% 0.81

1© 2© 3© 4© 7/3 0/0 0/0 13/12 12/12 6/3 162 81.00% 84.40% 0.83

EC: errors of commission, EO: errors of omission, TP: true positive, PA: producer’s accuracy, UA: user’s accuracy,
F1: F1 score; LC: Lychee, CA: Casuarina, CP: Coconut Palm, EU: Eucalyptus, AP: Areca Palm, NF: Natural
Forest, RT: Rubber tree; 1©: Resting stage, 2©: Recovery growth stage, 3©: Vigorous growth stage, 4©: Slowdown
growth stage.

Judging by the UA, PA, and F1 score, it was apparent that the dataset group of all-stage
combination ( 1© 2© 3© 4©) was superior to other 14 dataset groups. The UA, PA, and F1 score
for rubber plantations were 81.0%, 81.4%, and 0.83, respectively. The best dataset group
with three phenological stages was the combination of the resting, recovery growth, and



Remote Sens. 2022, 14, 5338 11 of 19

slowdown growth stage ( 1© 2© 4©), with a UA, PA, F1, and true positive of 79%, 83.6%,
0.81, and 158, respectively. The best dataset group with two phenological stages was
the combination of recovery growth and slowdown growth stage ( 2© 4©), with a UA, PA,
F1, and true positive of 78.5%, 80.5%, 0.79, and 157, respectively. In general, the more
phenological stage in the dataset group, the higher the F1 score. However, when the dataset
group contained more than three phenological stages, the difference in mapping accuracy
was slight.

As to the four mono-stage dataset groups, the recovery growth stage ( 2©) performed
best with a UA, PA, F1, and true positive of 77.5%, 79.1%, 0.78, and 155, while the resting
stage ( 1©) performed worst with a UA, PA, F1, and true positive of 71%, 73.1%, 0.72 and
142, respectively.

The commission and omission errors were mainly from Eucalyptus and Areca Palm,
accounting for about two-thirds of the total errors. The rest of the classification errors were
from Lychee and the natural forest. The classification errors from Casuarina and Coconut
Palm were negligible.

3.4. Rubber Plantation Map and Statistical Data Validation

The result of the rubber plantation map based on the all-stage combination dataset
group ( 1© 2© 3© 4©) is shown in Figure 6. The distribution of rubber plantations was in good
agreement with the resultant maps in previous studies [13,15,16,18].

Figure 6. Spatial distribution of rubber plantations in Hainan Province in 2020.

The codes labeled in Figure 6 correspond to the 18 counties in Hainan Province, and
the one-to-one correspondence is shown in Table 4. The densest rubber plantation area
was located in the northwest of Hainan Province, including the counties of Danzhou (3),
Chengmai (11), Lingao (12), and Baisha (13), where there is the largest natural rubber
production base in Hainan Province. The numbers behind the counties correspond to the
codes in Figure 6.

The spatial distribution of the resultant map was further validated based on the
Statistical Yearbook of Hainan Province in 2020. This study estimated the rubber plantation
area of Hainan in 2020 was approximately 5473 km2, which is about 2.93% higher than
the 2020 statistical data (5316 km2). Additionally, a county-level comparison of rubber
plantation area between this study and the statistical yearbook is shown in Table 4. The
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18 counties were sorted based on the rubber plantation area estimated in this work. In
Table 5, the accuracy at the county level was calculated as follows:

Accuracy =

(
1 − abs(Di f f erence)

Yearbook

)
× 100 (3)

where the operator abs() denotes the absolute value, and the area weight is the proportion
of each county’s total Hainan Province area. The area-weighted accuracy in total is the
sum of the area-weighted accuracy for each county. The accuracy of the rubber plantations
area at the county level ranged from 48.24% in Lingshui (16) to 95.09% in Chengmai (11).
In total, the accuracy was as high as 97.05%, and the area-weighted accuracy was 82.47.
Therefore, it could be concluded that the resultant map of rubber plantations had high
accuracy in county-level spatial distribution.

Table 4. Accuracy assessment at the county level using statistical data.

ID County
Our Work Yearbook Difference Accuracy

Area Weight
Area-Weighted

(km2) (km2) (km2) (%) Accuracy

3 Danzhou 1055.07 870.84 184.23 78.84 0.10 7.88
18 Qiongzhong 595.91 559.12 36.79 93.42 0.08 7.47
13 Baisha 579.16 632.81 −53.65 91.52 0.06 5.49
11 Chengmai 483.52 508.47 −24.95 95.09 0.06 5.71
15 Ledong 356.14 315.88 40.26 87.25 0.08 6.98
12 Lingao 322.54 219.91 102.63 53.33 0.04 2.13
5 Qionghai 314.61 350.46 −35.85 89.77 0.05 4.49
10 Tunchang 279.10 364.67 −85.57 76.53 0.04 3.06
7 Wanning 228.17 265.62 −37.45 85.90 0.06 5.15
14 Chanjiang 205.56 153.60 51.96 66.17 0.05 3.31
17 Baoting 187.25 224.79 −37.54 83.30 0.03 2.50
4 Wuzhishan 186.59 161.38 25.21 84.38 0.03 2.53
9 Dingan 174.33 205.62 −31.29 84.78 0.04 3.39
2 Sanya 156.48 122.54 33.94 72.30 0.05 3.62
1 Haikou 136.16 161.38 −25.22 84.37 0.06 5.06
8 Dongfang 94.62 99.89 -5.27 94.72 0.07 6.63
16 Lingshui 81.22 53.52 27.70 48.24 0.03 1.45
6 Wenchang 37.04 46.22 −9.18 80.14 0.07 5.61

Total 5473.47 5316.72 156.75 97.05 82.47

Table 5. Feature importance for S2 bands and rubber tree phenological phases.

Resting Recovery Vigorous Slowdown Sum

Visible
B2 17.64 16.65 7.67 14.01 55.97
B3 13.74 16.03 8.23 11.13 49.14
B4 13.62 13.79 4.97 12.74 45.11

Red edge
B5 8.12 8.39 4.53 7.26 28.29
B6 3.91 9.64 13.72 8.52 35.79
B7 3.08 11.09 12.98 5.53 32.69

NIR
B8 3.4 8.92 11.06 5.18 28.55

B8A 3.77 9.15 10.44 4.65 28.01

SWIR
B11 4.96 8.55 14.21 13.28 41.02
B12 4.46 7.67 10.95 9.63 32.71

Sum 76.71 109.88 98.76 91.92
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3.5. Feature Importance

Table 5 shows the feature importance for the rubber tree discrimination that employed
all four phenological stages (dataset group 1© 2© 3© 4©). The colored cells denote the MDA
values for each feature. The bottom row in Table 5 shows the sum of the feature importance
for each phenological stage, and the last column offers the sum of the feature importance
for each Sentinel-2 band.

The recovery growth stage was the most important phase, with a cumulative MDA of
109.88, followed by the vigorous and slowdown growth stages, with an MDA of 98.76 and
91.72, respectively. The resting stage was the least important phase with an MDA of 76.71.

The visible bands were much more important in the resting, recovery growth, and
slowdown growth stages than in the vigorous growth stage. The SWIR bands showed
much higher feature importance in the vigorous growth and slowdown growth stages than
in the resting and recovery growth stages. Two red-edge bands (B6, B7) and the two NIR
bands showed higher feature importance in the recovery growth and vigorous growth
stages than in the resting and slowdown growth stages. Only the red-edge band B5 always
had low importance values during all four phenological stages.

The importance of each Sentinel-2 band was uneven when summarized over the four
phenological stages. The three visible bands (B2, B3, and B4) were the most important,
followed by the two SWIR bands (B11 and B12) and red-edge band B6. The remaining
bands in the red-edge region (B5 and B7) and the NIR region (B8 and B8A) showed low
importance values.

4. Discussion
4.1. Capability of Sentinel-2 for Rubber Plantation Mapping

Xiao et al. [9] have presented the potential for mapping rubber plantations at a regional
scale from three advantages of Sentinel-2 imagery, i.e., the three red-edge bands, 10/20 m
spatial resolution, and 5 days’ revisiting time. The study area of this study [9] is a relatively
small area, which facilitates the selection of cloud-free imagery. However, for a large area
such as Hainan Province, with complex vegetation landscapes and frequent cloudy weather,
the capability of Sentinel-2 for rubber plantation mapping needs to be further explored.

New in this study was the phenology-based image compositing for rubber tree dis-
crimination. Recent studies have reported the advantages of time series images [28,29] or
phenological features [51] for tree species classification. Compared to these studies, our
approach is more suitable for rubber plantation mapping in a large area.

First, image compositing is necessary due to the high probability of CC in Hainan
Province. The convolution filter to generate gap-free time series [28] is not recommended if
the study area has high CC values as the Hainan Province. Due to climatological gradients
and orbit swath overlaps, large areas exhibit higher variability in data availability [52,53].
In this case, image compositing with the same time intervals for different Sentinel-2 tiles
can ensure the effectiveness of the rubber tree identification model for the whole area.

Second, the time intervals of image composition are set according to the timings of the
rubber trees’ phenological stages. The timings of the phenological stages are determined
based on the smoothed annual MODIS-NDVI curve. For tree species classification, it has
been highlighted that input features should be chosen according to the considered species
and their phenological characteristics in order to include key phenological stages that
enhance their separability [29]. However, the phenology of rubber trees is highly sensitive
to climate change, particularly rainfall and temperature [25,54,55]. The changes in climatic
factors may delay or advance the defoliation period. As shown in Section 3.1, the timings
of the phenological stages change over the three years. Additionally, the durations of the
slowdown growth, resting, and recovery growth stages are short. Therefore, the three-
monthly or seasonal compositing techniques [29] are unsuitable for rubber tree mapping.

Third, phenological features (e.g., the start time of the phenological stage and length
of the growing season) have proven helpful in tree species classification [51]. However,
these metrics have rarely been utilized in rubber tree mapping. The main reason is still
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the frequent cloudy weather in the distribution areas of the rubber trees. With poor
temporal accuracy, the derived phenological features could have little impact on rubber
tree mapping accuracy.

4.2. Phenological Stage Importance

Regarding the importance of phenological stage for rubber tree mapping, based on the
J m distance in Table 2, the MDA in Table 5, and the F1-score in Table 3, it can be concluded
that the recovery growth stage plays the most important role, while the resting phase plays
the least important.

The importance of the phenological stage is directly associated with phenological
events (or status) of rubber trees and other tree species. In the recovery growth stage,
for rubber plantations, the canopy recovers with new leaves’ emergence and formation,
while for other tree species, many leaves fall off trees due to spring drought. Shi et al. [56]
analyzed the seasonal dynamics of litterfall production of tropical natural forests in Hainan
Province. Results showed that spring (March and April) was one of the two peak seasons
for litterfall production, and the main influencing factor was drought. In general, new
leaves have higher chlorophyll contents than old leaves. The differences in phenological
traits between leaf on and leaf off, coupled with the spectral differences between fresh
leaves and old leaves, are the main reasons for the most important role of the recovery
growth stage.

Unexpectedly, the resting stage plays the least important role among the four pheno-
logical stages. As almost all the leaves of rubber trees drop off in the resting stage, it was
regarded as the optimal time window or the key phenological stage for mapping rubber
trees [8,9,23]. The reason for the least important role of the resting stage could be twofold:
understory vegetation in rubber plantations or unsynchronized phenology of rubber trees.
Chen et al. [18] also noted they were the two important factors that affect the rubber tree
mapping accuracy. In the resting stage, the canopy’s opening accelerates the growth of
understory vegetation. The mixture of understory vegetation and withered leaves makes
the spectrum signature of rubber plantations uncertain. As for the unsynchronized phe-
nology, Hu et al. reported that the spatial characteristics of rubber tree phenology were
consistent with the spatial distribution of terrain and elevation in Hainan Province [57].
Chen et al. [18] noted that the phenology of rubber trees was closely related to the factors
of stand age, site-specific environment, etc.

The least important role of the resting stage may change if the texture features based
on high spatial resolution images are considered for rubber tree mapping. The forest
texture is closely related to the canopy structure, which is defined by foliage properties
and branch arrangement [58]. In the resting phase, the defoliation of rubber trees exposes
crown branches and increases canopy roughness. While for other tree species, leaves still
dominate the crown. These differences enhance the separability between rubber trees and
other tree species.

4.3. Band Importance

The feature importance of Sentinel-2 bands for rubber tree mapping partly agrees with
previous studies using Sentinel-2 for tree species classification [26,29,31,33,59]. It should be
noted that in previous studies, band importance was calculated for all tree species, but in
this study, feature importance was quantified specifically for rubber trees. In this study,
the band importance in different phenological stages can be associated with phenological
events of rubber trees.

In the vigorous growth stage, all the tree species have lush foliage. The red-edge bands
B6 and B7, the two NIR bands, and the two SWIR bands play important roles with high
MDA values, which agree well with the results in [26,31,33,59]. Immitzer et al. [33] and
Nelson et al. [59] reported that the red-edge bands B6 and B7, the narrow NIR band, and
the SWIR 2 band were among the most important bands. Persson et al. [26] also reported
that the two SWIR bands were among the highest-ranked bands. The red band (B4) and



Remote Sens. 2022, 14, 5338 15 of 19

red-edge band (B5) showed the lowest importance, which partly agrees with the previous
results that the red band of a summer acquisition ranked considerably lower than most
other summer bands [29,31,32].

In the slowdown growth stage, the leaves of rubber trees gradually turn red and
yellow, but for other tree species, the leaves are still green. The red-edge bands B6, B7,
and the two NIR bands turn less important, while the SWIR band B11 still shows the
second-highest importance. This result is also confirmed by Koller et al., that the SWIR
region is especially sensitive to leaf water content, implying that species-specific dynamics
of leaf water content during phases of phenological transition help to discriminate tree
species [29]. The three visible bands (B2, B3, and B4) play important roles in the slowdown
growth stage, since the difference between the yellow (or red) leaves and the green leaves
is visible to the naked eye.

In the resting stage, as discussed in Section 4.2, the spectral signatures of rubber
plantations are actually from the mixture of understory vegetation and withered leaves.
Due to the uncertainty of the mixing ratio, the bands from red-edge to SWIR further decline
in importance; however, the three visible bands show higher importance.

In the recovery growth stage, new green leaves are gradually restored in the canopy.
Due to the clear difference between fresh leaves and old leaves in the visible region, the
three visible bands remain the top three important features. This result is also confirmed by
Persson et al., that the blue and green bands from May were in the top seven highest-ranked
bands [26]. In addition, Immitzer et al. showed the importance of the blue band [33], and
Nelson reported that the red band was more important, probably since an image from early
May was included [59].

4.4. Research Limitations and Prospects

(1) Previous studies [28,29,60] have confirmed the usefulness of vegetation indices (such
as NDVI and EVI) for tree species classification. In the scope of rubber tree mapping,
the spectral-indices-based decision trees have been used to discriminate rubber trees
from natural forests. It can be expected that the spectral indices are helpful for
rubber tree mapping. In addition, several red-edge-related spectral indices can be
obtained based on Sentinel-2 imagery [61], and the importance of red-edge bands can
be explored deeply.

(2) In this study, based on the RF algorithm, the MDA was used to evaluate the feature
importance of the phenological stages and the Sentinel-2 bands for rubber plantation
discrimination. However, the selection of features with high importance does not
warrant that this is the best set of features for a given problem [62]. Features with
high correlation may reduce the reliability of the RF-based MDA importance, and
have a negative effect on the feature selection. Different solutions have been proposed
to overcome some of the known flaws of MDA [63], and several methods have been
proposed to select the optimal subset of features [64]. These techniques have been
used in forest parameter monitoring, such as tree species diversity [65], growing stock
volume [66], and forest stand parameters [66]. However, the impacts of dependent
input features on the RF-based MDA importance for tree species classification have
not been discussed. In this study, there is no doubt that there is a high correlation
between the Sentinel-2 imageries with adjacent phenological stages. In addition, the
adjacent bands of Sentinel-2 data are possibly correlated to each other because of the
continuity of the bands. Therefore, the feature importance of the phenological stages
and the Sentinel-2 bands for rubber tree discrimination needs to be explored deeply
in the future.

(3) In this study, the four Hainan Sentinel-2 composites were generated based on im-
ageries of three years due to the high cloud cover. This technique is time-consuming
and easily affected by the frequent deforestation and reforestation in Hainan Province.
Our results showed that any dataset group with two phenological stages was sufficient
for rubber tree mapping. Actually, for each Sentinel-2 tile, it is achievable to composite



Remote Sens. 2022, 14, 5338 16 of 19

two cloud-free images annually with different phenological stages. Therefore, based
on the four Hainan Sentinel-2 composites, future studies should tap the potential
of dataset groups with double phenological stages. Standardizing the rule sets for
identifying rubber plantations, especially in decision trees, could facilitate the rubber
plantation mapping annually.

(4) As we know, the first Sentinel-2 satellite was launched in 2015. If we want to map
the rubber plantations in Hainan Province before the Sentinel-2 data was available,
we still have to resort to Landsat series data. Given the high cloud cover in Hainan
Province and the 16-day repeat cycle of Landsat satellites, it is tough to generate
four Hainan compositing Landsat images corresponding to the four phenological
stages. Recent studies have shown the harmonization of Landsat and Sentinel-2
data [67], and the combination of Sentinel-2 and Landsat for land surface phenology
characterizing [68,69]. Therefore, simulated Hainan Landsat images can be generated
by adjusting Sentinel-2 radiometry to replicate the spectral bandpasses of Landsat
5/TM or 8/OLI for the bands common to both sensors. In the future, the rubber tree
mapping model based on the simulated Landsat images should be explored and will
be used to monitor the dynamics of rubber plantations during 1990–2020.

5. Conclusions

Knowledge of the spatial extent of rubber plantations at a regional scale is significant
to ensure the sustainability of the natural rubber industry and ecological conservation. This
work used three years of Sentinel-2 data to map rubber plantations in Hainan Province,
China. Unlike previous studies, six tropical tree species were involved in being distin-
guished from rubber trees, and the growth cycle of rubber trees was divided into four
stages: resting, recovery growth, vigorous growth, and slowdown growth stage. A detailed
MODIS-NDVI curve was used to determine the timings of the four phenological stages, and
accordingly, four Sentinel-2 composites were generated. The random forest classifier and
the four phenological stage composites were used to identify rubber trees. The capability
of phenology-based Sentinel-2 composites for mapping rubber plantations was shown in
two levels of classification accuracy: the F1 score based on survey samples was 0.83, and
the area-weighted accuracy at the county level based on the Statistical Yearbook of Hainan
Province was 82.47%.

Although our study demonstrated the capability of the phenology-based Sentinel-2
image compositing approach for mapping rubber plantations, it is time-consuming and
easily affected by frequent deforestation and reforestation. In the future, the utilization of
vegetation indices and red-edge-related spectral indices will be specifically addressed. Rule-
based decision trees should be built for any two phenological stages to facilitate the rubber
plantation mapping annually. Moreover, based on the four compositing images in this work,
the potential of Landsat data in mapping rubber plantations deserves further exploration.
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