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Abstract: Laser-induced breakdown spectroscopy (LIBS) coupled with chemometrics is an efficient
method for rock identification and classification, which has considerable potential in planetary
geology. A great challenge facing the LIBS community is the difficulty to accurately discriminate
rocks with close chemical compositions. A convolutional neural network (CNN) model has been
designed in this study to identify twelve types of rock, among which some rocks have similar
compositions. Both the training set and the testing set are constructed based on the LIBS spectra
acquired by Mars Surface Composition Detector (MarSCoDe) for China’s Tianwen-1 Mars exploration
mission. All the spectra were collected from dedicated rock pellet samples, which were placed in a
simulated Martian atmospheric environment. The classification performance of the CNN has been
compared with that of three alternative machine learning algorithms, i.e., logistic regression (LR),
support vector machine (SVM), and linear discriminant analysis (LDA). Among the four methods,
it is on the CNN model that the highest classification correct rate has been obtained, as assessed
by precision score, recall score, and the harmonic mean of precision and recall. Furthermore, the
classification accuracy is inspected more quantitatively via Brier score, and the CNN is still the best
performing model. The results demonstrate that the CNN-based chemometrics are an efficient tool
for rock identification with LIBS spectra collected in a simulated Martian environment. Despite the
relatively small sample set, this study implies that CNN-supported LIBS classification is a promising
analytical technique for Tianwen-1 Mars mission and more planetary explorations in the future.

Keywords: Mars exploration; Tianwen-1 mission; MarSCoDe; laser-induced breakdown spectroscopy
(LIBS); convolutional neural network (CNN)

1. Introduction

Laser-induced breakdown spectroscopy (LIBS) is a technique in which high-power-
density laser pulses are focused onto a tiny area of a target and the induced plasma
emission is collected by spectrometers [1]. LIBS is well known as a versatile approach to
carry out chemical composition analysis, since the characteristic emission lines in a LIBS
spectrum can be employed as “fingerprints” to identify the chemical elements contained
in the target sample [2]. LIBS has the advantage of implementing in situ and stand-off
detection, and it has been extensively applied in various fields, such as biomedicine [3],
the metallurgical industry [4], environmental monitoring [5], energy science [6], nuclear
security [7], geological investigation [8,9], etc. Particularly, the remote detection capability
of LIBS has made it an outstanding tool for space exploration.
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NASA’s Curiosity rover carried a LIBS instrument named ChemCam in Mars Sci-
ence Laboratory (MSL) mission, marking the first LIBS application in planetary explo-
ration [10–12]. Arriving on Mars within Curiosity in 2012, ChemCam has carried out
chemical composition investigation of rocks and soils on Martian surface [13–17]. Moreover,
NASA’s Perseverance rover is equipped with an upgraded LIBS suite, called SuperCam, in
Mars 2020 mission [18–21]. Recently the results of major element quantification based on
the LIBS spectra collected by SuperCam have been reported by Anderson et al. [22].

China’s first Mars exploration, i.e., Tianwen-1 mission, was launched in July 2020. The
Tianwen-1 lander touched down on Mars in May 2021 with a Mars rover called Zhurong
(the name of the God of Fire in ancient Chinese mythology). Similar to Curiosity and Perse-
verance, Zhurong rover also carries a LIBS instrument entitled MarSCoDe, standing for
Mars Surface Composition Detector [23]. MarSCoDe will carry out a series of geochemical
investigations, among which, one of the important tasks is to identify the various types of
rocks on Martian surface.

LIBS technique is a good tool to perform stand-off detection and realize efficient
identification of target rocks in planetary geology studies [24]. Of course, it is noteworthy
that appropriate chemometrics also play an essential role in LIBS analysis. Nowadays LIBS
chemometrics based on machine learning have been widely used in sample classification.
Yang et al. achieved an over 90% average correct rate in classification of six classes of rock
samples and seven classes of soil samples, by two multivariate analysis methods, i.e., partial
least squares discriminant analysis (PLS-DA) and support vector machine (SVM) [25].
Vítková et al. fed a linear discriminant analysis (LDA) model and an artificial neural
network (ANN) with the principal components of LIBS spectra, respectively [26]. The LDA
correctly classified six out of the eight kinds of materials, while the ANN overperformed
with seven successful cases. Yelameli et al. tried k-nearest neighbor (KNN), ANN, and
SVM to classify 30 different rock samples, respectively, and the SVM algorithm performed
the best with an accuracy of better than 95% [27]. Bi et al. figured out that the accuracy
of mineral classification could be improved by exploiting joint LIBS-Raman spectra data,
regardless of their concrete classification algorithm (ANN, PLS-DA, or SVM) [28].

Particularly in recent studies, ANN algorithms have been extensively adopted in LIBS
spectra data analysis [29,30]. As one of the most popular ANN algorithms, convolutional
neural network (CNN) has received considerable interest in spectroscopic analysis re-
searches [31,32]. Nevertheless, CNN has not been valued in LIBS studies until very recently.
As a pioneering work, Lu et al. analyzed time-resolved LIBS spectra by a CNN to improve
potassium detection accuracy in soil samples [33]. The CNN in their work comprises only
one convolutional layer and one pooling layer, so it is a so-called shallow network. As
a matter of fact, a CNN uses convolution layers to extract features and pooling layers to
reduce parameter quantity and hence prevent over-fitting. Therefore, a CNN containing
more layers, i.e., a deep network, is routinely more competent for deep learning and accu-
rate analysis. Deep CNNs have been proven to have excellent capability in classification
and recognition [34,35]. Specifically for LIBS analysis, our group has demonstrated that
a deep CNN can be employed for multi-component quantitative analysis upon rock and
soil samples, and outshines PLS and back-propagation neural network in terms of overall
accuracy [36]; and very recently we have also utilized the CNN-LIBS method to address
the issue of sampling distance effect in geochemical sample classification [37].

This study constructs a deep CNN to conduct rock classification, based on the LIBS
spectra acquired by MarSCoDe in Tianwen-1 pre-flight experiments. The target samples for
these experiments were twelve types of rocks in the form of pellets, which were placed in a
simulated Martian atmospheric environment during the measurements. Besides the CNN,
three alternative machine learning methods for classification, including logistic regression
(LR), SVM, and LDA, have also been evaluated, and the classification performance of the
four methods are compared. The results show that the proposed deep CNN can outperform
the other three classical machine learning techniques, indicating that the CNN classification
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model integrated with the MarSCoDe LIBS technology can be a promising methodology
for investigating the geology of the Tianwen-1 landing site.

The rest of this paper is organized as follows: Section 2 introduces Tianwen-1 mission
background and the methods in this study, including the experimental setup and the
machine learning models; Section 3 presents the results and provides some discussion;
Section 4 makes a concise conclusion.

2. Background and Methods
2.1. Mission Background and Scientific Goals

Zhurong rover consists of six major payloads, besides MarSCoDe, there are also
Multispectral Camera, Terrain Camera, Mars-Rover Subsurface Exploration Radar, Mars
Magnetic Field Detector, and Mars Meteorology Monitor [38]. These payloads are expected
to help achieve the scientific goals of Tianwen-1 mission, i.e., (1) to characterize the Martian
morphology and geological structure; (2) to investigate the soil features and water-ice
distribution; (3) to detect the chemical composition of the Martian surface; (4) to study the
atmosphere ionosphere and surface climate of Mars; and (5) to explore the physical field
and internal structure of Mars. The MarSCoDe instrument is mainly responsible for the
third scientific goal.

The landing site of Zhurong rover is Utopia Planitia, a large plain centered at 46.7◦N,
117.5◦E [39], as illustrated in Figure 1. Utopia Planitia has undergone extensive resurfacing
and infilling processes, e.g., continuing volcanism from Elysium has filled most of the
Utopia Planitia area with lava and eruption materials [40]. Landforms, such as polygons
and scalloped depressions, have been observed in the area [41], and the existence of a
meter-thick mantle possibly containing an ice–dust admixture has been reported [42–44].
Although orbital remote sensors have not found extensive hydrated mineral exposed in
this area, in situ detection (e.g., LIBS) is likely to obtain the evidence for water activity in
ancient times, and the results may provide significant constraints on the ocean hypothesis
on the northern lowland area and the evolution of global climate.
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Figure 1. A MOLA map of Mars with the landing site of Tianwen-1 lander marked out by
the red pentagram (near the site of Viking 2). The base map is MOLA DEM37, available
at https://astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/MOLA/Mars_MGS_MOLA_
DEM_mosaic_global_463m, accessed on 21 August 2022).
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2.2. LIBS Experiments and Data Preprocessing

Carried by Zhurong rover, the MarSCoDe instrument can implement LIBS detection
after the landing, as illustrated in Figure 2. The technical specifications of MarSCoDe LIBS
system are listed in Table 1.
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MarSCoDe instrument. The original picture is available on the Internet.

Table 1. Main technical specifications of the MarSCoDe.

Parameter Value

Laser pulse width 4 ns
Laser pulse energy 9 mJ
Laser wavelength 1064 nm

Laser repetition rate 1 Hz, 2 Hz, 3 Hz
Overall spectral range 240–850 nm

Number of spectral channels 3
Pixels per spectral channel 1800

Detection distance 1.6–7 m

Figure 3 displays the diagram of the LIBS experimental setup, including the MarSCoDe
instrument and the Martian atmosphere simulation chamber holding the rock samples.
The excitation source is a high-power Nd: YAG 1064 nm laser, with the pulse width of
approximately 4 ns and the pulse energy up to 9 mJ. The repetition rate was set to 3 Hz
in this experiment. The whole spectrometer system includes three 1800-pixel spectral
channels, which are actually three spectrometers covering three bands, i.e., 240–340 nm,
340–540 nm, and 540–850 nm, respectively. The radiation of the laser-induced plasma
is collected by a coaxial Cassegrain telescope and imported into the three spectrometers
through fibers. There is a main controller which steers the optical system, enabling the
laser to exactly point the target sample. The controller is also in charge of spectra data
transmission, with 5400 data points included in each captured LIBS spectrum.

The experiment in this study employed 12 different types of rocks, including (1) an-
desite, (2) dolomite, (3) opal, (4) kaolinite, (5) potash feldspar, (6) montmorillonite, (7) diop-
side, (8) basalt, (9) hematite, (10) olivine, (11) albite, and (12) gypsum. Each type of rock
was ground into powder particles with a less than 37 µm diameter and pressed into cylin-
drical pellets with a radius of 20 mm. These rocks were selected since they are common
sedimentary rocks or igneous rocks which contain the elements most likely to exist on
Mars, such as Si, Fe, Mg, Al, Ca, and K [45,46]. Some of the sample pellets are exhibited in
Figure 4.
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Figure 4. Demonstration of some sample pellets: (a) andesite, (b) dolomite, (c) kaolinite, (d) basalt.
Some vaguely visible black dots are laser ablation craters.

Table 2 presents the main chemical components of the rocks, which are typical metal
oxides, i.e., SiO2, Al2O3, Fe2O3, MgO, CaO, K2O, and Na2O. Among the 12 rocks, 9 samples
have a composition covering all the seven components listed in Table 2, while the opal, the
montmorillonite, and the olivine only contain one, five, and four components, respectively.
Note that the compositions listed herein belong to the rocks which are China’s national
reference materials, but some variant samples other than reference materials have also been
employed in this experiment, as will be explained in the following.

The characteristics of the laser-induced plasma emission can vary greatly at different
atmospheric pressure values in the LIBS experiment [47]. Unlike our other research [36,37],
in which LIBS measurements were implemented in an ordinary atmospheric environment,
this experiment was carried out in a simulated Martian condition. Similar to the study
depicted in [48], in this work, the target samples were placed in a simulated Martian
atmospheric environment, i.e., a vacuum chamber filled with CO2 gas at a pressure of
933 Pa. The MarSCoDe instrument was placed in room atmospheric environment, located
3 m away from the vacuum chamber, and the LIBS measurements were performed at a
constant laser-target distance throughout the experiment.

There were two phases of LIBS measurements, corresponding to the data for train-
ing/validation and testing, respectively. As for Phase I measurements, 60 LIBS spectra
were collected from the identical position of each rock sample (i.e., the sample was kept
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still during the process of undergoing 60 laser shots). Hence, totally, 720 LIBS spectra were
obtained on the twelve samples, and these data were used as the training/validation set.

Table 2. The main components of the twelve types of rocks. The concentration value is expressed by
weight percentage (in unit of %). The cross symbol denotes the case that the certain component is not
included in the sample.

No. Rock Type SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O

1 Andesite 60.62 16.17 4.9 5.2 1.72 1.89 3.86
2 Dolomite 0.021 0.017 0.224 32.11 20.37 0.0011 0.023
3 Opal 68.98 × × × × × ×
4 Kaolinite 43.41 34.77 1.5 0.038 0.069 0.78 0.045
5 Potash feldspar 66.26 18.63 0.19 0.76 0.054 9.6 3.69
6 Montmorillonite 77.89 13.78 × 2.81 1.4 × 0.28
7 Diopside 53.40 1.38 0.43 24.40 18.31 0.15 0.26
8 Basalt 44.64 13.83 13.4 8.81 7.77 2.32 3.38
9 Hematite 9.82 0.48 61.73 0.11 0.055 0.056 0.0056

10 Olivine 40.73 × 8.67 0.04 50.05 × ×
11 Albite 67.96 19.62 0.1 0.48 0.015 0.098 11.26
12 Gypsum 7.21 1.92 0.63 28.5 4.92 0.38 0.021

The data acquired in Phase II measurements were adopted as the testing set. Two
methods have been used to make the classification test more challenging. The first method
is sample alteration. As for Sample No. 1, No. 2, No. 5, No. 8, No. 9, No. 10, or No. 12,
we employed a variant sample, i.e., a different rock sample with the same rock type. For
example, the potash feldspar sample (Sample No. 5) in the training/validation set was a
type of national reference material, while the potash feldspar in the testing set was a natural
sample (after grinding and pressing). The second method is shooting position change. As
for Sample No. 3, No. 4, No. 6, No. 7, or No. 11, the laser shot on a position other than
that in Phase I measurements (we did not have variant samples of these five samples).
Analogous to Phase I measurements, 60 laser shots were made on each rock sample, and
720 spectra were acquired.

Usually, the LIBS spectra data should be preprocessed before further analysis to
improve the result accuracy. General preprocessing steps include dark spectrum subtrac-
tion, spectrum smoothing, continuum baseline removal, and spectral intensity normaliza-
tion [11]. As for this study, we have performed a primary preprocessing for each original
LIBS spectrum, including dark subtraction, wavelength calibration, and ineffective pixel
masking, just like that described in our previous work [36].

Before the normal LIBS spectra were collected on each sample, one spectrum was
recorded without turning on the LIBS laser. This non-laser spectrum was regarded as the
dark spectrum, which was subtracted in the so-called dark subtraction preprocessing. The
wavelength calibration procedure was the same as the former one [36] and thus would not
be described here, while the ineffective pixel masking step was a bit different.

The wavelength calibration result showed that the wavelength range of each spectral
channel was 234.190–353.881 nm, 328.341–567.980 nm, and 510.081–879.325 nm, respec-
tively. According to the aforementioned technical specification of MarSCoDe, the pixels
near the two ends of each channel were apparently beyond the effective range. In fact,
the practical results in the engineering tests demonstrated that the output signals from
those pixels were not so credible. We had masked out 298, 290, and 276 ineffective pix-
els for the three channels, and hence there were 1502, 1510, and 1524 remaining pixels,
corresponding to effective spectral ranges of 240.048–339.950 nm, 340.111–539.981 nm, and
540.157–849.894 nm, respectively. After the ineffective pixel masking, each LIBS spectrum
was represented by a 4536-point vector, which was the standard input data modality of the
designed CNN in this study. Typical preprocessed LIBS spectra of the twelve types of rock
samples are illustrated in Figure 5.



Remote Sens. 2022, 14, 5343 7 of 17

Remote Sens. 2022, 14, 5343 7 of 17 
 

 

The wavelength calibration result showed that the wavelength range of each spectral 

channel was 234.190–353.881 nm, 328.341–567.980 nm, and 510.081–879.325 nm, respec-

tively. According to the aforementioned technical specification of MarSCoDe, the pixels 

near the two ends of each channel were apparently beyond the effective range. In fact, the 

practical results in the engineering tests demonstrated that the output signals from those 

pixels were not so credible. We had masked out 298, 290, and 276 ineffective pixels for the 

three channels, and hence there were 1502, 1510, and 1524 remaining pixels, correspond-

ing to effective spectral ranges of 240.048–339.950 nm, 340.111–539.981 nm, and 540.157–

849.894 nm, respectively. After the ineffective pixel masking, each LIBS spectrum was rep-

resented by a 4536-point vector, which was the standard input data modality of the de-

signed CNN in this study. Typical preprocessed LIBS spectra of the twelve types of rock 

samples are illustrated in Figure 5. 

 

Figure 5. Typical preprocessed LIBS spectra of the twelve types of rock samples. DN stands for 

digital number. 

As mentioned before, some rock samples have similar chemical compositions. The 

composition of kaolinite, for example, is similar to that of potash feldspar, and this point 

manifests itself in the similarity of the LIBS spectra of them, as shown in Figure 6a,c. Like-

wise, andesite and montmorillonite have similar compositions and hence similar LIBS 

spectral profiles, as illustrated in Figure 6b,d. Such similarity can lead to challenges for 

the classification chemometrics models. 

Besides the similarity between different types of rock samples, the difference be-

tween the same type of rock can also bring some difficulties to the classification task. As 

an example mentioned above, the potash feldspar in the training/validation set (reference 

material) is different from that in the testing set (natural sample). It was known that the 

contents of potassium and sodium in the national reference material were different from 

those in the natural sample, and such difference could be found in the relevant character-

istic peaks in their spectra, as illustrated in Figure 7. 

Figure 5. Typical preprocessed LIBS spectra of the twelve types of rock samples. DN stands for
digital number.

As mentioned before, some rock samples have similar chemical compositions. The
composition of kaolinite, for example, is similar to that of potash feldspar, and this point
manifests itself in the similarity of the LIBS spectra of them, as shown in Figure 6a,c.
Likewise, andesite and montmorillonite have similar compositions and hence similar LIBS
spectral profiles, as illustrated in Figure 6b,d. Such similarity can lead to challenges for the
classification chemometrics models.

Besides the similarity between different types of rock samples, the difference between
the same type of rock can also bring some difficulties to the classification task. As an
example mentioned above, the potash feldspar in the training/validation set (reference
material) is different from that in the testing set (natural sample). It was known that the
contents of potassium and sodium in the national reference material were different from
those in the natural sample, and such difference could be found in the relevant characteristic
peaks in their spectra, as illustrated in Figure 7.

2.3. CNN Construction

The CNN is constructed and implemented by Keras, one of the most popular deep
learning Python libraries. There are totally twelve layers in the CNN, including one batch
normalization layer, five convolutional layers, two pooling layers, one flatten layer, one
dropout layer, and two dense layers. The network structure and the relevant data size
of each layer are shown in Figure 8a. The batch normalization layer conducts intensity
normalization for each of the input spectra. Then, in a convolutional layer, a series of
convolutional kernels stride to extract a variety of features in the input data, with each
kernel yielding one corresponding feature map. Within each of the five convolutional layers,
all the kernel lengths are set to 5 and the strides are 2, and ReLU (Rectified Linear Unit)
is adopted as the activation function [49]. The kernel quantities of the five convolutional
layers are different, e.g., there are 8 kernels in convolutional layer 1 and there are 32 kernels
in convolutional layer 2, as illustrated in Figure 8a. Each of the first two convolutional
layers is accompanied by a max-pooling layer, which provides a subsampling of each
feature map and hence effectively reduces the data size. Figure 8b simply depicts how the
data are processed in the convolutional layers and the max-pooling layers, and states the
main functions of the two kinds of layers. After the final convolutional layer, there lies a
flatten layer, rasterizing the feature matrices into a one-dimensional vector. After the flatten
layer, there is a dense layer with ReLU adopted as the activation function. The last layer of
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the CNN is also a dense layer, which uses Softmax as the activation function and outputs
the predicted result in a form of probability distribution [50]. Between the two dense layers,
one dropout layer is inserted to prevent overfitting by randomly inactivating a certain ratio
of the network connections [51]. The weights of the network are randomly initialized, and
during the training phase they are adjusted backwards in real-time based on the categorical
cross-entropy between the real and predicted sample labels.
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Actually, the CNN adopted herein is inherited from its quantification-oriented coun-
terpart specified in [36]. The specific modifications in this work are highlighted as follows.
Firstly, the activation function of the final dense layer was sigmoid function in [36], but in
this work, it is softmax function which is the most frequently used activation function for
multi-class classification tasks. Secondly, the model loss function was binary crossentropy
for the CNN in the previous work, while for the current CNN model, the loss function
is changed to categorical crossentropy, which is a routine function for multi-class classi-
fication problems. Finally, the output dimension of the CNN becomes 12 in this work,
corresponding to the twelve different classes.

2.4. Alternative Methods for Comparison

There are several other machine learning methods favorable for classification, such
as LR, SVM, and LDA [52–54]. This study has deployed the above three methods, and
their rock classification performances have been evaluated and compared with the that of
the designed CNN scheme. The three alternative algorithms are implemented based on
Scikit-learn, a machine learning library in Python [55]. A brief description of each method
is as follows.
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LR method gets its name because the core function of this algorithm is the logistic
function (also known as sigmoid function), which can process an input real number by
mapping it into a value between 0 and 1. As a classification technique, LR predicts the
probability that an input data belongs to a certain class, based on a decision threshold.

SVM method builds a set of maximum-margin hyperplanes in a high dimensional
space to achieve classification optimization. The sample points that are closest to the hyper-
plane and meet certain requirements are known as support vectors. Based on nonlinear
mapping kernel functions, nonlinear classification in the sample space can be performed
by means of linear operations in the high dimensional space.
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LDA is a multivariate statistical method for discrimination of objects belonging to
a finite number of classes, based on the concept of searching for a linear combination of
predictors that can optimally separate different classes. The score value of a sample is
computed for the various classes using defined score functions and the class of the sample
is assigned according to maximum likelihood rules.

The three classical algorithms (SVM, LDA, and LR) adopted in this study are fun-
damentally linear methods, namely they try to establish linear correlation between the
spectral intensity values and the class label (from 1 to 12), despite that the linearity may
only appear in a hyperspace. On the contrary, the deep learning CNN algorithm is able to
establish a highly nonlinear relationship between the spectral intensity values and the class
label. In fact, the relationship is generally nonlinear due to various interfering factors such
as matrix effects, self-absorption, instrument noise, etc., hence CNN is expected to behave
better than the linear methods. Moreover, for each of the three methods, the calculation is
in a one-shot mode, while the CNN calculation is in a trial–error iteration mode. During
the thousands of iterations of the CNN, the weights of real spectral features would be
progressively enhanced, while the weights of noises would be gradually weakened. Thus,
the CNN can well extract and learn the major “features” and is expected to outperform the
traditional methods.

2.5. Data Partition and Model Evaluation

As mentioned in Section 2.2, there were two phases of measurements in this study. The
720 spectra obtained in Phase I measurements constitute Dataset I, which is further divided
into two subsets, namely the training set and the validation set. From each rock sample in
Dataset I, five spectra are randomly picked out to build the validation set. Hence there are
60 spectra in the validation set, and 660 spectra in the training set. The training set is used
to train the machine learning classification models. The validation set is used for checking
whether the training effect is good enough, and according to the validation results, the
model parameters would be further optimized if necessary. The 720 spectra collected in
Phase II measurements constitute Dataset II, which is used as the testing set. The spectra
data in the testing set would not be involved in the model training. The description of the
data partition is presented in Table 3.

Table 3. Description of the LIBS spectra dataset partition.

Dataset
Dataset I Dataset II

Training Set Validation Set Testing Set

Spectrum quantity 660 60 720

During the training process, for each spectrum, both the spectrum itself and its cor-
responding sample type label are provided to the CNN, while for the validation and the
testing, only the spectrum will be input and the CNN should predict the probability with
which the sample belongs to each type. In other words, the CNN will output a probabil-
ity distribution vector containing 12 values. The type with the highest probability value
would be determined as the identification result, i.e., the certain testing sample belongs to
that type.

Two scores called precision score β and recall score γ are used to evaluate the perfor-
mance of each prediction, with β calculated by Equation (1) and γ by Equation (2), where
NTP is the number of true positive cases, NFP stands for the number of false positive cases,
and NFN for the number of false negative cases.

β =
NTP

NTP + NFP
(1)

γ =
NTP

NTP + NFN
(2)
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It is not difficult to infer that either a high precision score or a high recall score means
good prediction performance of a model. However, more often than not, γ tends to decrease
when β increases, and vice versa. To comprehensively evaluate the prediction, F1 score is
often introduced, which is the harmonic mean of β and γ, as calculated by Equation (3) [56].

F1 =
2βγ

β + γ
(3)

Beyond the rock type of each sample predicted by a model, the prediction accuracy
of the model is also inspected in a more quantitative way. The discrepancy between the
real and the predicted probability distribution is more accurately assessed through Brier
score [57], which is calculated by Equation (4).

BS =
∑N

i=1

[
∑M

j=1
(
yij − pij

)2
]

N
(4)

Here N is the number of predictions (i.e., the total number of spectra for testing), M is the
number of types, for the ith spectrum, pij is the predicted probability that the testing sample
belongs to type j, and yij is the real type label of the sample, yij = 1 if the sample really
belongs to type j and yij = 0 if it does not. The minimum BS value is 0, indicating a perfect
prediction, and it is straightforward that a larger Brier score means a poorer prediction.

3. Results and Discussion
3.1. Classification Results and Performance Comparison

The 660 training spectra and their corresponding labeled rock type values were fed
into the CNN, the LR, the SVM, and the LDA model, respectively. During the training
phase, the parameters of each model were dynamically adjusted to enable the predicted
output to well match the real rock type label. Generally speaking, for almost all machine
learning algorithms, the classification correct rate in the training process can reach exactly
100%, and this work is no exception. All four machine learning models could achieve
β = γ = F1 = 1 for each rock type in the training (for the CNN model, this could be
achieved as early as in the 4th or 5th step iteration), which was nothing special.

After the training, each of the four models would be fed with the 60 validation set
spectra to evaluate whether the model had been well trained. The validation results
indicated that each model was well trained since each one could make an absolutely correct
rock classification, i.e., β = γ = F1 = 1 for each rock type. By further calculating the Brier
score according to Equation (4) (N = 720 and M = 12), one can find that the Brier scores of
the CNN, the LR, and the LDA are all 0.000000, while the Brier score of the SVM is 0.000524.
Despite the difference seeming not large, this result has indicated that the four models do
not have equal prediction capabilities. The prediction ability discrepancy would be more
significant in the results for the testing set, as will be demonstrated in the following.

After the validation, which had verified that each model was mature enough, the
720 completely untrained spectra in the testing set were input into the models to test their
genuine generalization capabilities. The classification correct rate of each of the four models
is 0.966667 (CNN), 0.851389 (SVM), 0.833333 (LR), and 0.750000 (LDA), respectively. Appar-
ently, the CNN has the highest overall accuracy. The more detailed accuracy information,
revealed by β, γ, and F1 scores are listed in Table 4.
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Table 4. The classification performance of the four methods for the test dataset, evaluated by β, γ,
and F1 scores.

Rock Type
CNN LR SVM LDA

β γ F1 β γ F1 β γ F1 β γ F1

1 0.78 1 0.88 0.33 0.74 0.46 0 0 0 0 0 0
2 1 0.95 0.98 1 1 1 1 1 1 0 0 0
3 0.90 1 0.95 1 1 1 1 1 1 1 1 1
4 1 1 1 1 0.5 0.67 1 0.5 0.67 1 1 1
5 0.97 0.98 0.97 0 0 0 0 0 0 0 0 0
6 1 0.92 0.96 1 0.92 0.96 1 0.51 0.67 1 0.37 0.54
7 0.95 0.90 0.93 1 1 1 1 0.97 0.98 1 1 1
8 1 0.98 0.99 0.88 0.6 0.72 1 1 1 1 0.98 0.99
9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1
11 1 0.88 0.94 1 1 1 1 1 1 1 0.78 0.88
12 1 1 1 1 1 1 1 1 1 1 0.5 0.67

A comparison of the average values (averaging upon the 12 samples) of the three
scores for the four methods is shown in Figure 9, and the superiority of the CNN is con-
spicuous. Moreover, although the performance of the other three models seems acceptable
regarding the average scores, each of the three models actually contains several low scores,
indicating many imprecise prediction cases for certain samples. In fact, the SVM can hardly
discriminate the potash feldspar from the kaolinite, while the LDA cannot distinguish the
andesite from the montmorillonite, just to name a few.

The high error rates in these predictions are mainly due to the similar chemical
compositions of the certain rock samples. As illustrated in Figure 6, the spectra of kaolinite
and potash feldspar are similar, and this is also true for andesite and montmorillonite.
Although such similarity in the compositions and the spectra has brought great challenges
to the three conventional algorithms, the testing results demonstrate that the proposed
CNN model can discriminate these samples with high accuracy, achieving a full or nearly
full F1 score for all the rock types listed in Table 4.

Figure 10 displays the Brier scores of the four models on the testing set. Unlike the
case in the validation, the four Brier scores are clearly different in the testing. Either the
LR or the LDA model, which have achieved a zero Brier score in the validation, behave
much more poorly in the testing, implying that there exists considerable over-fitting in the
training and the model used in this study does not have good generalization capability.
The SVM performs the poorest in the validation, but it is the second best model among
the four in terms of both overall correct rate and Brier score, indicating that it does not
suffer from over-fitting and hence has a relatively great generalization ability. The CNN
model obviously achieves a much lower Brier score than the other three models in the
testing, thereby demonstrating remarkable superiority in prediction accuracy as well as
generalization competence.

Since the CNN is the best performing model, a few more investigations have been
carried out about the prediction performance of the CNN. Specifically, the dependence of
the CNN performance on the testing set versus the validation set size has been examined.
Adding the number of spectra in the validation set can increase the diversity of the val-
idation set. This would be beneficial to model optimization according to the validation
results, so that the performance on the testing set can be improved. On the other hand,
adding the validation set size naturally means reducing the training set size within the
data partition framework in this research. This is definitely unfavorable to the training of
machine learning models (especially for deep learning models like CNN), and hence the
performance on the testing set would be worsened. Therefore, it is interesting to change
the validation set size to inspect the comprehensive impact of the two competitive effects
mentioned above.
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Figure 9. Comparison of the average precision score (β), recall score (γ), and F1 score values for
the four methods. The three kinds of scores for each of the 12 samples can be calculated based on
Equations (1)–(3), and for each kind of score the average score displayed herein is the mean of the
12 scores corresponding to the 12 samples. The red circles stand for the result of the CNN, magenta
squares for the LR, blue stars for the SVM, and green crosses for the LDA.
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According to the data partition scheme described in Section 2.5, from each rock sample
in Dataset I, five spectra are randomly selected to constitute the validation set. Denote NV
as the number of spectra contributed by each sample for validation, then this scheme can
be expressed as NV = 5. Besides the normal scheme of NV = 5, several other NV values have
been tried, i.e., NV = 8, 10, 12, and 15 (also random spectra selection for each NV value).
With the five different NV values, the overall classification correct rate of the CNN on the
testing set is 0.966667, 0.912500, 0.897222, 0.888888, and 0.865278, respectively. It can be
found that the classification accuracy slowly decays with the enlargement of the validation
set size, revealing that the shrinkage of the training set size can really bring a considerable
negative effect to the model training. By the way, it is noteworthy that the lowest CNN
accuracy in this special investigation (0.865278) is still a bit higher than the second best
model in the normal data partition scheme (SVM, 0.851389), indicating the great superiority
of the deep learning CNN model.

3.2. Discussion

It is the specific LIBS spectral features that dictate the performance of a chemometric
model. Therefore, the more powerful a machine learning method is in feature mining,
the better performance it may achieve. The outstanding analytical capability of the CNN
model mainly roots in the convolution operations, which thoroughly mine the correlation
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between the adjacent data points in a LIBS spectrum. However, the other three models,
among the many other common machine learning models, may just regard the spectrum as
thousands of isolated data points, and hence the inherent unity and internal correlation of
the spectrum cannot be fully utilized.

As mentioned in Section 2.2, only a primary preprocessing has been carried out in this
study. It is believed that the CNN model can perform well without further preprocessing,
such as spectrum smoothing, continuum baseline removal, etc., as verified by the testing
results. Such inference is made because only dark background is regarded as pure noise,
while other kinds of “noises” (e.g., the continuum baseline) are thought of as inherent parts
of the spectrum, which, in fact, may be partially beneficial to the feature extraction of the
CNN. The competence to handle simply preprocessed spectra indicates that the CNN can
be a highly efficient tool in real-time analysis, which may be a significant advantage in
planetary geology researches.

Despite the excellent performance of the CNN, it should be noted that deep learning
algorithms such as CNN have disadvantages. One of the most prominent defects is
the “black box” nature. The CNN can establish extremely complicated input–output
correlations but would reveal little information beyond the input and the output. The
features “learned” by the CNN model might be too abstract, and the result interpretation is
definitely difficult. Exploring the ways to enhance the interpretability of the deep learning
CNN is beyond the scope of this paper, but it would be a great research direction for LIBS
chemometrics researchers in the future.

Another disadvantage is relevant to training sample quantity. As demonstrated
in the last part of Section 3.1, a large enough training set size is crucial to the CNN
model. As a matter of fact, deep learning algorithms like CNN can perform well only
when a great number of training samples are available, which is actually impossible
in some scenarios in reality. It is noteworthy that only 12 types of rock sample have
been employed in this study, which is a relatively small sample set compared to some
previous great studies [58]. However, the total number of the LIBS spectra (more than
1400) may guarantee the credibility of the results to some extent. The preliminary tests
imply that CNN-supported LIBS classification is a promising methodology for analyzing
the MarSCoDe data of Tianwen-1 Mars mission. More experiments with larger sample sets
(i.e., including more kinds of target samples) will be carried out in future studies.

Moreover, a newly established large-scale experimental platform able to realize a
high-degree simulation of Martian atmospheric environment has been put into use [59].
Thanks to the great volume of this facility, not only the target samples but also the LIBS
instrument (e.g., a duplicate laboratory model of MarSCoDe) can be placed in the simu-
lated Martian environment. The long track inside the sample cabin also enables the LIBS
detection distance to easily vary from 1.5 m to 7 m, which would be greatly beneficial to the
simulation of field detection scenario on Mars and the investigation of the LIBS sampling
distance effect.

With more dedicated reference samples and the excellent experimental platform, more
LIBS data highly similar to those in real in situ detection will be achieved for further
inspection.

4. Conclusions

As one of the six scientific payloads on Zhurong rover for the Tianwen-1 Mars mission,
MarSCoDe utilizes LIBS technology to conduct stand-off detection of the chemical com-
positions of the rocks and soils on Martian surface. This study has proposed a deep CNN
model to classify 12 types of rock samples based on the LIBS spectra, which were collected
by MarSCoDe in Tianwen-1 pre-flight experiments. The LIBS measurements were partially
mimicking the scenario of field operation on Mars, as the rock samples were placed in a
simulated Martian atmospheric environment. There are 1440 LIBS spectra in all, which
are divided into three datasets, namely a training set, a validation set, and a testing set.
The classification task is challenging because the compositions of some different types of
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rock samples are quite similar, and meanwhile, the compositions of some identical types of
rock samples are slightly different. The classification performance of the CNN method has
been evaluated by precision score, recall score, F1 score, and Brier score. The results of the
testing indicate that the CNN model has prominent superiority in terms of classification
accuracy over conventional machine learning methods (LR, SVM, and LDA). The effect
of the validation set size upon the CNN competence has also been investigated, probably
providing reference for other researchers on data partition strategy.

With remarkable prediction accuracy and high processing efficiency, the CNN model
adopted in this work is demonstrated to be a promising rock identification and classification
method based on LIBS spectra. The developed CNN-LIBS methodology is expected to be
applied to the spectra data from MarSCoDe field detection in the future.
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