
Citation: DSANet: A Deep

Supervision-Based Simple Attention

Network for Efficient Semantic

Segmentation in Remote Sensing

Imagery. Remote Sens. 2022, 14, 5399.

https://doi.org/10.3390/rs14215399

Academic Editors: Fahimeh

Farahnakian, Jukka Heikkonen and

Pouya Jafarzadeh

Received: 7 September 2022

Accepted: 20 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

DSANet: A Deep Supervision-Based Simple Attention Network
for Efficient Semantic Segmentation in Remote Sensing Imagery
Wenxu Shi 1,2 , Qingyan Meng 1,2,3,* , Linlin Zhang 1,2,3 , Maofan Zhao 1,2, Chen Su 1,2 and Tamás Jancsó 4

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Earth Observation of Hainan Province, Hainan Research Institute, Aerospace Information

Research Institute, Chinese Academy of Sciences, Sanya 572029, China
4 Alba Regia Technical Faculty, Obuda University, Budai ut 45, 8001 Szekesfehervar, Hungary
* Correspondence: mengqy@radi.ac.cn

Abstract: Semantic segmentation for remote sensing images (RSIs) plays an important role in many
applications, such as urban planning, environmental protection, agricultural valuation, and military
reconnaissance. With the boom in remote sensing technology, numerous RSIs are generated; this
is difficult for current complex networks to handle. Efficient networks are the key to solving this
challenge. Many previous works aimed at designing lightweight networks or utilizing pruning and
knowledge distillation methods to obtain efficient networks, but these methods inevitably reduce
the ability of the resulting models to characterize spatial and semantic features. We propose an
effective deep supervision-based simple attention network (DSANet) with spatial and semantic
enhancement losses to handle these problems. In the network, (1) a lightweight architecture is
used as the backbone; (2) deep supervision modules with improved multiscale spatial detail (MSD)
and hierarchical semantic enhancement (HSE) losses synergistically strengthen the obtained feature
representations; and (3) a simple embedding attention module (EAM) with linear complexity performs
long-range relationship modeling. Experiments conducted on two public RSI datasets (the ISPRS
Potsdam dataset and Vaihingen dataset) exhibit the substantial advantages of the proposed approach.
Our method achieves 79.19% mean intersection over union (mIoU) on the ISPRS Potsdam test set and
72.26% mIoU on the Vaihingen test set with speeds of 470.07 FPS on 512 × 512 images and 5.46 FPS
on 6000 × 6000 images using an RTX 3090 GPU.

Keywords: convolutional neural network (CNN); deep supervision; lightweight model; remote
sensing; semantic segmentation

1. Introduction

Remote sensing is a crucial technical tool for large-scale observations of the Earth’s
surface. With the rapid development of Earth observation and remote sensing imaging
technology, remote sensing has entered the era of big data [1]. Big data qualities for remote
sensing primarily involve three Vs: volume, velocity, and variety of data [2]. Every day, a
massive volume of remote sensing data must be handled in the era of big data for remote
sensing. Furthermore, increasingly diverse remote sensing data are playing important
roles in several fields. Due to advances in imaging technology, very high-resolution (VHR)
imagery has shown considerable potential in remote sensing images (RSIs) interpretation
and has been the focus of semantic segmentation.

Semantic segmentation is a critical task in computer vision, and its special application
to remote sensing is RSI interpretation. It requires pixelwise parsing of the input image to
retrieve the predefined categories to which the elements belong. Semantic segmentation
has broad and vital applications in a variety of fields. This is especially true in the realm of
remote sensing, where subjects such as integrated land use and land cover mapping [3,4],
town change detection [5,6], urban functional areas [7], building footprints [8], impervious

Remote Sens. 2022, 14, 5399. https://doi.org/10.3390/rs14215399 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14215399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6229-7995
https://orcid.org/0000-0002-5440-4081
https://orcid.org/0000-0001-5073-1694
https://doi.org/10.3390/rs14215399
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14215399?type=check_update&version=2

Remote Sens. 2022, 14, 5399 2 of 24

surfaces [9], and water body [10] extraction. The majority of these applications and method-
ologies are based on VHR images and are constrained by the two issues listed below. (1)
Information modeling with little detail. In comparison to prior low-resolution images,
VHR images give unequal spatial and semantic information volume gains. The significant
improvement in spatial resolution allows for the observation of previously unseen features.
However, vital detail information is mixed in with a vast volume of redundant information,
providing additional obstacles for information extraction. (2) Inefficient processing. On
the data processing front, high-resolution imagery implies that the amount of data to be
processed per unit of observation area for interpretation is rising dramatically, posing a
considerable challenge for hardware and algorithms.

Researchers have proposed numerous ways to overcome the difficulties of semantic
segmentation for VHR images in the age of big data. Deep learning algorithms are the
primary techniques for semantic segmentation at the moment. Unlike classic machine
learning algorithms based on prior knowledge and predetermined rules, deep learning
algorithms are data-driven algorithms that perform poorly with tiny data samples but
may be utilized to great advantage in the era of big data. Deep learning-based convolu-
tional neural networks (CNNs) outperform classic machine learning methods in terms
of performance. Fully convolutional networks (FCNs) [11] have been utilized to obtain
outstanding results in the semantic segmentation of RSIs. Following study, numerous
model variants based on the FCN architecture have been developed, making substantial
advances in various aspects. UNet [12], which is based on an encoder-decoder architecture,
enhances the FCN’s capacity to represent the multiscale features of images through con-
traction paths and expansion paths for achieving high-precision road [13] and coastline
recognition [14] in RSIs. The DeepLabv3 series [15,16] utilize parallelized atrous spatial
pyramid pooling (ASPP) with varying ratios to expand the models’ reception fields while
obtaining multiscale features; these models are widely used in RSI semantic segmentation,
cloud detection [17], etc. However, because to the poor inference speeds of these models
and the high hardware needs placed on deployed devices, these approaches find it difficult
to overcome the aforementioned two problems. Figure 1 depicts the problem of building
segmentation models that take both efficiency and performance into account.

Figure 1. Speed-accuracy tradeoff yielded by different semantic segmentation methods on the ISPRS
Potsdam dataset with a size of 6000 × 6000 pixels using an RTX 3090 GPU. Orange points: different
versions of our proposed method. Red points: lightweight methods with more than 1.5 M parameters.
Blue points: lightweight methods with less than 1.5 M parameters. Our proposed methods achieve
the best speed-accuracy tradeoffs. It is worth noting that that the sizes of the corresponding points of
the methods are positively correlated with their parameters.

In addition to investigating model segmentation performance, another approach is
to optimize the efficiency and accelerate the inference speed of the utilized model. A

Remote Sens. 2022, 14, 5399 3 of 24

conceivable way to accomplish lightweight model building is to reduce the number of
model channels and add an attention mechanism to compensate for the loss in model
performance [18]. In addition to incorporating an attention module, the introduction
of a deep supervision [19] module can also enhance the segmentation performance of
the model. By actively monitoring the body and edge characteristics of the object of
interest, a lightweight semantic segmentation network was suggested to maximize the
overall consistency and object details of semantic segmentation results [20]. Loss functions
expressly designed for the semantic segmentation task can speed up the learning process
of the resultant model for fundamental spatial information such as borders [21] and spatial
correlations [22], as evidenced by higher performance with the same amount of training
epochs. These lightweight networks struggle to capture the rich, detailed aspects of VHR
images with fewer parameters, reducing accuracy significantly.

We investigate a solution for alleviating data interpretation burden in the era of large
data for remote sensing that balances performance and inference speed. The functions of a
lightweight network backbone, an attention mechanism, a deep supervision module, and a
loss function in attaining effective semantic segmentation are thoroughly investigated in
this paper. Our contributions are summarized here.

(1) To alleviate the VHR images interpretation mistake in the age of large data, an efficient
deep-layer and shallow-channel network with spatial and semantic enhancement
losses (DSANet) is developed.

(2) Without inference speed costs, two multiscale feature losses are proposed: improved
multiscale spatial detail (MSD) and hierarchical semantic enhancement (HSE). The
MSD loss is intended to improve the model’s extraction of underlying spatial informa-
tion, whilst the HSE loss assists the model in understanding the observed distribution
of categories.

(3) The addition of the embedding attention module (EAM) decreases the attention
module’s complexity from quadratic (self-attention) to linear with equivalent accuracy,
as well as increasing inference speed for large images.

(4) On the ISPRS Potsdam and Vaihingen benchmark data-sets, we attain outstanding
results. Using an RTX 3090 GPU, we achieve mean intersection over unions (mIoUs)
of 79.19% on the Potsdam test set and 72.26% on the Vaihingen test set, with a speed
of 470.07 frames per second (FPS) on 512 × 512 images and 5.46 FPS on 6000 ×
6000 images.

The rest of this paper is organized as follows. Section 2 reviews related works involv-
ing efficient network designs, efficient semantic segmentation approaches, information
enhancement modules, and attention mechanisms. Section 3 presents the network structure
of the proposed model and the detailed principles of its modules. Section 4 introduces
the utilized datasets and demonstrates the implementation details of our experiments.
The ablation experiments and a results comparison with state-of-the-art methods are also
included in Section 5. Finally, Section 6 provides a summary of the paper.

2. Related Works

Many lightweight segmentation algorithms have obtained impressive results on many
benchmarks in the domains of autonomous driving, video surveillance, and VHR remote
sensing scene perception in the last 5–10 years. This section reviews efficient network
designs and related works, categorizing them as follows: efficient network designs, efficient
semantic segmentation approaches, information enhancement modules, and attention
mechanisms.

2.1. Efficient Network Designs

Researchers are discovering that network design is becoming increasingly crucial as
the Visual Geometry Group network (VGGNet) [23], the residual network (ResNet) [24],
and DenseNet [25] models continue to be suggested. Because semantic segmentation is
a dense prediction task, related models tend to have more parameters and slower infer-

Remote Sens. 2022, 14, 5399 4 of 24

ence speeds, which is harmful to model deployment and severely limits their application
possibilities. An efficient network design paradigm lends itself well to the creation of
efficient segmentation networks. By extensively replacing the 3 × 3 convolution in the
model with a 1 × 1 convolution and reducing the number of channels in the 3 × 3 convo-
lution, SqueezeNet [26] achieves comparable classification accuracy to AlexNet [27] with
2% of the total parameters. The MobileNet series [28–30] has steadily introduced new
techniques to deep separable networks such as inverted residuals and neural architecture
search (NAS). By integrating group convolution and channel shuffling operations and
employing four recommendations, the ShuffleNet series [31,32] achieves a balance between
accuracy and parameter number. 1. Equal channel widths minimize the memory access
cost (MAC). 2. Excessive group convolution increases the MAC. 3. Network fragmentation
reduces the degree of parallelism. 4. Elementwise operations are nonnegligible. Several
outstanding and efficient semantic segmentation models have been presented as a result of
these exploratory efforts on efficient network construction.

2.2. Efficient Semantic Segmentation Methods

Efficient semantic segmentation models strive for a balance between accuracy and
speed, with considerable inference speed benefits at a low accuracy cost. They represent a
significant development in the field of semantic segmentation in terms of efficiency, and
they have created many good works based on the collaborative efforts of scholars. The
two dominant approaches point the way to achieving high-accuracy and efficient semantic
segmentation. 1. Light-weight backbones. ENet [33], a representative of earlier efficient
segmentation models, greatly reduces the number of required parameters and floating point
operations (FLOPs) by employing an asymmetric encoder-decoder structure and factorizing
filters. Subsequent work has focused on asymmetric networks, with the goal of improving
model performance by using deeply separable convolutions [34], dilated convolutions [35],
factorized convolutions

:
[36,37], dense connections [38], skip connections [39], pyramidal

pooling [40] and channel splitting and shuffling [41]. The Fast-shallow CNN (SCNN) [42]
adopts shared shallow network paths to encode details while learning contexts at low resolu-
tions, saving computing costs. STDCNet [38] utilizes a lightweight backbone network from
DenseNet with layer concatenation. Dual-resolution branch networks [43], exemplified by
the bilateral segmentation network (BiSeNet) series [44,45], provide effective segmentation
by modifying extraction branches for spatial and semantic information independently.
2. Feature aggregation. The deep feature aggregation network (DFANet) [46] recommends
two deep branches where several bilateral fusions are conducted. By steering upper-level
feature upsampling using low-level features, SFNet [47] achieves higher-resolution restora-
tion and cross-layer feature aggregation. DDRNet [48] advises two deep branches between
which multiple bilateral fusions are performed.

2.3. Information Enhancement Modules

The information in computer vision tasks can be divided into spatial and semantic
information, both of which contribute significantly to accurate segmentation. (1) Enhancing
spatial information. Typically, the shallow layer of the encoder may better describe spatial
information. Ensuring that a branch has a high resolution preserves spatial information
to the greatest extent possible. STDCNet adopts the Laplacian kernel of the pyramid
hierarchy as an auxiliary loss function, which expedites the process of learning spatial
edge features. Researchers suggest that the quantifications and statistics of spatial texture
aspects are likewise of great significance due to quantization and counting operators.
(2) Enhancing semantic information. PSPNet [49] adopts pyramid pooling to enhance the
observed multiscale semantic features. The DeepLab series [15,16,50,51] utilizes parallel
atrous convolutions with varying dilation rates; this approach is called ASPP, which can
encode multiscale semantic information more effectively. DANet [52] models long-range
dependencies in the channels and positions of sematic features using a dual self-attention
module. OCRNet [53] explicitly turns the pixel classification problem into an object area

Remote Sens. 2022, 14, 5399 5 of 24

classification problem, computes the relationship between each pixel and each object region,
and augments the representation of each pixel with an object-contextual representation.

2.4. Attention Mechanisms

The selected attention mechanism is a crucial component of model design and is a key
module for improving model performance. It is a descriptive weighting of the relationship
between a particular attribute (from a small pixel value to an entire channel) and the data,
so that it can be chosen to suppress or amplify that attribute at a particular location in order
to achieve a selective representation of a particular feature for the model. The outstanding
early approach is the squeeze-and-excitation network (SENet) [54], which squeezes the
features on each channel by global maximum pooling and uses a fully connected layer to
encode the features into a low-dimensional space before performing decoding. This makes
the SENet an excellent attention module without imposing many additional parameters or
a large computational burden on the subject network. The SENet’s concept of squeezing
and extracting channels and examining spatial attention inspired further research. Impor-
tant follow-ups include the block attention module (BAM) [55] and convolutional BAM
(CBAM) [56]. A BAM includes a two-branch parallel attention computation paradigm,
with channel attention branches that adhere to the SENet’s approach. Spatial features are
squeezed in the channel dimension by a 1× 1 convolution, key spatial features are extracted
using a 3 × 3 convolution, and finally, a pixelwise summation operation is performed for
both attention weights. A CBAM selects a multistep attention paradigm that combines
channel attention and spatial attention simultaneously. The combination of spatial attention
with gated mechanisms is another way to utilize attention mechanisms [57]. Unlike the idea
of feature compression and extraction in the above work, self-attention [58] is a pixel-level
attention mechanism. The computational complexity and resource needs of this method
are an order of magnitude more than those of the preceding approaches, despite the fact
that its performance is superior. Transformers [59], which outperform CNNs in many
tasks, are excellent models based on self-attention; however, researchers are still designing
optimizations for visual tasks such as patches [60] and hierarchical architectures [61,62] to
overcome the fatal flaw of a computationally intensive attention mechanism. Fortunately,
self-attention based on queries, keys and values can be optimized from O(n2) complexity
to linear complexity by changing the order of computation [63], performing approximate
computation [64], and conducting low-rank singular value decomposition [65].

It is typical practice for effective semantic segmentation networks [33,44] to utilize
an attention module based on the SENet or linear simplified self attention due to its
computational efficiency and inference speed.

3. Methodology

Our proposed segmentation model (DSANet) adheres to the original design concepts
outlined below: (1) to adhere to Occam’s razor: entities should not be multiplied beyond
necessity; (2) to have the smallest possible number of parameters while obtaining acceptable
accuracy; and (3) to avoid modules that improve the model’s representation capabilities but
consume an unacceptable amount of time during inference. Important aspects of the model
include: (1) its low channel capacity and extra downsampling stages in the backbone to
quickly obtain large perceptual fields, (2) the combined multiscale spatial detail loss and
hierarchical semantic enhancement loss in the deep supervision module, and (3) a simple
attention module with linear complexity. The details of DSANet can be seen in Figure 2.

Remote Sens. 2022, 14, 5399 6 of 24

EAM

Semantic

Seg Head

Contracting

Auxiliary Seg

Aux

Head1

Aux

Head2

Aux

Head3

Aux

Head4

Expansive

Auxiliary Seg

Aux

Head7

Aux

Head6

1/4 1/4
1/8 1/8

1/16
1/32

1/64

Pixel-wise

Add

Pixel-wise

Add

Aux Head

Aux Head
MSD

Module

HSE

Module
Aux Head

Aux Head
MSD

Module

HSE

Module

Figure 2. The network architecture of DSANet. Note that the green blocks are encoder components,
whereas the red blocks and the semantic segmentation head are decoder components. All auxiliary
segmentation heads within the dashed box are only engaged during model training, whereas only
the remaining modules use inference time.

3.1. Network Architecture of the Proposed Method

DSANet is an asymmetric, U-shaped, basic network with an encoder for the contract-
ing path and a decoder for the expansion path.

In contrast to prior lightweight semantic segmentation networks that employ two-
branch designs, i.e., semantic and spatial branches, we employ a single backbone branch
that is anticipated to extract both spatial and semantic information. For such single-
branch networks, it is essential to improve spatial feature extraction. Good spatial texture
information and color information are required for the model to sense semantics, and correct
boundary detail information is essential for directing the high-resolution reconstruction
of semantic components. Observing the inference time spent by BiSeNet (see details in
Table 1) reveals that (1) the spatial path (SP) for extracting spatial information, the attention
refinement module (ARM) for refining semantic features, and the feature fusion module
(FFM) for feature interaction account for more than 30% of the model inference speed;
(2) performing feature operations at the second-to-last scale (ARM16) is extremely time-
consuming and unsatisfactory.

Table 1. Analysis of the Number of Parameters, Number of Computations and Inference Time of the
BiSeNet Network.

Module Params (M) FLOPs (G) Inference Time (ms)

SP 0.685 9.586 3.84
ARM32 4.521 1.023 0.74
ARM16 2.323 2.048 21.94

FFM 0.984 1.836 4.56
All 8.513 14.493 31.08

Note that all data are in percentages. ARM32 and ARM16 represent ARM applied to 1/32 and 1/16 scales,
respectively.

Remote Sens. 2022, 14, 5399 7 of 24

To reduce the number of parameters in the model, including the number of layers and
channel capacities, are redesigned. A typical semantic segmentation task only downsamples
an image to 1/16 or 1/32 through the encoder and performs operations such as feature
refinement and attention at this scale; this is totally insufficient for VHR images. Our
method attempts to investigate the semantic content of VHR images at a more granular
level. Semantic information extraction can benefit from increased channel capacity, but
the resulting redundancy necessitates high model refinement and essential information
discrimination. For this reason, a lightweight semantic segmentation job need to reduce
the channel capacity of deep layers.

There are two suggested variants of DSANet, DSANet64 and DSANet32, with the
numbers denoting the channel capacity of the model. Using DSANet64 as an example,
the model encoder is briefly described in Table 2. At Stage 0, feature maps are subjected
to continuous quick downsampling procedures to decrease the amount of computations
performed from scratch. In stages 1–4, downsampling and feature extraction are alternated
with a slower rate of channel capacity development. Another continuous quick downsam-
pling procedure is done in the subsequent two steps. The final encoder extracts semantic
information at a scale of 1/64 with a channel capacity of 256, which is quite low in com-
parison to other models’ channel capacity of 1024. Finally, a self-attention module is used
to simulate the most profound semantic information inside features over the long-range.
Through skip connections, stages 7–9 merge the feature map with rich spatial information
in the encoder with the upsampled semantic feature map and eventually restore the image’s
scale to 1/8 that of the original. The final result of semantic parsing is achieved via the
segmentation head.

Table 2. Detailed Architecture of the DSANet Encoder.

Stages Output Size KSize S
DSANet32 DSANet64

R C R C

Image 512 × 512 3 3
Stage 0 256 × 256

128 × 128
3 × 3 2

2
1
1

32 1
1

64

Stage 1 128 × 128 3 × 3 1, 1 2 32 2 64
Stage 2 64 × 64

64 × 64
3 × 3 2, 1

1, 1
1
1

32 1
1

64

Stage 3 64 × 64 3 × 3 1, 1 2 64 2 128
Stage 4 32 ×32

32 × 32
3 × 3 2, 1

1, 1
1
1

64 1
1

128

Stage 5 16 × 16 3 × 3 2 1 64 1 128
Stage6 8 × 8 3 × 3 2 1 128 1 256

FLOPs 2.09G 7.46G
Params 1.14M 4.58M

Note that ”Stage” in the table refers to the combination of a series of Conv-BN-rectified linear unit (ReLU). KSize,
S, R, and C refer to the kernel size, stride, number of repetitions and number of out channels, respectively. Stages
1–4 use the basic DSA module, and the Stages 5 and 6 use the bottleneck version of the DSA module. FLOPs are
calculated based on 512 × 512 images.

3.2. EAM

To compare and comprehend the features of the EAM and its advantages in terms
of efficient semantic segmentation, we will first review the self-attention mechanism. As
illustrated in Figure 3. A, the self-attention mechanism calculates the attention relations
between various elements by the dot product operation, which allows for a more accurate
representation of long-range information. Given a feature map F ∈ RC×H×W , where
H, W, and C represent the length, width, and number of channels of the feature map F,
respectively, the feature map F is reshaped to a sequence X = {x1, x2, . . . , xN}, where
xi ∈ RC is the feature vector of element N and N (equal to H ×W) is the number of
elements. Three linear transformations are performed on each of these feature vectors

Remote Sens. 2022, 14, 5399 8 of 24

to encode the information into a high-dimensional space and to produce Q ∈ RN×dk ,
K ∈ RN×dk , and V ∈ RN×dv :

Q = WQ(X), K = WK(X), V = WV(X) (1)

where dk and dv are set to be equal to the same number for the simplicity of calculation in
general.

Norm

A. dot product self-attention

X

N C

k

Q

N d

v

V

N d
sa

v

X

N d

scoreA

N N
T

k

K

d N

Norm

A. dot product self-attention

X

N C

k

Q

N d

v

V

N d
sa

v

X

N d

scoreA

N N
T

k

K

d N

Norm

B. embedding self-attention I

v

V

E d
sa

v

X

N d

X

N C

k

Q

N d

T

k

K

d E

scoreA

N E

Norm

B. embedding self-attention I

v

V

E d
sa

v

X

N d

X

N C

k

Q

N d

T

k

K

d E

scoreA

N E

Norm

C. embedding self-attention II

v

V

E d
sa

v

X

N d

X

N C k

Q

N d

T

k

K

d E

scoreA

N E

Norm

C. embedding self-attention II

v

V

E d
sa

v

X

N d

X

N C k

Q

N d

T

k

K

d E

scoreA

N E

Figure 3. Dot product self-attention SA (A) and two kinds of embedding self-attention: EAM I (B)
and EAM II (C).

The similarity measure between the i-th element and the j-th element can be calculated
by the cosine similarity formula, expressed as (qi

Tk j). The softmax function is chosen as
the normalizing function because the attention given by the i-th element to the j-th element
depends not only on their similarity but also on the attention paid by the i-th element to all
other elements. The attention scores between elements and the outcomes of self-attention
are computed by the following (2):

Attn(Q, K, V) = Norm(Similarity(Q, K)) ·V (2)

where Norm represents the softmax normalization function, and Similarity(·), which cal-
culates the relationship between Q and K, is defined as:

Similarity(Q, K) =
QKT
√

dk
(3)

where
√

dk is the scaling factor that maintains the variance of Similarity(Q, K) at 1, pre-
venting the gradient from vanishing. Similarity(Q, K) is abbreviated as A.

An intuitive approach for reducing the computational complexity of self-attention
is that not every attention between a pair of elements is sufficiently useful, and so we
may only need to obtain the attention relations between the i-th element and a set number
of essential components. Two techniques are offered to accomplish the aforementioned
concept.

(1) In accordance with the fundamental structure of self-attention, the feature vector X is
linearly transformed to generate Q, K and V. The difference is that the dimensions of
K and V are altered from RN×dk to RE×dk , where E is the embedding dimensionality.
The first dimension of K and V from N to E simulates the process of selecting the top
E most important elements from N. Due to probable image size changes between
training and test data, N cannot be predicted in advance for the semantic segmentation
task; thus, adaptively pooling the feature vector X in advance is essential to achieve
N with fixed dimensions. Theoretically, without considering adaptive pooling, the
computational complexity of embedding self-attention I (Figure 3B) is O(Edk N). In
the real case, the computational complexity will be better than this value, satisfying a
lower linear computational complexity.

(2) Unlike the first two attentional approaches, embedding self-attention II (Figure 2C)
generates only Q using the feature vectors X, while the memory K and V are pre-

Remote Sens. 2022, 14, 5399 9 of 24

generated random matrices in RN×dk and optimised during training phase. This
strategy may successfully overcome the difficulty associated with the unpredictability
of N and reduce calculation time for K and V. Due to the fact that K and V are fully
independent of the feature vector X, the interactions between components are weak,
making it difficult for EAM II to establish genuine attentional connections. We employ
the approach in [65] to normalize the rows and columns of A independently, as it
is possible that strengthening the connections between components using a single
softmax function, which is often used in self-attention mechanisms, may not yield
optimal results. L1 normalization is specifically applied following softmax activation.
This method’s computational complexity is also O(Edk N). The following are the
precise formulae for the softmax and L1 normalization functions.

Ãi,j = so f tmax(Q, K)i,j =
exp(Ai,j)

∑E
k exp(Ak,j)

(4)

Âi,j = L1_Norm(Ãi,j) =
Ãi,j

∑dk
k Ãi,k

(5)

3.3. MSD Loss

VHR images contain rich detail and texture information, necessitating lightweight
models with strong spatial representation capabilities. The deep supervision module is an
auxiliary segmentation head that helps mitigate problems such as gradient vanishing and
slow network convergence during training and assists the intermediate layer in improving
the model representation; this module is activated only during the model training phase. A
novel deep supervision module based on the MSD loss was proposed in [38]. This module
uses second-order differential operators to extract boundary and detail information from
the labels at various scales to improve the spatial representation of the model. However, this
method achieves suboptimal results on VHR images when applied to DSANet. Considering
that the input of this module includes all feature maps from a shallow layer, it is difficult
for the lightweight DSANet to effectively represent semantic features because VHR images
are rich in semantic information and the deep spatial supervision process is too restrictive.
It is recommended that our MSD loss with a selective kernel ratio will fix this issue.
This kernel arbitrarily truncates portions of the feature maps so that the corresponding
convolution kernels of the network layers may be less affected by spatial deep supervision.
The selected feature maps enter the MSD module to improve the network’s capacity to
represent boundary details, while the other feature maps are transmitted to further layers
to provide appropriate semantic representations. The particular MSD loss calculation
procedure is as follows.

Constructing multiscale edge extraction pyramids. The most frequently used second-
order differential operator is the Laplace operator in two dimensions, which is formulated
as follows:

∆ f =
∂2 f
∂x2 +

∂2 f
∂y2 (6)

where f is a twice-differentiable real-valued function. For processing RSIs in the form of
discrete data, the discrete Laplace operator O (see Equation (7)) is applied.

O =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (7)

Laplace convolution operators with varying strides are utilized to create multiscale
detail maps D0 ∈ RH×W , D2 ∈ RH×W and D4 ∈ RH×W in order to fully leverage the
multiscale properties of the label maps. A pyramid detail map P ∈ RH×W is obtained by
summing these multiscale detail maps.

Remote Sens. 2022, 14, 5399 10 of 24

P = D0 ⊕D2 ⊕D4 (8)

Given the output feature maps Fin ∈ RC×H×W of a shallow layer, the selected feature
maps FS ∈ RC×H×W are obtained through the selective kernel. Next, after a 3 × 3 convolu-
tion and a 1 × 1 convolution, the channel dimensionality of FS ∈ RH×W is reduced to 1,
which matches the shape of the pyramid detail map.

Evaluation loss. For a sparse matrix with extremely unbalanced categories (such as
the pyramid detail map), the percentage of pixels containing detailed information is very
small (the pixels in red and black are compared in the pyramid detail map in Figure 4),
so it is difficult to obtain better results with the binary cross-entropy (BCE) loss alone. A
typically utilized strategy is to optimize the loss evaluation method by incorporating a
category proportion-insensitive Dice loss that has a solid ability to distinguish between
foreground and background information. The formulas for the BCE loss and Dice loss are
as follows.

Lbce(F ,P) = −
H×W

∑
i=1

fi · log pi + (1− fi) · log(1− pi)

H×W
(9)

Ldice(F ,P) = 1−
2 ∑H×W

i=1 fi · pi+ε

∑H×W
i=1 (fi) + ∑H×W

i=1 (pi)
2+ε

(10)

where fi and pi represent the values of the i-th element derived from the feature map F
and the pyramid detail map P , respectively, and ε is a very small number used to smooth
the gradient and is set to 1× 10−8.

CBRCBR Conv3x3+BN+ReLUConv3x3+BN+ReLU Element-wise Sum MSD LossMSD Loss

Laplacian

Conv S1

Laplacian

Conv S2

Laplacian

Conv S4

Laplacian

Conv S1

Laplacian

Conv S2

Laplacian

Conv S4

CBR Conv1x1

Label mapLabel map Pyramid detail mapPyramid detail map

Feature mapsFeature maps
Selected

Features

Selected

Features

Ratio Selective

Kernel

Figure 4. Schematic diagram of the MSD loss calculation process. Stridds 1, 2, and 4 in the Laplace
convolution operator are denoted as S1, S2 and S4.

The mean squared error (MSE) combines these two losses, and the calculation formula
is shown as follows.

LMSD(F ,P) = Lbce(F ,P) + βLdice(F ,P) (11)

Remote Sens. 2022, 14, 5399 11 of 24

where β is a hyperparameter, which is 1.0 in this paper.
The specific calculation process of the MSE loss is shown in Figure 4.

3.4. HSE Loss

In contrast with the MSD loss, the HSE loss is proposed for enhancing the capacity
of the model to discern the category distributions of images. Category parsing errors
are frequently caused by the large number of categories in VHR images, which contain
considerable intraclass spectral variations as well as moderate interclass spectral changes.
Adding semantic information to the model can effectively reduce the impact of this issue
on the segmentation results.

Our proposed HSE loss is embedded in the decoder without an inference cost. Figure 5
and Algorithm 1 provide detailed information. We denote the label map y ∈ RH×W , which
goes through the following process to obtain the HSE vector.

vector1vector1

vector2vector2

vector3vector3

vector4vector4

vector1

vector2

vector3

vector4

(a)(a) (b)(b) (c)(c)

Hierarchical

Semantic Boundary

Hierarchical

Semantic Boundary

Local Frequency

Distribution

Local Frequency

Distribution

Global Frequency

Distribution

Global Frequency

Distribution

c1c1 c2c2 c3c3 c4c4 c5c5 c6c6c1 c2 c3 c4 c5 c6

d3-1d3-1 d3-2d3-2d3-1 d3-2 d3-16d3-16d3-16d3-15d3-15d3-15d3-1 d3-2 d3-16d3-15

d2-1d2-1 d2-2d2-2 d2-3d2-3 d2-4d2-4d2-1 d2-2 d2-3 d2-4

d4-1d4-1 d4-2d4-2d4-1 d4-2 d4-64d4-64d4-64d4-63d4-63d4-63 d4-64d4-63d4-1 d4-2 d4-64d4-63

d1-1d1-1

Figure 5. Schematic diagram of the HSE vector calculation process with 4 levels. (a) Boundaries in
different colors indicate different segmentation scales. (b) Simplified diagram of the local frequency
distribution. (c) Visual presentation of the HSE vectors.

(1) Set the hierarchical semantic boundary. Semantic boundaries at different locations
can capture the distributions of categories in different local regions, and semantic
boundaries at different scales can reflect the multiscale characteristics of category
distribution features. Assume that N boundary levels and the boundary level of n slice
the label map in 2n patches along the length and width, respectively. The label patches
are set as yn = {y1, y2, . . . , yN}, where yn = {y(j)

n }22n

j=1 is the set of feature patches in

level n and y(j)
n ∈ R

H
2n × W

2n .
(2) Calculate the local frequency distribution. The category distribution d(j)

n is calculated

separately for each label patch y(j)
n , where j is the sequence number of the label

patch set.
(3) Aggregate the global distribution vector. The label patches at boundary level n are con-

catenated to generate the global frequency distribution vector v̂n. The same processing
flow is applied to the prediction map output from network stage K in the decoder to
obtain the vector vn. The HSE vector of prediction is v = {vn}N

n=0, and that of the label
map v̂ = {v̂n}N

n=0. The HSE loss is obtained by computing the BCE between the HSE
vector of the prediction v and the HSE vector of the label map v̂.

Remote Sens. 2022, 14, 5399 12 of 24

The HSE algorithm is defined as follows:

Algorithm 1: HSE loss for the deep supervision module.

Input: Batch of examples with labels X = {(xi, yi)}Bi=1
Output: HSE loss LHSE
Result: Out stage K, Boundary levels N, Boundary weights {αi}N

i=1, Numbers of
classes c, Ignored label cignored, Length H and Width W of examples

1 for b← 1 to B do
2 Fb,0 ← Stage0(xb)
3 for k← 0 to K− 1 do
4 Fb,k+1 ← Stagek(Fb,k)
5 end
6 Fb ← Resize(arg maxFb,K, (H, W))
7 for n← 0 to N do
8 Divide Fb and yb equally into 22n patches // along the length and

width

9 Denote patches Fb,n ∈ R22n× H
2n× W

2n and yb,n ∈ R22n× H
2n× W

2n

10 for j← 1 to 22n do
11 d̂(j)b,n ← FrequencyDistribution(y(j)b,n, c, cignored) // Ignore mask labels

and compute frequency distribution

12 d(j)b,n ← FrequencyDistribution(F (j)
b,n, c, cignored)

13 end

14 v̂b,n ← Concat({d̂(j)b,n}
22n

j=1) // Aggregate the global distribution
vector

15 vb,n ← Concat({d(j)b,n}
22n

j=1)

16 Lb,n ← BCELoss(v̂b,n, vb,n)
17 end
18 LHSE ,b ← 1

n ∑n(ffnLb,n)
19 end
20 LHSE ← 1

B ∑b LHSE ,b

4. Data Set and Experimental Details
4.1. Benchmark Description

(1) ISPRS Potsdam Dataset (https://www.isprs.org/education/benchmarks/UrbanSemLab/
2d-sem-label-potsdam.aspx (accessed on 2 September 2021).)

For the ISPRS competition, the Potsdam dataset serves as an urban modeling and
semantic labeling baseline. Large building blocks, narrow streets, and dense settlement
architecture may be seen in this typical old city. Data from DSM and nDSM orthophotog-
raphy are available for each patch. For this dataset, there are 38 patches of the same size,
all with the same ground sampling distance (GSD), and 24 of these patches are training
data while the other 14 are validation data. Impervious surfaces, low-vegetation zones,
trees, autos and the background are all manually determined categories. We used IRRG
(near-infrared, red, and green bands) as the model’s input data in order to compare it to
other approaches.

(2) ISPRS Vaihingen Dataset (https://www.isprs.org/education/benchmarks/UrbanSemLab/
2d-sem-label-vaihingen.aspx (accessed on 2 September 2021).)

Another benchmark from the ISPRS semantic labeling challenge is the Vaihingen
dataset. It depicts a little community with a large number of single-story and small-scale
multistory structures. The data types are configured in the same way that the Potsdam
dataset was. With a GSD of 9 cm, it has 33 patches, 17 of which are set aside for validation.
The patch sizes range from 1388 × 2555 to 3816 × 2550.

https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx

Remote Sens. 2022, 14, 5399 13 of 24

4.2. Evaluation Metrics

The mean of the classwise F1 score (mF1) and the mean of the classwise intersection
over union are the most widely accepted metrics for evaluating model performance in
semantic segmentation tasks (mIoU). The mF1 focuses on the evaluation of the outcomes
predicted by the model at the pixel level, whereas the mIoU analyzes expected results in
terms of the degree of overlap with the ground-truth labels.

The F1 score is the harmonic mean of the precision and recall, where the precision is
the number of true-positive results divided by the number of all positive results, including
those not identified correctly, and the recall is the number of true-positive results divided
by the total number of samples that should have been identified as positive. Therefore, the
precision, recall, and F1 score can be computed as

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
(13)

F1 = 2 · precision · recall
precision + recall

(14)

where TP, FP, FN, and TN represent true positives, false positives, false negatives and true
negatives, respectively.

The IoU, also known as the Jaccard index, is a statistic used for gauging the similarity
and the diversity between the predicted and the ground-truth labels. The IoU it can be
represented as

IoU =
|Sp ∩ Sgt|
|Sp ∪ Sgt| (15)

where Sp and Sgt represent the set of predicted pixels and the set of ground-truth labels
for the corresponding category, respectively, and ∩ and ∪ are the intersection and union
operations defined on the set.

To compare the efficiency of the tested models, the study introduces the FLOPs and
FPS as theoretical and practical measures of the model inference speed.

4.3. Data Preprocessing and Augmentation

The semantic interpretation of RSIs is characterized by fewer data samples but a higher
size per picture than other standard computer vision tasks. In practice, we frequently
confront two obstacles: (1) computing resources are constrained and GPUs struggle to
enable direct input of full-frame RSI sample data; (2) a small sample size always results in
overfitting and poor model generalizability. Through picture cropping, the image size may
be lowered, and the data sample size can be raised proportionally. In addition, typical data
augmentation techniques such as random cropping, random flipping, random rotation,
and photometric distortion can successfully increase sample variability and enhance the
generalizability of the used model. Given the considerable picture size variances in the
Vaihingen dataset, it is required to standardize the image dimensions.

The specific strategy for data preprocessing and augmentation in this experiment is
as follows. Preprocessing. (1) The raw images are cropped to a size of 500 × 500 pixels
with a stride equal to half the size of the cropped image. (2) The images with lengths
or widths that are less than a quarter of the cropped image size are discarded to ensure
that enough valuable information exists within the images and to prevent images with
excessive length and width differences, such as bars, from participating, as this can impair
the model’s ability to learn global features. Augmentation. (1) Multiscale resizing. A scale
number is randomly selected from 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 for the height and
width. The current scale is equal to 512 multiplied by the scale number. Each cropped
image is resampled to the set scale. (2) Random cropping. A 512 × 512 pixel block of
data is cropped at a randomly selected location in the image; 512 is a common size in

Remote Sens. 2022, 14, 5399 14 of 24

computer vision that satisfies an exponential multiple of 2, thereby avoiding the problem
of indivisibility by 2 during operations such as pooling and downsampling. (3) Random
flipping. (4) Photometric distortion. The brightness, contrast, saturation and hue levels of
the images are randomly adjusted. (5) Normalization. The data distribution is adjusted to
conform to a normal distribution.

Note that no data preprocessing and augmentation methods are used in the validation
step except normalization, which is used to simulate the actual working flow of data
processing.

4.4. Implementation Details

In all experiments, we establish a virtual Anaconda environment with Python 3.7
and PyTorch 1.8.2 as the standard. The specific graph computation platform contains
CUDA 11.1, CUDNN 8.0.4 and TensorRT 7.2.3.4 on an NVIDIA RTX 3090 GPU. All latency
benchmarks for our methods are computed by trtexec with a batch size of 1.

The specific parameter configuration is as follows. All experiments use a batch size of
16. To ignore the effect of the gradient descent algorithm on the experiments, stochastic
gradient descent (SGD) is set as the standard optimizer. Following the optimizer parameter
settings of most works, we choose a momentum of 0.9 and a weight decay of 5× 10−4. The
learning rate (lr) is initially set to 0.001. All models are iterated 80,000 times with weights
and evaluated for model performance. We utilize the “poly” policy as the learning rate
update scheduler. The quantity lr can be calculated by the formula lr = lr0 · (1− iter

iter0
)power,

where lr0 is the initialized learning rate, iter0 is the maximum number of iterations and the
power is 0.9. To prevent lr from being so small that the weights are almost negligible in the
later iterations of the model training update process, we set the lower cutoff value for the
learning rate to 1e-5. We employed the cross-entropy loss function, which is commonly
used for semantic segmentation, to describe the difference between the final predictions
and the labels. In the validation test session, we follow the settings in [66] and directly
input the whole raw images, which benefits from the GPU parallelization of convolutions.

5. Experimental Results
5.1. Ablation Study

In this subsection, we design a series of ablation experiments to prove the effectiveness
of our network. All the following experiments are evaluated on the ISPRS Potsdam and
Vaihingen datasets.

5.1.1. Effectiveness of the EAM

Comparing various combinations of EAMs and normalizing techniques, Table 3
demonstrates that the optimal combination is EAM II + Softmax + L1 Norm. EAM I
and EAM II with just softmax activation struggle to represent features accurately across
resolutions. EAM II + Softmax + L1 Norm with varied encoding dimensions yields ex-
cellent performance, outperforming the backbone by 0.97 and 1.12 % based on the mIoU
metric. To investigate the effect of the network stage in which the EAM is located on the
results, we choose to insert the EAM in the deepest three layers for comparison experiments,
taking the computational volume into account. Table 4 illustrates that the EAM is more
efficient at deeper levels and larger image size. SA has the same level of inference speed
as EAM for images of 512 size, but the drawback of quadratic computational complexity
makes the inference speed much slower for images of size 6000, which is undesirable for
large scale semantic segmentation applications. The stage-6 EAM is capable of boosting
model performance by 1.12% mIoU, at the expense of only 6–7% of the inference speed.
Comparatively, applying the EAM to stages 6/7 or 6/7/8 can significantly improve the
model performance, but at the expense of a 20–60% reduction in inference speed, which
is inefficient. Considering the increases in model performance and inference speed, the
optimal placement of the EAM is in the network’s deepest layer.

Remote Sens. 2022, 14, 5399 15 of 24

Table 3. Comparison Among Combinations of Different EAMs and Configurations on the Potsdam
Dataset.

Method Norm E mF1 (%) mIoU (%)
DSANet64 - - 86.90 77.05

+SA Softmax - 87.63 78.20

+EAM I Softmax 64 85.98 75.54
+EAM II Softmax 64 86.61 76.60
+EAM II Softmax+Softmax 64 86.80 76.84

+EAM II Softmax+L1 32 87.52 78.02
+EAM II Softmax+L1 64 87.61 78.17

Table 4. Comparison of the EAM Results Obtained on the Potsdam Dataset in Different Stages.

Method Stage mF1 (%) mIoU (%) 512 FPS 6000 FPS

DSANet64 - 86.90 77.05 503.77 5.83

+SA 6 87.63 77.20 478.57 4.35

+EAM 6 87.61 78.17 470.07 5.46
+EAM 6/7 87.75 78.40 405.00 4.15
+EAM 6/7/8 87.76 78.41 278.34 2.33

5.1.2. Effectiveness of the MSD loss and HSE loss

The selective kernel ratio is critical to the performance of the MSD loss. In Table 5
we can plainly see the model’s performance at various ratios. Experiments conducted on
DSANet32 and DSANet64 show that it is more effective to perform deep spatial supervision
on parts of the feature maps, and the best ratio is 0.5; i.e., half of the feature maps need to
be preserved for further learning of semantic information. This intuitive approach yields
better results and reduces the required training time. Table 6 further explores the stages at
which the insertion of the deep spatial supervision module is more effective in improving
the model performance. The results are as expected: the deep spatial supervision module
provides significant improvements for shallow-layer spatial representations but is not
effective when applied to deep-layer semantic features. It is also found that imposing
deep spatial supervision at each layer is not efficient enough. To select more effective MSD
insertion locations and to be more intuitive, we finally choose to perform deep spatial
supervision at stages 1–4 in the contracting path and at stage 9 in the expansion path. With
multiscale spatial supervision and the spatial detail loss, the model is able to improve the
mIoU by 0.91% on the Potsdam dataset without sacrificing inference speed. As shown in
Table 7, the model performance improvement provided by the HSE loss is relatively small,
and it can steadily improve the model performance by 0.28% mIoU. Using the HSE loss on
the model with the EAM and MSD loss can still yield an mIoU improvement of 0.14%.

Table 5. Comparison of MSD Losses with Different Ratios on the Potsdam Dataset.

Method MSD Ratio mF1 (%) mIoU (%)

DSANet32

0 86.09 75.80
0.25 86.47 76.41
0.5 86.77 76.87
0.75 86.30 76.13
1.0 86.51 76.46

DSANet64

0 86.89 77.05
0.25 87.35 77.76
0.5 87.48 77.96
0.75 87.13 77.43
1.0 86.98 77.17

Note: MSD Ratio 1.0 means the method in [38].

Remote Sens. 2022, 14, 5399 16 of 24

Table 6. Comparison of MSD Losses Achieved on the Potsdam Data Set in Different Stages.

Method MSD Stage mF1 (%) mIoU (%)

DSANet64

no 86.89 77.05
Stage 1 87.04 77.28
Stage 2 87.21 77.53
Stage 3 87.04 77.29
Stage 4 87.31 77.70
Stage 5 86.97 77.15
Stage 6 87.07 77.32
Stage 7 86.81 76.92
Stage 8 86.93 77.12
Stage 9 87.16 77.49

Stages 1–9 87.32 77.73
Stages 1–4 + Stage 9 87.48 77.96

Table 7. Results of the Ablation Study Conducted on the Potsdam Dataset.

Method EAM MSD HSE mIoU (%) mF1 (%)

DSANet64

77.05 86.90
X 78.17 87.60

X 77.96 87.48
X 77.33 87.39

X X 79.06 88.17

X X X 79.20 88.25

5.1.3. Effectiveness of DSANet

All the ablation experiments conducted based on the Potsdam dataset are shown
in Table 7. Introducing the EAM can produce 1.12% and 0.70% gains in the mIoU and
mF1 scores of the model, respectively. The MSD loss effectively improves the mIoU and
mF1 scores by 0.91% and 0.58%, respectively. Introducing the HSE loss in the decoder
can modestly enhance the mIoU by 0.28%. The MSD loss brings a 0.90% mIoU increase
and a 0.57% mF1 increase. The EAM is the most effective module, as it is accompanied
by model mIoU and mF1 growths of 1.12% and 0.71%, respectively. By comparing the
backbone of DSANet64 with DSANet64 for 80,000 iterations and 320,000 iterations (see
details in Figure 6), we find that the improvement yielded by DSANet is significant; even
if the number of training iterations for the backbone network is increased to 4 times the
original amount, it is still difficult to obtain better model performance, while DSANet64 is
able to continue achieving improved model performance up to an mIoU of 80% with the
increase in the number of training iterations.

Figure 6. Comparisons between the mean IoU results of the DSANet64 backbone and DSANet64
with 80,000 iterations and 320,000 iterations on the Potsdam dataset.

Remote Sens. 2022, 14, 5399 17 of 24

5.2. Qualitative Analysis of Features

In order to examine the impact of various modules on the segmentation performance
of the model, we visualize the obtained results in Figure 7. The visualization includes the
original IRRG image, the labels, and the segmentation results of the backbone acquired
after adding the feature enhancement modules separately and after adding all modules.
Figure 7a–e are buildings, low-vegetation areas, trees, unmarked features, and buildings
with complex boundaries, respectively. We observe that the results of segmentation based
on the backbone frequently contain erroneous segmentation borders and even patch holes.
Adding the EAM can effectively resolve the semantic discrimination issues, for example,
by restoring the recognition results for the missing trees in Figure 7c. Adding MSD loss can
help the segmentation process maintain better boundaries, but it cannot compensate for
segmentation mistakes caused by semantics, such as identifying the connected buildings in
Figure 7a while preserving the gaps in the buildings in Figure 7b,d. Adding the HSE loss
can enhance the model’s capacity for semantic perception, preventing the occurrence of the
problem of missing semantics. DSANet64 with EAM, MSD loss, and HSE loss can combine
the capabilities of each module and complement their benefits, and its segmentation results
are more accurate than those of the backbone network.

Image

(IRRG)

Image

(IRRG)
DSANet64DSANet64 +MSD+EAM+EAM +All+AllGTGT

(a)(a)

(b)(b)

(c)(c)

(d)(d)

(e)(e)

(a)

(b)

(c)

(d)

(e)

Impervious

surfaces
TreeTree CarCarBuilding

+HSE+HSE

Low

vegetation

Low

vegetation
BackgroundBackground

Figure 7. Comparison between the segmentation results of the DSANet64 backbone and the EAM,
MSD, and HSE modules. (a–e) are derived from the Potsdam dataset. GT denotes the ground truth.

5.3. Quantitative Comparison with State-of-the-Art Methods

To measure the performance of our model, we compare DSANet with popular
lightweight and efficient semantic segmentation networks whose numbers of parame-
ters vary from 0.1 M to 21 M. We assess the performance of the models in terms of both
accuracy and inference speed on both the Potsdam and Vaihingen datasets. To objectively
evaluate the model performance, we fixed the cutoff threshold for the number of model
parameters to 1.5 M. Table 8 reports the accuracy and inference speed results obtained on
the Potsdam dataset.

Remote Sens. 2022, 14, 5399 18 of 24

Table 8. Comparison of DSANet with the State-of-the-Art Models on the Potsdam Dataset.

Method
Per-Class mIoU (%)

mIoU (%) mF1 (%) Params (M)Imperious
Surface

Building Low
Vegetation

Tree Car

FPENet [40] 76.55 86.30 65.56 66.48 67.16 72.41 83.64 0.11
FSSNet [37] 79.90 86.83 68.69 69.40 75.20 76.00 86.20 0.17
CGNet [67] 78.08 84.88 66.86 68.32 72.17 74.06 84.93 0.48

EDANet [35] 79.83 87.50 69.24 70.73 72.16 75.89 86.13 0.67
ContextNet [43] 79.37 86.86 68.70 69.38 71.96 75.25 85.71 0.86

LEDNet [41] 82.45 89.12 71.17 72.51 74.28 77.91 87.42 0.89
Fast-SCNN [37] 78.15 83.29 68.76 69.74 70.89 74.17 85.05 1.45

DSANet32 82.04 88.79 70.70 72.09 75.58 77.84 87.38 1.28

ESNet [68] 82.31 88.16 71.94 73.37 78.09 78.77 88.00 1.66
DABNet [34] 81.30 88.23 70.95 73.24 73.20 77.38 87.10 1.96
ERFNet [36] 80.38 88.18 70.81 72.30 74.89 77.31 87.06 2.08

DDRNet23-slim [48] 81.27 89.09 69.91 72.37 72.99 77.13 86.91 5.81
STDCNet [38] 82.07 89.41 71.45 73.49 76.78 78.64 87.90 8.57

LinkNet [39] 80.71 88.08 70.75 72.13 76.11 77.56 87.22 11.54
BiSeNetV1 [44] 81.91 88.95 71.83 73.21 80.18 79.22 88.27 13.42
BiSeNetV2 [45] 81.23 89.21 71.03 72.6 73.29 77.47 87.14 14.77

SFNet [47] 80.52 84.97 71.37 72.92 79.94 77.94 87.51 13.31
DDRNet23 [48] 82.58 90.07 71.56 73.55 75.44 78.64 87.89 20.59

DSANet64 83.02 89.50 71.86 74.26 77.34 79.20 88.25 4.65

5.3.1. Segmentation Performances Achieved on the Potsdam Dataset

The comparison between the results produced by DSANet and the other state-of-the-
art models on the Potsdam dataset are shown in Table 8. Among the models with fewer
than 1.5 M model parameters, DSANet32 obtains the best mIoU result of 75.58% on the car
segmentation task and achieves suboptimal performance. In terms of the accuracy-speed
tradeoff, DSANet32 achieves a balance between accuracy and inference speed. DSANet32
is over 2.2 times more accurate than LEDNet, the most accuracy network, and is 2.59%
more accurate than ContextNet, the fastest network. Among the models with more than 1.5
M model parameters, DSANet64 works best to segment impervious surfaces and trees and
achieves comparable results to those of BiSeNet V1, yielding 79.20 % mIoU and 88.25 %
mF1 scores with 35 % of the number of parameters in BiSeNet V1. Figure 8 provides a more
intuitive comparison of the segmentation results obtained by DSANet and the other models
on the Potsdam dataset under the small size settings. Figure 9 shows the whole-image
segmentation results of DSANet and the other models.

Building
Low

vegetation

Low

vegetation

Impervious

surfaces

Impervious

surfaces
BackgroundBackgroundTreeTree CarCarBuilding

Low

vegetation

Impervious

surfaces
BackgroundTree Car

(b)(b)(b) (d)(d)(d)

(f)(f)(f) (g)(g)(g)

(c)(c)(c)

(h)(h)(h) (i)(i)(i) (j)(j)(j)

(k)(k)(k) (l)(l)(l) (m)(m)(m) (o)(o)(o)(n)(n)(n)

(e)(e)(e)(a)(a)(a)

Building
Low

vegetation

Impervious

surfaces
BackgroundTree Car

(b) (d)

(f) (g)

(c)

(h) (i) (j)

(k) (l) (m) (o)(n)

(e)(a)

Figure 8. Examples of segmentation results derived from the Potsdam dataset under the small size
setting. (a) IRRG image. (b) Ground truth. (c) FPENet. (d) FSSNet. (e) CGNet. (f) ContextNet.
(g) Fast-SCNN. (h) ERFNet. (i) STDC1. (j) LinkNet. (k) ICNet34. (l) BiSeNet V1. (m) SFNet.
(n) DDRNet23. (o) DSANet64.

Remote Sens. 2022, 14, 5399 19 of 24

(b)(b)(b)(a)(a)(a)

(h)(h)(h)

(c)(c)(c) (d)(d)(d)

(e)(e)(e) (f)(f)(f) (g)(g)(g)

Building
Low

vegetation

Low

vegetation

Impervious

surfaces

Impervious

surfaces
BackgroundBackgroundTreeTree CarCarBuilding

Low

vegetation

Impervious

surfaces
BackgroundTree Car

(b)(a)

(h)

(c) (d)

(e) (f) (g)

Building
Low

vegetation

Impervious

surfaces
BackgroundTree Car

Figure 9. Examples of segmentation results derived from the Potsdam dataset with the whole image
size setting. (a) IRRG image. (b) Ground truth. (c) FPENet. (d) ERFNet. (f) STDC1. (g) BiSeNet V1.
(h) BiSeNet V2. (i) DSANet64.

5.3.2. Segmentation Performances Achieved on the Vaihingen Dataset

The comparison between the results produced by DSANet and the other state-of-the-
art models on the Vaihingen dataset are shown in Table 9. Among the models with less
than 1.5 M parameters, DSANet32 achieves the best results, with 85.30% and 53.74% mIoUs
on the building and car segmentation tasks, respectively, and its overall 71.31% mIoU and
82.74% mF1 scores are impressive. In comparison with these other models, DSANet32 still
obtains a better inference speed, although it has a disadvantage in terms of the number of
required parameters. DSANet achieves the best car segmentation result, with an absolute
2.67% mIoU lead over the second-place method. DSANet64 achieves a 72.26% mIoU and a
83.49% mF1 on the Vaihingen dataset, which are also the best results. Figure 10 provides
an intuitive comparison between the segmentation results obtained by DSANet and the
other models on the Vaihingen dataset under the small size setting. Figure 11 shows the
whole-image segmentation results of DSANet and the other models.

Table 9. Comparison of DSANet with the State-of-the-Art Models on the Vaihingen Dataset.

Method
Per-Class mIoU (%)

mIoU (%) mF1 (%)
Imperious Surface Building Low Vegetation Tree Car

FPENet [40] 78.37 84.24 63.44 73.79 44.39 68.85 80.67
FSSNet [37] 76.88 83.75 62.96 73.03 45.74 68.47 80.51
CGNet [67] 77.86 84.63 64.88 74.90 47.80 70.01 81.61

EDANet [35] 78.76 84.56 64.51 74.32 51.65 70.76 82.36
ContextNet [43] 77.77 83.65 61.99 73.15 50.32 69.38 81.31

LEDNet [41] 79.25 85.00 65.67 74.72 50.73 71.07 82.48
Fast-SCNN [37] 76.21 82.08 61.06 71.47 44.45 67.05 79.48

DSANet32 79.17 85.30 64.30 74.05 53.74 71.31 82.74

ESNet [68] 79.74 86.24 64.35 74.47 53.77 71.71 82.99
DABNet [34] 78.48 84.42 63.92 73.90 54.16 70.98 82.55
ERFNet [36] 79.34 85.68 64.07 74.51 54.01 71.52 82.88

DDRNet23-slim [48] 78.81 84.53 64.55 73.96 52.92 70.95 82.49
STDC1 [38] 79.03 85.76 64.27 73.69 48.71 70.29 81.84

LinkNet [39] 79.94 85.94 64.60 74.29 54.32 71.82 83.09
BiSeNetV1 [44] 78.84 85.55 64.23 74.15 50.50 70.65 82.17
BiSeNetV2 [45] 79.14 84.91 64.26 74.09 55.59 71.60 83.00

DSANet64 79.50 85.98 63.86 73.60 58.35 72.26 83.49

Remote Sens. 2022, 14, 5399 20 of 24

Building
Low

vegetation

Low

vegetation

Impervious

surfaces

Impervious

surfaces
BackgroundBackgroundTreeTree CarCarBuilding

Low

vegetation

Impervious

surfaces
BackgroundTree Car

(a)(a)(a) (b)(b)(b) (c)(c)(c) (d)(d)(d) (e)(e)(e)

(f)(f)(f) (g)(g)(g) (h)(h)(h) (i)(i)(i) (j)(j)(j)

(k)(k)(k) (l)(l)(l) (m)(m)(m) (n)(n)(n) (o)(o)(o)

Building
Low

vegetation

Impervious

surfaces
BackgroundTree Car

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 10. Examples of segmentation results derived from the Vaihingen dataset under the small
size setting. (a) IRRG image. (b) Ground truth. (c) FPENet. (d) FSSNet. (e) CGNet. (f) ContextNet.
(g) Fast-SCNN. (h) ESNet. (i) ERFNet. (j) DDRNet23-slim. (k) STDC1. (l) LinkNet. (m) BiSeNet V1.
(n) BiSeNet V2. (o) DSANet64.

Building
Low

vegetation

Low

vegetation

Impervious

surfaces

Impervious

surfaces
BackgroundBackgroundTreeTree CarCarBuilding

Low

vegetation

Impervious

surfaces
BackgroundTree Car

(a)(a)

(h)(h)(h)

(b)(b)(b) (c)(c)(c) (d)(d)(d)

(e)(e)(e) (f)(f)(f) (g)(g)(g)

Building
Low

vegetation

Impervious

surfaces
BackgroundTree Car

(a)

(h)

(b) (c) (d)

(e) (f) (g)

Figure 11. Examples of segmentation results derived from the Vaihingen dataset with the whole
image size setting. (a) IRRG image. (b) Ground truth. (c) FPENet. (d) ERFNet. (e) DDRNet23-slim.
(f) STDC1. (g) BiSeNet V1. (h) BiSeNet V2. (i) DSANet64.

Remote Sens. 2022, 14, 5399 21 of 24

5.3.3. Inference Speeds

The comparison between the inference speed results produced by DSANet and the
other state-of-the-art models under different image sizes are shown in Table 10. Our
proposed DSANet32 reaches an inference speed of 8.78 on the 6000 × 6000 images, which
are derived from the Potsdam dataset. In comparison with the fastest inference model at
sizes of 512 and 1024, DSANet32 is only 6-7% behind ContextNet, whose segmentation
performance is far behind that of DSANet32. In a comparison with the corresponding
models, DSANet64 achieves the best inference speed at a size of 512 with 470.07 FPS. At
the 1024 and 6000 sizes, DSANet64 still achieves comparable results. Figure 1 gives a
visualization of the segmentation speed-accuracy tradeoffs provided by all models. The
closer the model’s points are to the upper-right corner, the better that model performs in
terms of the speed-accuracy tradeoff.

Table 10. FPS Results Obtained on the Potsdam Dataset Under Different Size Settings.

Method mIoU (%)
FPS

512 1024 6000

FPENet [40] 72.41 173.47 73.13 2.44
FSSNet [37] 76.00 527.26 183.30 6.27
CGNet [67] 74.06 127.51 66.78 0.58

EDANet [35] 75.89 390.17 135.50 4.37
ContextNet [43] 75.25 688.70 257.25 8.59

LEDNet [41] 77.91 293.48 104.92 3.74
Fast-SCNN [37] 74.17 670.82 261.43 8.60

DSANet32 77.84 648.49 245.66 8.78

ESNet [68] 78.77 295.33 100.27 2.77
DABNet [34] 77.38 173.47 73.13 2.44
ERFNet [36] 77.31 282.66 96.00 2.65

DDRNet23-slim [48] 77.13 429.09 208.38 6.98
STDC1 [38] 78.64 437.41 147.07 5.00

BiSeNetV1 [44] 79.22 351.89 128.64 3.92
BiSeNetV2 [45] 77.47 242.27 114.15 3.87
DDRNet23 [48] 78.64 256.65 99.58 3.46

DSANet64 79.20 470.07 172.16 5.46

6. Conclusions

In this paper, we propose DSANet a deep supervision-based simple attention network,
for large-scale RSI semantic segmentation; our network achieves an excellent balance
between accuracy and inference speed. The main contributions of DSANet lie in three
aspects: a simple attention module with linear complexity called the EAM, which is
employed in the deepest network layer for long-range semantic information modeling; a
improved deep supervision-based MSD loss for supervising portions of the feature map
to directly learn the detailed spatial pyramid features; and a deep supervision-based HSE
loss for supervising the network so that it learns the category frequency distribution of the
training data.

Our DSANet provides consistently outstanding achievement on two benchmark
datasets (i.e., the ISPRS Potsdam and Vaihingen datasets). On the ISPRS Potsdam test
dataset, DSANet64 obtains a mean IoU of 79.20% at 5.46 FPS on 6000 × 6000 images and at
470.07 FPS on 512 × 512 images.

Author Contributions: Conceptualization, W.S. and Q.M.; methodology, W.S.; software, W.S.; valida-
tion, W.S., M.Z. and C.S.; formal analysis, W.S.; investigation, W.S., T.J. and Q.M.; resources, Q.M.;
data curation, W.S.; writing—original draft preparation, W.S.; writing—review and editing, M.Z.,
C.S. and Q.M.; visualization, W.S.; supervision, L.Z. and Q.M.; project administration, Q.M.; funding
acquisition, Q.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The ISPRS dataset can be found through International Society for Pho-
togrammetry and Remote Sensing (https://www.isprs.org/education/benchmarks/UrbanSemLab/
semantic-labeling.aspx (accessed on 2 September 2021)).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.isprs.org/education/benchmarks/UrbanSemLab/semantic-labeling.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/semantic-labeling.aspx

Remote Sens. 2022, 14, 5399 22 of 24

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
RSIs Remote Sensing Images
VHR Very High-resolution
EAM Embedding Attention Module
MSD Multiscale Spatial Detail
HSE Hierarchical Semantic Enhancement
mIoU Mean Intersection over Union
FPS Frames Per Second
FLOPs Floating Point Operations

References
1. Liu, P. A survey of remote-sensing big data. Front. Environ. Sci. 2015, 3, 5. [CrossRef]
2. Laney, D. 3D data management: Controlling data volume, velocity and variety. META Group Res. Note 2001, 6, 1.
3. der Sande, C.V.; Jong, S.D.; Roo, A.D. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping

to assist flood risk and flood damage assessment. Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 217–229. [CrossRef]
4. Costa, H.; Foody, G.M.; Boyd, D.S. Supervised methods of image segmentation accuracy assessment in land cover mapping.

Remote Sens. Environ. 2018, 205, 338–351. [CrossRef]
5. Im, J.; Jensen, J.; Tullis, J. Object-based change detection using correlation image analysis and image segmentation. Int. J. Remote

Sens. 2008, 29, 399–423. [CrossRef]
6. Chen, G.; Hay, G.J.; Carvalho, L.M.; Wulder, M.A. Object-based change detection. Int. J. Remote Sens. 2012, 33, 4434–4457.

[CrossRef]
7. Du, S.; Du, S.; Liu, B.; Zhang, X. Mapping large-scale and fine-grained urban functional zones from VHR images using a

multi-scale semantic segmentation network and object based approach. Remote Sens. Environ. 2021, 261, 112480. [CrossRef]
8. Wang, J.; Hu, X.; Meng, Q.; Zhang, L.; Wang, C.; Liu, X.; Zhao, M. Developing a method to extract building 3d information from

GF-7 data. Remote Sens. 2021, 13, 4532. [CrossRef]
9. Li, P.; Guo, J.; Song, B.; Xiao, X. A multilevel hierarchical image segmentation method for urban impervious surface mapping

using very high resolution imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 103–116. [CrossRef]
10. Miao, Z.; Fu, K.; Sun, H.; Sun, X.; Yan, M. Automatic water-body segmentation from high-resolution satellite images via deep

networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 602–606. [CrossRef]
11. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
12. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

13. Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [CrossRef]
14. Heidler, K.; Mou, L.; Baumhoer, C.; Dietz, A.; Zhu, X.X. Hed-unet: Combined segmentation and edge detection for monitoring

the antarctic coastline. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [CrossRef]
15. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,

arXiv:1706.05587.
16. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic

image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 801–818.

17. Yang, J.; Guo, J.; Yue, H.; Liu, Z.; Hu, H.; Li, K. CDnet: CNN-based cloud detection for remote sensing imagery. IEEE Trans. Geosci.
Remote Sens. 2019, 57, 6195–6211. [CrossRef]

18. Liu, S.; Cheng, J.; Liang, L.; Bai, H.; Dang, W. Light-weight semantic segmentation network for UAV remote sensing images. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8287–8296. [CrossRef]

19. Lee, C.-Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z. Deeply-Supervised Nets. In Machine Learning Research, Proceedings of the
Eighteenth International Conference on Artificial Intelligence and Statistics; Lebanon, G., Vishwanathan, S.V.N., Eds.; PMLR: San Diego,
CA, USA, 2015; Volume 38, pp. 562–570.

20. Deng, C.; Liang, L.; Su, Y.; He, C.; Cheng, J. Semantic segmentation for high-resolution remote sensing images by light-weight
network. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium,
11–16 July 2021; pp. 3456–3459.

21. Liu, S.; Ding, W.; Liu, C.; Liu, Y.; Wang, Y.; Li, H. ERN: Edge loss reinforced semantic segmentation network for remote sensing
images. Remote Sens. 2018, 10, 1339. [CrossRef]

22. Yuan, W.; Xu, W. Neighborloss: A loss function considering spatial correlation for semantic segmentation of remote sensing
image. IEEE Access 2021, 9, 641–675. [CrossRef]

http://doi.org/10.3389/fenvs.2015.00045
http://dx.doi.org/10.1016/S0303-2434(03)00003-5
http://dx.doi.org/10.1016/j.rse.2017.11.024
http://dx.doi.org/10.1080/01431160601075582
http://dx.doi.org/10.1080/01431161.2011.648285
http://dx.doi.org/10.1016/j.rse.2021.112480
http://dx.doi.org/10.3390/rs13224532
http://dx.doi.org/10.1109/JSTARS.2010.2074186
http://dx.doi.org/10.1109/LGRS.2018.2794545
http://dx.doi.org/10.1109/LGRS.2018.2802944
http://dx.doi.org/10.1109/TGRS.2021.3064606
http://dx.doi.org/10.1109/TGRS.2019.2904868
http://dx.doi.org/10.1109/JSTARS.2021.3104382
http://dx.doi.org/10.3390/rs10091339
http://dx.doi.org/10.1109/ACCESS.2021.3082076

Remote Sens. 2022, 14, 5399 23 of 24

23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
25. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
26. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the

Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105.
28. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
29. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

30. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 16–20 June
2019; pp. 1314–1324.

31. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6848–6856.

32. Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. Shufflenet v2: Practical guidelines for efficient CNN architecture design. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 14–18 September 2018; pp. 116–131.

33. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

34. Li, G.; Yun, I.; Kim, J.; Kim, J. Dabnet: Depth-wise asymmetric bottleneck for real-time semantic segmentation. In Proceedings of
the British Machine Vision Conference (BMVC), Cardiff, UK, 9–12 September 2019; pp. 186.1–186.12.

35. Lo, S.-Y.; Hang, H.-M.; Chan, S.-W.; Lin, J.-J. Efficient dense modules of asymmetric convolution for real-time semantic segmenta-
tion. In Proceedings of the ACM Multimedia Asia, Nice, France, 21–25 October 2019; pp. 1–6.

36. Romera, E.; Alvarez, J.M.; Bergasa, L.M.; Arroyo, R. Erfnet: Efficient residual factorized convnet for real-time semantic segmenta-
tion. IEEE Trans. Intell. Transp. Syst. 2017, 19, 263–272. [CrossRef]

37. Zhang, X.; Chen, Z.; Wu, Q.J.; Cai, L.; Lu, D.; Li, X. Fast semantic segmentation for scene perception. IEEE Trans. Industr. Inform.
2018, 15, 1183–1192. [CrossRef]

38. Fan, M.; Lai, S.; Huang, J.; Wei, X.; Chai, Z.; Luo, J.; Wei, X. Rethinking bisenet for real-time semantic segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, QC, Canada, 11–17 October
2021; pp. 9716–9725.

39. Chaurasia, A.; Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. In Proceedings of
the 2017 IEEE Visual Communications and Image Processing (VCIP), Venice, Italy, 22–29 October 2017; pp. 1–4.

40. Liu, M.; Yin, H. Feature pyramid encoding network for real-time semantic segmentation. arXiv 2019, arXiv:1909.08599.
41. Wang, Y.; Zhou, Q.; Liu, J.; Xiong, J.; Gao, G.; Wu, X.; Latecki, L.J. Lednet: A lightweight encoder-decoder network for real-time

semantic segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan,
22—25 September 2019; pp. 1860–1864.

42. Poudel, R.P.; Liwicki, S.; Cipolla, R. Fast-scnn: Fast semantic segmentation network. arXiv 2019, arXiv:1902.04502.
43. Poudel, R.P.; Bonde, U.; Liwicki, S.; Zach, C. Contextnet: Exploring context and detail for semantic segmentation in real-time.

arXiv 2018, arXiv:1805.04554.
44. Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation.

In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341.
45. Yu, C.; Gao, C.; Wang, J.; Yu, G.; Shen, C.; Sang, N. Bisenet v2: Bilateral network with guided aggregation for real-time semantic

segmentation. Int. J. Comput. Vis. 2021, 129, 3051–3068. [CrossRef]
46. Li, H.; Xiong, P.; Fan, H.; Sun, J. Dfanet: Deep feature aggregation for real-time semantic segmentation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9522–9531.
47. Li, X.; You, A.; Zhu, Z.; Zhao, H.; Yang, M.; Yang, K.; Tan, S.; Tong, Y. Semantic flow for fast and accurate scene parsing. In

European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 775–793.
48. Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes.

arXiv 2021, arXiv:2101.06085.
49. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.
50. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets

and fully connected crfs. arXiv 2014, arXiv:1412.7062.

http://dx.doi.org/10.1109/TITS.2017.2750080
http://dx.doi.org/10.1109/TII.2018.2849348
http://dx.doi.org/10.1007/s11263-021-01515-2

Remote Sens. 2022, 14, 5399 24 of 24

51. Chen, L.C.; Papreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]

52. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154.

53. Yuan, Y.; Chen, X.; Wang, J. Object-contextual representations for semantic segmentation. In European Conference on Computer
Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 173–190.

54. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

55. Park, J.; Woo, S.; Lee, J.-Y.; Kweon, I.S. Bam: Bottleneck attention module. arXiv 2018, arXiv:1807.06514.
56. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
57. Meng, Q.; Zhao, M.; Zhang, L.; Shi, W.; Su, C.; Bruzzone, L. Multilayer feature fusion network with spatial attention and gated

mechanism for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]
58. Ambartsoumian, A.; Popowich, F. Self-attention: A better building block for sentiment analysis neural network classifiers. arXiv

2018, arXiv:1812.07860.
59. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Bench, CA, USA, 4–9 December 2017;
pp. 5998–6008.

60. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

61. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October
2021; pp. 10012–10022.

62. Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Montreal, QC, Canada, 11–17 October 2021; pp. 568–578.

63. Li, R.; Zheng, S.; Zhang, C.; Duan, C.; Wang, L.; Atkinson, P.M. Abcnet: Attentive bilateral contextual network for efficient
semantic segmentation of fine-resolution remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 2021, 181, 84–98.. [CrossRef]

64. Wang, S.; Li, B.Z.; Khabsa, M.; Fang, H.; Ma, H. Linformer: Self-attention with linear complexity. arXiv 2020, arXiv:2006.04768.
65. Guo, M.-H.; Liu, Z.-N.; Mu, T.-J.; Hu, S.-M. Beyond self-attention: External attention using two linear layers for visual tasks. arXiv

2021, arXiv:2105.02358.
66. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image

Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [CrossRef]
67. Wu, T.; Tang, S.; Zhang, R.; Cao, J.; Zhang, Y. Cgnet: A light-weight context guided network for semantic segmentation. IEEE

Trans. Image Process. 2020, 30, 1169–1179. [CrossRef]
68. Wang, Y.; Zhou, Q.; Xiong, J.; Wu, X.; Jin, X. Esnet: An efficient symmetric network for real-time semantic segmentation. In

Chinese Conference on Pattern Recognition and Computer Vision (PRCV); Springer: Berlin/Heidelberg, Germany, 2019; pp. 41–52.

http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1109/LGRS.2022.3173473
http://dx.doi.org/10.1016/j.isprsjprs.2021.09.005
http://dx.doi.org/10.1109/TGRS.2016.2612821
http://dx.doi.org/10.1109/TIP.2020.3042065

	Introduction
	Related Works
	Efficient Network Designs
	Efficient Semantic Segmentation Methods
	Information Enhancement Modules
	Attention Mechanisms

	Methodology
	Network Architecture of the Proposed Method
	EAM
	MSD Loss
	HSE Loss

	Data Set and Experimental Details
	Benchmark Description
	Evaluation Metrics
	Data Preprocessing and Augmentation
	Implementation Details

	Experimental Results
	Ablation Study
	Effectiveness of the EAM
	Effectiveness of the MSD loss and HSE loss
	Effectiveness of DSANet

	Qualitative Analysis of Features
	Quantitative Comparison with State-of-the-Art Methods
	Segmentation Performances Achieved on the Potsdam Dataset
	Segmentation Performances Achieved on the Vaihingen Dataset
	Inference Speeds

	Conclusions
	References

