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Abstract: Road extraction from remote sensing images is significant for urban planning, intelligent
transportation, and vehicle navigation. However, it is challenging to automatically extract roads from
remote sensing images because the scale difference of roads in remote sensing images varies greatly,
and slender roads are difficult to identify. Moreover, the road in the image is often blocked by the
shadows of trees and buildings, which results in discontinuous and incomplete extraction results. To
solve the above problems, this paper proposes a multiscale feature encoding and long-range context-
aware network (MECA-Net) for road extraction. MECA-Net adopts an encoder–decoder structure
and contains two core modules. One is the multiscale feature encoding module, which aggregates
multiscale road features to improve the recognition ability of slender roads. The other is the long-
range context-aware module, which consists of the channel attention module and the strip pooling
module, and is used to obtain sufficient long-range context information from the channel dimension
and spatial dimension to alleviate road occlusion. Experimental results on the open DeepGlobe road
dataset and Massachusetts road dataset indicate that the proposed MECA-Net outperforms the other
eight mainstream networks, which verifies the effectiveness of the proposed method.

Keywords: road extraction; convolutional neural network; multiscale feature; long-range context;
remote sensing images

1. Introduction

Road extraction is crucial for urban planning [1,2], intelligent transportation [3,4], ve-
hicle navigation [5,6] and emergency relief [7,8]. The rapid development of high-resolution
optical remote sensing technology lays a foundation for road extraction tasks, provides
sufficient data support for the extraction of large-scale road networks, and effectively
promotes road extraction technology. The visual interpretation method requires many inter-
preters to participate in the work, which takes a lot of time. Automatic road extraction can
reduce labor costs and significantly improve work efficiency, so it has important research
significance and practical application value. However, roads in remote sensing images vary
greatly in scale and are often blocked by the shadows of trees and buildings, which poses a
great challenge to road extraction.

The exploration and improvement of automatic road extraction methods have become
a research hotspot, and these methods could be classified into two categories: traditional
methods and deep learning methods.

Traditional road extraction methods include the pixel-based method and object-
oriented method. The pixel-based method mainly uses the differences in spectral and
gray features of image pixels to extract roads. For example, Miao et al. [9] realized road ex-
traction by using a series of operations such as the rough segmentation of roads, generation
of probability maps, thresholding, and kernel density estimation and measurement. Sghaier
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et al. [10] first exploited Canny edge detection to extract candidate road boundaries and
then used beamlet transform for multiscale inference to extract road regions. Mu et al. [11]
employed the Otsu method to obtain the road binary map, then used open operation to
remove the areas that do not contain roads and finally conducted edge detection to obtain
the road results. Liu et al. [12] extracted the parallel lines in the image with the geometric
knowledge base of rural roads, and then used the knowledge reasoning method to group
and connect them to extract the complete road. The pixel-based method is suitable for
extracting rural roads with a simple background.

Object-oriented methods usually use a segmentation technique to divide the image
into a series of regions and then extract the road from the regions. Yu et al. [13] combined an
object-oriented method and the Markov random field method for road extraction. Huang
et al. [14] combined object-oriented and conditional random field methods and used three
features of road color, texture, and histogram gradient to represent the objects obtained
by initial segmentation. Then, they used CRF for reasoning to obtain the road results. Li
et al. [15] first performed initial segmentation to obtain road regions and then used binary
partition trees to extract roads hierarchically. Maboudi et al. [16] incorporated spatial,
spectral, and texture features based on object-oriented methods and then combined the
fuzzy logic system and ant colony algorithm to extract roads. The object-oriented method
has a certain applicability and is suitable for extracting a single type of urban road in the
image. However, the traditional road extraction method needs to manually design features
to extract roads in specific scenes, which makes it difficult to extract different roads in a
complex background, so its application scope is limited.

In recent years, deep learning has been widely used in remote sensing information
extraction [17–19], and researchers have turned to deep learning methods to realize road
extraction [20]. Deep learning methods mainly use convolutional neural networks (CNNs)
to automatically extract road features from a large amount of sample data, and the pixel-
by-pixel classification of roads and backgrounds is achieved through stacked convolution,
pooling, and upsampling operations. The fully convolutional network (FCN) [21], for
the first time, realizes pixel-level dense prediction using CNN. Meanwhile, the method
based on FCN has been widely used in road extraction from remote sensing images. The
CasNet proposed by Cheng et al. [22] consists of two cascaded subnetworks. The encoder
of each subnetwork is composed of multiple stacked convolutions and pooling layers,
and the decoder is composed of the corresponding convolution layers and upsampling
layers. Based on the encoder and decoder, the extraction of roads and road centerlines can
be realized. Buslaev et al. [23] combined residual learning and UNet [24], and they used
pretrained ResNet34 [25] as an encoder for feature extraction. The DenseUNet network
designed by Xin et al. [26] achieves road feature reuse through dense connection modules,
and it transfers encoder features to the decoder using skip connections. Compared with
the traditional methods, these FCN-based methods significantly improve the results of
road extraction, but there are still some shortcomings. For example, these FCN-based
methods mainly use repeated convolutional layers to extract features, which cannot deal
with slender and occluded roads effectively.

Some studies focus on the integration of multiscale features to improve road extrac-
tion accuracy. Gao et al. [27] proposed the multiple feature pyramid network (MFPN),
which obtains multiscale features through a feature pyramid to achieve road extraction
of different scales. Zhou et al. [28] added expansive convolution with a series–parallel
structure based on LinkNet34 [29] to obtain multiscale features and expand receptive fields.
Meanwhile, they proposed a network called D-LinkNet, which won the championship
of the DeepGlobe Road Extraction Competition in 2018. Based on the encoder–decoder,
He et al. [30] integrated the Atrous Spatial Pyramid Pooling (ASPP) module to extract
multiscale road features. Lu et al. [31] paralleled convolution kernels of different sizes to
integrate the multiscale features of roads. Liu et al. [32] designed a multiscale dilated con-
volution module to extract multiscale features. The RDRCNN proposed by Gao et al. [33]
uses residual learning to build the encoder, then uses cascaded dilated convolutions to
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expand the receptive field of the network, and finally uses the tensor voting algorithm for
postprocessing operations. The JointNet [34] is a kind of network that can extract buildings
and roads, which adds densely connected dilated convolutions to expand the receptive
field in the skip connection part. The MRENet designed by Shao et al. [35] uses dilated
convolutions and a pyramid pooling module [36] to obtain multiscale feature information,
and can simultaneously extract road surface and road center line. Tran et al. [37] added a
pyramid pooling module on the basis of LinkNet34, thus constituting a PP-LinkNet net-
work for road extraction. The RoadNet proposed by Liu et al. [38] can learn the multiscale
features of roads, and can simultaneously extract the road surface, road edge and road
center line. These studies have proved that the fusion of multiscale features can improve
the performance of road extraction networks, but these methods have shortcomings in
obtaining a long-range context.

In the last few years, the attention mechanism has attracted much attention and
has been applied to road extraction. Wang et al. [39] designed a novel road extraction
network called NL-LinkNet, which introduces a nonlocal module belonging to the self-
attention mechanism into the encoder of LinkNet34 to obtain long-distance dependence.
Zhu et al. [40] proposed GCB-NET, which utilizes a global context-aware module to model
and distribute long-range road features. Xie et al. [41] proposed HsgNe for road extraction,
which introduces bilinear pooling between the LinkNet’s encoder and decoder to acquire
higher-order spatial information and obtain long-distance spatial feature information.
Based on D-LinkNet, Wu et al. [42] proposed the AD-LinkNet network, which integrates a
channel attention mechanism to strengthen feature channels and obtain global features. The
road extraction method proposed by Lin et al. [43] uses the idea of SENet [44] to calibrate
different weights on the channels of the feature map and model the context relationship
between channels. The Attention UNet proposed by Oktay et al. [45] adds an attention
gate on the basis of UNet to enhance salient features and suppress irrelevant features. The
CADUNet proposed by Li et al. [46] uses cascaded global attention modules and core
attention modules to improve the integrity of road results. The attention mechanism helps
to improve the performance of road extraction, but existing methods often use a single
mechanism, from which is difficult to obtain sufficient long-range context information to
alleviate road occlusion.

To solve the above problems, this paper proposes a multiscale feature encoding and
long-range context-aware network (MECA-Net). In MECA-Net, the multiscale feature
encoding module is responsible for extracting multiscale features, and the long-range
context-aware module is used to obtain sufficient long-range context information from both
channel and spatial dimensions.

The main contributions of this paper are as follows:

1. A multiscale feature encoding module (MFEM) is designed to extract multiscale
features and improve the network’s ability to extract roads of different scales.

2. A long-range context-aware module (LCAM) is proposed, which uses the channel
attention module (CAM) and strip pooling module (SPM) to obtain sufficient long-
range context information from the channel and spatial dimensions and improve the
continuity of road extraction results.

3. A road extraction network called MECA-Net is proposed to extract slender roads and
alleviate the occlusion of roads. The effectiveness of MECA-Net is verified on the
public DeepGlobe dataset and the Massachusetts dataset.

The rest of this paper is organized as follows: Section 2 introduces the composition
of MECA-Net and the basic principle of each component module in detail. Section 3
introduces the experimental details, including the experimental dataset, evaluation method,
experimental setup, and analysis of experimental results. Sections 4 and 5 present the
discussion and conclusion of this paper, respectively.
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2. Methodology

This section describes the proposed method in detail. Section 2.1 describes the overall
structure of our designed network; Section 2.2 describes the multiscale feature encoding
module; Section 2.3 introduces the long-range context-aware module; Section 2.4 describes
the loss function used for network training.

2.1. Overview of the Network Structure

The overall structure of MECA-Net is shown in Figure 1, which includes three parts:
encoder, decoder, and skip connection. MECA-Net is based on LinkNet34, and its encoder
is composed of a pretrained ResNet34. The multiscale feature encoding module (MFEM)
is added in the skip connection part to extract multiscale features in different stages and
pass the multiscale features to the decoder. The decoder is mainly composed of the decoder
module for upsampling and the long-range context-aware module (LCAM). The input
of LCAM is the fusion result of skip connection features and the corresponding output
features of the decoder module. The input of MECA-Net is an RGB image with a resolution
of 512× 512× 3, and the output is a binary map with a dimension of 512× 512× 1, where
white pixels and black pixels represent the road and background, respectively.
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2.2. Multiscale Feature Encoding Module

One challenge in road extraction is the identification of slender roads. To overcome
this challenge, inspired by the research [47] and [48], this paper proposes the MFEM, and
its core idea is to aggregate multiscale features using convolution kernels of three different
sizes: 1× 1, 3× 3, and 5× 5. The convolution layers with different kernel sizes can extract
features of different scales, which can provide multiscale feature representations for the
next stage after aggregation [47]. The MFEM is added to the skip connection part to extract
and aggregate multiscale features at different stages of the backbone network and provide
feature information of different scales for the decoding process, thus enhancing the ability
to extract roads of different scales. The structure of MFEM is illustrated in Figure 2.
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The input feature of MFEM is denoted as x and the output feature as y. The MFEM
has three branches, and the input feature x is inputted to the three branches in the form
of x1, x2, and x3, respectively. In the three branches, the input features are firstly extracted
by convolutional layers of 1× 1, 3× 3, and 5× 5, respectively. These three convolution
operations are denoted as F1, F2, and F3, and the BN [49] layer and ReLU [50] activation
function are added after each convolution layer. To achieve the effective aggregation of
features of different scales, the output features of the previous branch are fused with those
of the current branch, and the fused features are optimized by a convolution operation. The
output features of the three branches are represented as y1, y2, and y3, respectively. The
output features of each branch are concatenated, and the dimensions are reduced through
the 1× 1 convolution layer, and then the output features of module y are obtained after
adding them with the input features x. The MFEM can be representred as:

xi = x, i = 1, 2, 3 (1)

yi =

{
Fi(xi), i = 1

Fi
(

Fi(xi) + yi−1
)
, i = 2, 3

(2)

y = W1×1(CONCAT(y1, y2, y3)) + x (3)

where W1×1 represents 1× 1 convolution, and CONCAT represents a concatenate operation.

2.3. Long-Range Context-Aware Module

In remote sensing images, roads are often blocked by the shadows of roadside trees
and buildings, resulting in the discontinuity of road extraction results. To maintain the
continuity and integrity of the road topology, it is necessary to obtain long-range context
information and use it to improve the continuity of the results. Therefore, this paper
proposes the LCAM, which consists of the channel Attention Module (CAM) and the strip
pooling module (SPM) in parallel, as shown in Figure 3, to capture long-range context from
the channel dimension and spatial dimension.
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2.3.1. Channel Attention Module

The intrinsic relationship between feature channels plays an important role in the road
extraction task, but the existing extraction methods often ignore this relationship. Therefore,
CAM [51] is introduced to model the long-range dependence relationship between feature
channels and obtain the long-range context information of channel dimensions. The
structure of CAM is presented in Figure 3. The input features of CAM are the input
features of LCAM, which are represented as x ∈ RH×W×C, and the output features are
represented as ycam ∈ RH×W×C. The input features are passed through the global average
pooling (GAP) layer and the global max pooling (GMP) layer, respectively, to obtain the
features with a dimension of 1× 1×C, and then they are inputted to two cascaded 1× 1
convolutional layers. Then, the result of adding the two output features of the 1 × 1
convolutional layers is the input to the Sigmoid activation function and multiplied with
the input feature x to obtain the output feature of the CAM, i.e., ycam. The process of CAM
can be expressed as:

ygap = W2
1×1

(
W1

1×1(GAP(x))
)

(4)

ygap = W2
1×1

(
W1

1×1(GAP(x))
)

(5)

ycam = σ
(

ygap + ygmp

)
⊗ x (6)

where W1
1×1 represents the first 1× 1 convolutional operation, which is used to reduce the

number of channels C to C/8; W2
1×1 represents the second convolutional layer, which is

used to restore the number of feature channels to C; σ represents the Sigmoid function, and⊗
represents element-wise multiplication.

2.3.2. Strip Pooling Module

This paper uses SPM [52] to obtain long-range context information from the spatial
dimension. The structure of SPM is shown in Figure 3. This module uses horizontal
stripe pooling and vertical stripe pooling to obtain long-range context information from
different directions. The input feature of this module is denoted as x ∈ RH×W , and the
channel dimension is omitted here for the convenience of representation. The feature x is
fed into two parallel branches on which horizontal and vertical strip pooling operations
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are performed. The output of horizontal strip pooling is yh ∈ RH×1, and the calculation
process is as follows:

yh
i =

1
W

W−1

∑
j=0

xij, i = 0, 1, . . . , H − 1 (7)

The output of vertical strip pooling is denoted as yv ∈ R1×W , and the calculation
process is as follows:

yv
j =

1
H

H−1

∑
i=0

xij, j = 0, 1, . . . , W − 1 (8)

Horizontal strip pooling and vertical strip pooling operations are followed by one-
dimensional convolution with a kernel size of 3. The expand operation is adopted to
expand the output features of the one-dimensional convolution into H ×W, which are
denoted as yh

E ∈ RH×W and yv
E ∈ RH×W , respectively. Then, the expanded features of the

two branches are added and input to the 1× 1 convolutional layer and Sigmoid function,
and then they are multiplied with the input features to obtain the output feature of SPM,
i.e., yspm ∈ RH×W .

yspm = σ
(

W1×1

(
yh

E + yv
E

))⊗
x (9)

where σ represents the Sigmoid function, W1×1 represents 1 × 1 convolution, and
⊗

represents element-wise multiplication.
The result of adding the output features of CAM and SPM is taken as the output

feature of LCAM, i.e., yout.
yout = ycam + yspm (10)

2.4. Loss Function

Binary cross-entropy loss (BCE) is commonly used in binary semantic segmentation
tasks. Its calculation formula is as follows:

LBCE = − 1
N

N

∑
i=1

(gi × log(pi) + (1− gi)× log(1− pi)) (11)

where N is the number of image pixels, gi represents the value of the ith pixel label, and pi
represents the prediction probability of the corresponding pixel.

In the road extraction task, there are only two categories: road and background. The
activation function of the output layer of our proposed road extraction network is the
Sigmoid function, and the output is the probability map with a pixel value between 0
and 1. The threshold of 0.5 is used to distinguish the road and background. When the
probability is greater than 0.5, the corresponding pixel is predicated as the road; otherwise,
it is predicated as the background.

The calculation formula of the BCE loss function shows that this loss function will
calculate the loss of each pixel and then calculate the average by treating all pixels with the
same weight. This is not suitable for the road extraction task because the road occupies a
small proportion of the image, which will result in the imbalance of positive and negative
samples and weaken the loss of pixels belonging to the road category. To solve this
problem, this paper adds the Dice loss function [53] to the BCE loss function. The Dice
loss function measures the similarity between labels and prediction results, which can
address the imbalance between positive and negative samples. The Dice loss function can
be calculated as:

LDice = 1− 2 ∑N
i=1(gi × pi)

∑N
i=1 g2

i + ∑N
i=1 p2

i
(12)

The overall loss function of network training is LBCE+Dice:

LBCE+Dice = LBCE + LDice (13)
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3. Experiments

This section describes the contents relating to the experiments in detail. Section 3.1
introduces the datasets used for the experiments; Section 3.2 presents the evaluation metrics
for network performance; Section 3.3 describes the experimental settings; Section 3.4
analyzes the experimental results.

3.1. Dataset

The public DeepGlobe dataset [54] and Massachusetts dataset [55] were adopted to
carry out the experiments.

(1) The DeepGlobe dataset images were collected from three regions: Thailand, In-
donesia, and India, covering urban and suburban scenes. The spatial resolution of each
image was 0.5m, and the size was 1024× 1024 pixels. Referring to the research [56,57],
this paper used 6226 labeled images in the dataset for experiments and split them into
a training set with 4696 images and a test set with 1530 images. Then, the 4696 images
were divided into 3756 training images and 940 validation images at the ratio of 8:2. To
train the model with limited memory, the training and validation images were cropped
into 512× 512 image tiles. Finally, the dataset contained 15024 training image tiles, 3760
validation image tiles, and 1530 testing images with their original size. The sample images
and the corresponding labels of the DeepGlobe dataset are shown in Figure 4.
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carry out the experiments.  
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images were divided into 3756 training images and 940 validation images at the ratio of 
8:2. To train the model with limited memory, the training and validation images were 
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tiles, 3760 validation image tiles, and 1530 testing images with their original size. The 
sample images and the corresponding labels of the DeepGlobe dataset are shown in 
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Figure 4. Sample images and labels of the DeepGlobe dataset. Figure 4. Sample images and labels of the DeepGlobe dataset.

(2) The Massachusetts dataset covers urban, suburban, and rural scenarios and con-
tains 1108 training images, 14 validation images, and 49 testing images. The size of each
image is 1500× 1500 and the resolution is 1m. The original training set and validation
set images were seamlessly cropped into 512× 512 image tiles. Finally, the training set
contained 7972 image tiles and the validation set contained 126 image tiles. The testing set
used 49 images with their original size. The sample images and the corresponding labels of
the Massachusetts dataset are shown in Figure 5.
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3.2. Evaluation Metrics

Four evaluation metrics were used to measure the accuracy of road extraction results
obtained by each network, including IoU, Precision, Recall, and F1. IoU represents the ratio
between the intersection and union of prediction results and labels. Precision represents
the proportion of correctly predicted pixels among the pixels predicted as roads. Recall
represents the proportion of pixels correctly predicted as roads among all road pixels. F1
is the harmonic mean of Precision and Recall, which is a comprehensive evaluation metric.
The calculation formulas of the above four evaluation metrics are shown as follows:

IoU =
TP

TP + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1 =
2× Precision× Recall

Precision + Recall
(17)

where TP (True Positive) represents the number of road pixels that are correctly predicted
as road, FP (False Positive) represents the number of background pixels that are incorrectly
predicted as road, and FN (False Negative) represents the number of road pixels that are
incorrectly predicted as background.

3.3. Experimental Settings

To enhance the generalization ability, random rotation, random horizontal flip, random
vertical flip, and random Gaussian blur were used to augment the training data. All the
experiments in this paper were conducted on an NVIDIA GeForce GTX 1080 Ti (11 GB
memory), and the PyTorch [58] deep learning library was used to construct, train, and test
the model. The optimizer used in this paper was SGD, and the momentum and weight
decay were set to 0.9 and 5e-4, respectively, and the batch size was set to 4. The number
of epochs was set to 150. Besides, the “poly” learning rate strategy was adopted, and the
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learning rate was multiplied by
(

1− iter
max_iter

)power
. Among them, the initial learning rate

was set to 0.01, and the power value was set to 0.9.

3.4. Experimental Results

To evaluate the performance of MECA-Net, it was compared with eight mainstream
semantic segmentation networks for road extraction, including UNet [24], SegNet [59],
LinkNet [29], DeepLabv3+ [60], D-LinkNet [28], RoadNet [38], PP-LinkNet [37], and NL-
LinkNet [39]. UNet is a classical encoder–decoder structure network, which is widely used
in road extraction tasks. SegNet is also a commonly used network for road extraction.
LinkNet takes ResNet as the feature extraction network and combines the skip connection
features with the decoder features by adding. It is one of the most commonly used baseline
networks for road extraction at present. DeepLabv3+ uses multiple dilation convolutions
with different dilation rates to obtain multiscale information. D-LinkNet uses LinkNet34 as
the baseline and adds dilated convolutions of series–parallel structures to obtain multiscale
features. RoadNet can learn multiscale and multilayered road features. PP-LinkNet uses
the pyramid pooling module to extract multiscale features. NL-LinkNet introduces a
nonlocal computing module based on LinkNet34 to obtain long-range context. To make a
fair comparison, the same experimental settings were used in the training process of all
networks. Additionally, LinkNet, DeepLabv3+, D-LinkNet, PP-LinkNet, NL-LinkNet, and
MECA-Net all used ResNet34 as the backbone network.

Experimental results on the DeepGlobe dataset. As illustrated in Figure 6, the first
row shows that each method can correctly extract wide roads, but the extraction results
of the comparison methods for slender roads between farmland were not ideal. RoadNet,
SegNet, NL-LinkNet, UNet, and PP-LinkNet rarely extracted the slender road, and LinkNet
extracted a portion of the roads. DeepLabv3+ and D-LinkNet extracted relatively more
roads attributed to the aggregation of multiscale features. Compared with these methods,
the results extracted by MECA-Net were the most complete. The second row shows the
image under the background of woodland. The road in the image is narrow and slender,
which easily leads to missed detection. The results of other methods were missing in
different degrees, but MECA-NET obtained the best extraction result for narrow and
slender roads. The road in the image in the third row is seriously blocked by roadside trees
and their shadows. The results of all methods were discontinuous to a certain extent, but
the continuity of the results obtained by MECA-Net was the best. The fourth row shows a
residential scene, where the shadows of buildings block the road. Other methods failed to
identify the roads obscured by building shadows, and their results were all discontinuous
and incomplete. In contrast, MECA-Net shows obvious advantages in solving this problem,
and it maintained the continuity and integrity of the road topology. The roads in the images
in the fifth and sixth rows are obscured by dense trees. In this case, MECA-Net dealt
with the problem of result discontinuity and achieved better results by obtaining sufficient
long-range context information.

The quantitative results of each network on the DeepGlobe dataset are presented
in Table 1. The results show that MECA-Net improved the road extraction ability under
the effect of the multiscale feature encoding module and the long-range context-aware
module, and the results were better than those of other methods. Among all the comparison
methods, MECA-Net had the highest results in IoU, Recall, and F1 (65.15%, 79.41%, and
78.90%, respectively), which are 0.69%, 1.88%, and 0.51% higher than those of the baseline
network LinkNet34, respectively. Compared with other classical encoder–decoder networks
such as UNet, the IoU, Recall, and F1 of MECA-Net improved by 0.93%, 3.25%, and 0.69%,
respectively. Compared with NL-LinkNet, which only uses nonlocal operations to obtain
long-range context in the spatial dimension, the IoU, Precision, Recall, and F1 of MECA-Net
improved by 1.31%, 0.39%, 1.55%, and 0.97%, respectively. Compared with D-LinkNet,
MECA-Net not only aggregated multiscale features but also obtained long-range context
information from the channel and spatial dimensions, and its IoU, Recall, and F1 improved
by 0.47%, 1.04%, and 0.35%, respectively. The IoU, Precision, Recall and F1 of MECA-Net
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were 2.36%, 1.02%, 2.49% and 1.76% higher than those of RoadNet, and were 0.91%, 1.3%,
0.01% and 0.67% higher than those of PP-LinkNet, respectively.
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Experimental results on the Massachusetts dataset. As shown in Figure 7, the first
row of images is a slender road in the suburban scene, and the MECA-Net proposed in
this paper had better extraction results. The roads in the image of the second row are
slender, annular, and not obvious, resulting in poor recognition results for each method.
In contrast, MECA-Net had better extraction results. The road in the third-row image is
seriously occluded, and the loss of road features is serious. However, the proposed method
identified as many occluded roads as possible. Similarly, the trees in the images in the
fourth, fifth and sixth rows significantly block the road. It was found that the extraction
results of MECA-Net were more complete and continuous than those of other methods.

Table 1. Quantitative evaluation results of different networks on the DeepGlobe dataset.

Networks IoU (%) Precision (%) Recall (%) F1 (%)

RoadNet [38] 62.79 77.37 76.92 77.14
SegNet [59] 63.73 79.52 76.25 77.85

NL-LinkNet [39] 63.84 78.00 77.86 77.93
UNet [24] 64.22 80.37 76.16 78.21

DeepLabv3+ [60] 64.23 78.00 78.44 78.22
PP-LinkNet [37] 64.24 77.09 79.40 78.23

LinkNet [29] 64.46 79.27 77.53 78.39
D-LinkNet [28] 64.68 78.73 78.37 78.55

MECA-Net (ours) 65.15 78.39 79.41 78.90
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Figure 7. Comparison of visualization results between MECA-Net and other road extraction methods
based on the Massachusetts dataset. (a) Image; (b) Label; (c) RoadNet results; (d) SegNet results;
(e) NL-LinkNet results; (f) UNet results; (g) DeepLabv3+ results; (h) PP-LinkNet results; (i) LinkNet
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The quantitative results of each network on the Massachusetts dataset are presented
in Table 2. The IoU and F1 of MECA-Net on the Massachusetts dataset were 65.82% and
79.39%, respectively, which are better than those of the other eight comparison methods.
On the Massachusetts dataset, the IoU, Recall and F1 of MECA-Net were 0.39%, 0.68% and
0.29% higher than the baseline network LinkNet, respectively. MECA-Net outperformed
RoadNet, NL-LinkNet, DeepLabv3+ and D-LinkNet in four metrics. The IoU, Recall and
F1 of MECA-Net were 0.31%, 0.92% and 0.23 higher than SegNet, and 0.19%, 0.62% and
0.14% higher than UNet, respectively. The IoU, Precision and F1 of MECA-Net were 0.1%,
0.24% and 0.07% higher than PP-LinkNet, respectively.

Table 2. Quantitative evaluation results of different networks on the Massachusetts dataset.

Networks IoU (%) Precision (%) Recall (%) F1 (%)

RoadNet [38] 65.08 80.33 77.42 78.85
SegNet [59] 65.51 81.14 77.27 79.16

NL-LinkNet [39] 65.45 80.62 77.66 79.11
UNet [24] 65.63 81.00 77.57 79.25

DeepLabv3+ [60] 64.93 80.09 77.42 78.74
PP-LinkNet [37] 65.72 80.39 78.28 79.32

LinkNet [29] 65.43 80.77 77.51 79.10
D-LinkNet [28] 65.51 80.48 77.88 79.16

MECA-Net (ours) 65.82 80.63 78.19 79.39
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4. Discussion

Section 4.1 discusses the ablation experiments of MECA-Net. Section 4.2 compares the
number of parameters for different networks.

4.1. Ablation Study

Ablation experiments were conducted for the designed network on the DeepGlobe
dataset. Here, LinkNet34 was taken as the baseline, and each improvement module was
gradually added on this basis to verify the effectiveness of each module in this method.
The results of the ablation experiment are shown in Table 3

Table 3. Ablation experiments for the proposed method on the DeepGlobe dataset.

Networks IoU (%) Precision
(%) Recall (%) F1 (%)

Baseline 64.46 79.27 77.53 78.39
Baseline + MFEM 64.91 79.21 78.23 78.72
Baseline + MFEM + CAM 65.00 78.44 79.13 78.79
Baseline + MFEM + CAM + SPM 65.15 78.39 79.41 78.90

After adding the MFEM to the baseline, the IoU, Recall, and F1 were improved
by 0.45%, 0.70%, and 0.33%, respectively, indicating that the MFEM improves the road
extraction ability by aggregating multiscale features. The comparison of visualization
results is presented in Figure 8. The results from the first row to the third row show that the
baseline network recognized the slender road in the image after adding the MFEM, thus
verifying the effectiveness of the MFEM.

After adding CAM on the basis of Baseline + MFEM, the IoU, Recall, and F1 were
improved by 0.09%, 0.9%, and 0.07%, respectively, indicating the effectiveness of ob-
taining long-range context in the channel dimension to improve road extraction perfor-
mance. Finally, adding SPM on the basis of Baseline + MFEM + CAM is equivalent to
Baseline + MFEM + LCAM, which constitutes the MECA-NET. After adding SPM, the IoU,
Recall, and F1 were improved by 0.15%, 0.28%, and 0.11%, respectively, indicating that the
accuracy of road extraction can be improved by using SPM to obtain long-range context
in the spatial dimension. As shown in Figure 9, the roads in the three rows of images
all have the problem of occlusion. By comparison, the addition of CAM on the basis of
Baseline + MFEM alleviated the occlusion problem, and the addition of SPM further im-
proved the continuity of the extraction results of the occluded roads, which verifies the
effectiveness of LCAM.
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4.2. Number of Parameters for Each Network

The number of parameters is also an important indicator of network performance.
The more parameters a network has, the larger the computation requirements. The F1 and
parameter number of different networks on the DeepGlobe dataset are shown in Figure 10.
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It can be seen that RoadNet had the least number of parameters (14.72 million). D-linkNet
and MECA-Net had more parameters, i.e., 31.10 million and 47.41 million, respectively. The
number of parameters of MECA-Net was 25.77 million more than that of LinkNet, and this
is because four multiscale feature encoding modules and four long-range context-aware
modules were added on the basis of LinkNet. The MECA-NET achieved the highest F1
score, but it also had the largest number of parameters and needed to occupy more memory.
The follow-up study will investigate how to improve the accuracy without significantly
increasing the number of parameters.
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Figure 10. Comparison of the F1 value and parameter number of different networks on the DeepGlobe
dataset. The bar chart and line chart represent the F1 value and the number of parameters of each
network, respectively.

5. Conclusions

In this paper, a new road extraction network called MECA-Net is proposed to solve
the problems of the slender road being difficult to identify and the road being obscured by
the shadow of trees and buildings. MECA-Net uses the multiscale feature encoding module
to extract multiscale road features, which improves the recognition ability of the model
for slender roads. Meanwhile, MECA-Net uses the long-range context-aware module to
obtain sufficient long-range context information from the channel and spatial dimensions,
which alleviates the problem of road occlusion and improves the continuity and integrity
of road extraction results. The experimental results on the open DeepGlobe dataset and
Massachusetts dataset show that MECA-Net is superior to the other eight mainstream
road extraction methods. The limitation of MECA-Net is that the number of parameters
is relatively large, which will affect the processing efficiency. In future work, depthwise
separable convolution [61] will be introduced to reduce the number of network parameters
and improve the computation speed. In addition, future work will also investigate the
application of the proposed method to remote sensing images from other data sources,
using transfer learning-based techniques.
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