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Abstract: Digital elevation models (DEMs) provide fundamental data for scientific and engineering
applications in lunar exploration missions. Lunar DEMs have been mainly generated by laser
altimetry and stereophotogrammetry. Complementarity to stereo photogrammetry, reflection-based
surface reconstruction methods, such as shape from shading (SFS), have been studied and applied in
lunar DEM reconstruction from a single image. However, this method often suffers from solution
ambiguity and instability. In this paper, we propose a generative adversarial network (GAN)-based
method that is able to generate high-resolution pixel-scale DEMs from a single image aided by a
low-resolution DEM. We have evaluated the accuracy of the reconstructed high-resolution DEMs
from 25 LROC NAC images of four regions using LROC NAC DEMs (2 m/pixel) as ground truth.
The experimental results demonstrate good accuracy and adaptability to changes in illumination
conditions. The root mean square error (RMSE) can reach about 2 m in areas where the degree
of elevation variation is less than 100 m, and the RMSE value ranges from around 3 m to 10 m
without considering the degree of the elevation variation in large-area reconstruction. As high-
resolution monocular images and low-resolution DEMs are available for the entire lunar surface, the
proposed GAN-based method has great potential in high-resolution lunar DEM reconstruction for
lunar mapping applications.

Keywords: lunar exploration; digital elevation model; high-resolution imagery; generative adversarial
network

1. Introduction

Digital elevation models (DEM) of the Moon provide the fundamental data in lunar
topographic, morphological, and geological studies. They are also essential in engineering
applications in lunar exploration missions, e.g., in landing site evaluation, safe landing,
rover navigation, etc. [1–6]. Lunar global DEMs have been produced using laser altimetry
or optical images. Representative examples include the lunar orbiter laser altimeter (LOLA)
LDEM1024 with a resolution of 1024 pixels per degree (ppd) (~30 m at the equator) [7], 1024
ppd DEM derived from 10 m-resolution SELENE terrain camera (TC) stereo images [8],
and 20 m grid spacing DEM derived from 7 m-resolution Chang’e-2 stereo images [9].
SLDEM2015, which was produced by coregistration and a combination of SELENE TC
DEM and LOLA data, is also widely used. It covers latitudes within ±60◦ at a horizontal
resolution of 512 ppd (~60 m at the equator) [10].

Lunar local DEMs with higher resolution (e.g., meter-level resolution) have also
been produced, mostly by stereo photogrammetry, which requires target area covering
by stereo images. As a rule of thumb, the resolution (grid spacing) of a DEM generated
by stereophotogrammetry is about three times that of the stereo imagery [11]. Currently,
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the highest-resolution lunar orbital images (up to 0.5 m/pixel) are acquired by lunar
reconnaissance orbiter camera (LROC) narrow-angle camera (NAC), and the local DEMs
generated from LROC NAC stereo images are usually of 2–5 m resolution [12], which are
the highest-resolution DEMs derived from orbital images. The LROC was not designed
with built-in stereo observation capability, and NAC stereo images can only be acquired
from neighboring orbits using off-nadir slew. As a result, NAC stereo observations are
very limited, though NAC monocular images have covered almost the entire lunar surface.
Therefore, it is highly desirable and will be widely applicable to reconstruct pixel-scale
DEMs from monocular high-resolution orbital images, particularly LROC NAC images.

In fact, complementary to stereo photogrammetry, shape from shading (SFS) (also
called photoclinometry) techniques have been studied and applied in the planetary map-
ping field [11,13–15], which reconstruct a DEM from a single image or multiple nonstereo
images. SFS techniques have also been widely researched in the field of computer vision
and artificial intelligence [16,17]. In general, the multiple-image SFS method is limited by
a lack of multiple images with different illumination conditions covering the same area.
According to [18], single-image SFS is underconstrained and faces serious issues. First, the
assumption of a uniform or known albedo is needed, but determining the albedo from
a single image is underconstrained. Second, as shading actually reflects the depth of a
point relative to its neighbors, it is difficult to get clues to restore shapes from coarse-scale
depth variations that produce small changes throughout the entire image. A number
of approaches have been developed to overcome the underconstrained issues, including
learning albedos from training data [18], separation of albedos, and shape optimization
with the aid of coarse DEMs, etc. [15,19].

With the development of deep learning, a neural network can learn the “hidden” map-
ping relationship between two types of data and realize the “end-to-end” transformation
of data under the condition of sufficient training samples. Deep neural network has been
applied to DEM reconstruction using a single image and has shown some advantages
in establishing reliable mapping and eliminating noise and image uncertainty. In order
to improve the performance of DEM reconstruction, strategies of deepening the depth
of the network and increasing the amount of training samples can be used [20]. There
is no atmospheric influence on the lunar surface, and the change of image intensities is
mainly caused by the topography, supposing that the albedo does not change severely in
a local area. Low-resolution DEMs are available for the entire lunar surface and can be
used as a constraint to enable the network to obtain low-frequency terrain information,
while high-frequency terrain information can be obtained from high-resolution image. This
makes it possible to use a network to generate a high-resolution DEM with higher accuracy
from high-resolution monocular imagery and existing low-resolution DEM.

In this paper, a high-resolution lunar DEM reconstruction method is proposed based
on generative adversarial network (GAN), which generates pixel-scale lunar DEM from
monocular LROC NAC imagery aided by existing low-resolution DEM, e.g., SLDEM. For
convenience, we call the lunar DEM reconstruction network LDEMGAN. It adopts the
U-Net structure as the generator network, uses the convolution layer instead of the pooling
layer for feature extraction, takes the discrimination result of the discriminator network
instead of the image similarity as the loss, adds the gradient loss item, and uses a variety of
training data to train the network. In this study, four regions are selected for reconstruction
testing using 25 LROC NAC image (2 m/pixel) and SLDEM (~60 m/pixel). The reconstruc-
tion results are verified with DEMs (2 m/pixel) produced by LROC NAC images, and the
effects of different lunar surface conditions and data quality on the reconstruction results
are analyzed. The effects of adding low-resolution DEM and influence of illumination
conditions of the images are also discussed.

Section 2 of this paper reviews the relevant research. Section 3 presents the proposed
method in detail. Section 4 gives the experimental results and discussions. Conclusions are
given in Section 5.
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2. Related Work

With rapid development of deep learning technology, monocular depth estimation
approaches based on deep neural networks have been studied and applied in various fields
of computer vision, such as robotics, path planning, autonomous navigation, etc. Due to
difficulties of absolute depth recovery, as well as the demand of comparable accuracy to
that of traditional triangulation methods, monocular depth estimation is still an active
and challenging topic. Currently, the commonly used deep neural network models for
monocular depth recovery are the convolutional neural network (CNN), recurrent neural
network (RNN), and generative adversarial network (GAN) [21]. As RNN is usually
employed in the field of video sequence processing, this section only focuses on reviewing
and discussing monocular depth restoration that uses CNN and GAN models.

CNN models have been well developed and applied in monocular depth estimation.
Eigen et al. [22] adopted a two-scale convolutional network to first estimate the depth of
the scene on a global scale and then add details on a local scale. The work also raised and
explained the basic problem of solving monocular depth estimation in terms of supervised
learning [22]. On this basis, Eigen et al. subsequently proposed an improved frame-
work constructed by three-scale network structure for monocular depth estimation [23].
Thereafter, Laina et al. [24] proposed a fully convolutional network structure to capture
monocular features at multiple scales with fewer parameters, and solved the problem
of high training costs for fully connected layers. An up-convolution decoding module
was designed to improve the processing speed of the network [24]. Ma et al. proposed a
CNN-residual network, and the comparison to the network with the hybrid convolutional
fully connected network and to the fully convolutional network demonstrated the effec-
tiveness and optimality of the proposed network [25]. Fu et al. added a spacing-increasing
discretization strategy that splits the depth according to different intervals and recast the
network learning as an ordinal regression problem to reduce the training loss weight in
regions with large depth values [26]. Facil et al. used the U-Net to encode images and
then add sensor parameters for decoding, which enhances the generalization ability of the
network [27]. In order to shorten the computing time of the network, Wolk et al. proposed
a lightweight U-Net to improve the operation speed, which can realize real-time depth
estimation [28].

The GAN model was proposed by Goodfellow in 2014 and has been proved appli-
cable for monocular depth estimation tasks [29]. Jung et al. used GAN for the first time
to implement monocular depth estimation by supervised learning [30]. The generative
network consists of a global-scale U-Net [31] and a fully convolutional fine-scale network.
The discriminative network is designed according to Li’s work [32]. Instead of using a
multiscale generator, Lore et al. used two GANs for depth estimation at both global and
local scales [33].

In the field of planetary remote sensing, since the orbital images of the Moon’s surface,
especially high-resolution stereo images, are very scarce compared to those of the Earth,
DEM generation by monocular high-resolution images is needed more than traditional
photogrammetry methods. Therefore, in recent years, several studies have used depth
estimation networks to reconstruct relative heights from planetary orbital images and to
restore relative heights to absolute heights using control points or existing coarse DEM.
Several works have discussed combining monocular relative height estimation and scale in-
formation recovery for planetary surface reconstruction. Chen et al. proposed a CNN-based
digital terrain model (DTM) reconstruction method for Mars using Mars Reconnaissance
Orbiter Context Camera (CTX) images [20]. Tao et al. proposed a GAN-based network
called MADNet for fast reconstruction of DTM from a single image of Mars [34]. Subse-
quently, MADNet 2.0 was developed, which used the optimized single-scale inference
and multiscale reconstruction to improve the resolution of reconstructed DTM [35]. These
methods all used a two-step strategy to reconstruct the terrain, i.e., firstly, an image is input
into the deep network to restore relative depth, and then absolute height is recovered by
stretching the relative depth using a scale value calculated by existing low-resolution data.
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In these previous works, low-resolution data are only used for scale recovery such that
the reconstruction result is affected greatly by scale value. To make full use of the coarse
DEM, Hao et al. proposed using the low-resolution DEM and the image as the input of
the CNN, and the CNN prediction results and the image obtain a high-resolution DEM
by SFS [36]. However, the reconstruction results generated by SFS are affected by lighting
conditions. Intending to make full use of low-resolution DEM in terrain reconstruction,
improve adaptability to light conditions and combine the advantages of GAN, this paper
proposes a GAN-based reconstruction network for lunar DEM generation—LDEMGAN.
The main features of this work are:

(1) The proposed approach takes both monocular image and a coarse DEM as input of
the GAN.

(2) The coarse DEM is fully used to provide control information in the proposed LDEM-
GAN so as to improve the stability and accuracy of high-resolution DEM reconstruction.

(3) In order to generate DEM at the same high resolution as the input image, the re-
construction process can be executed iteratively until the needed DEM resolution
is obtained.

3. Method
3.1. Overview of the Proposed Approach

In this study, LROC NAC imagery is used to reconstruct a pixel-scale DEM through
LDEMGAN with the help of control information provided by SLDEM. Figure 1 shows the
overall process of the proposed approach, which consists of training and reconstruction
phases. In the beginning, the registered LROC NAC imagery and SLDEM data are prepro-
cessed. (1) The centers of the craters with diameters of about 200 m are selected as control
points, and the LROC NAC images and SLDEM are registered by affine transformation.
The registration accuracy needed to reach the subpixel level of SLDEM (the registration
error needs to be less than the grid spacing of SLDEM). (2) The NAC image performs
downsampling if needed and the SLDEM is upsampled to the same pixel size. (3) They are
both clipped to the size of 256 × 256 due to the requirement of the network with an overlap
of 100 pixels between adjacent image blocks. (4) The clipped data are normalized to [0, 1].
(5) The clipped image and SLDEM data are set as channel 1 and channel 2, respectively, to
synthesize the input data of LDEMGAN. Note that in the training phase, the corresponding
NAC DEM is also preprocessed in the same way so as to take the role as ground truth.

In the training phase, the preprocessed high-resolution image and low-resolution
DEM of the same area with the same grid are taken as input of LDEMGAN, which out-
puts depth reconstruction results. The ground truth is preprocessed DEM with identi-
cal resolution of the input imagery, and supervised training is carried out to obtain the
reconstruction network.

In the reconstruction phase, the preprocessed high-resolution image and low-resolution
DEM covering the same area are input into LDEMGAN to generate DEM that has identical
resolution to the input image. However, in practice, the resolutions of the input image and
the DEM that provide control information differ too much, such as NAC and SLDEM in our
case. Therefore, a high-resolution DEM generation process can be carried out iteratively,
which is shown in Figure 1. In our case, first the low-resolution SLDEM is upsampled
to 10 m grid spacing and an input high-resolution NAC image is downsampled to the
same pixel size of the upsampled SLDEM. Next, they are simultaneously input into the
network to generate DEM with identical resolution to the downsampled input image which
is 10 m/pixel. As the resolution of the generated DEM is lower than the NAC image, the
previous steps should be implemented again. This time, the generated DEM from the
previous step is upsampled to the same pixel size of the NAC image. Then, they are both
input into the reconstruction network to obtain a DEM with the same resolution as the
NAC image. Afterwards, scale restoration will be carried out to convert the generated
DEM from relative height into absolute height.
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Figure 1. Overall process of the proposed method.

It is worth mentioning that there are often geometric inconsistencies between data
captured from different sensors; therefore, geometric registration of the NAC image and
SLDEM is required beforehand in this study. In fact, the accuracy of geometric registration
can directly affect the final reconstruction result.

3.2. Network Architecture

Figure 2 shows the LDEMGAN network architecture used for high-resolution DEM
generation. According to the principle of the GAN network, it can be divided into a
generator network G and a discriminator network D. The generator network adopts a
U-Net architecture, adding skip connections between the encoding part and the decoding
part. The CNN structured encoder consists of 7 BCDL modules, which encode a 256 × 256
image into a feature vector with a size of [2, 2, 1024]. The BCDL module consists of a batch
normalization layer, a convolution layer (1 × 1 kernel, and with increasing number of
feature maps of 64, 128, 256, 512, 1024, 1024, 1024, stride 1), a downsampling convolution
layer (4 × 4 kernel, stride 2, padding 1), and a LeakyReLU activation function. LeakyReLU
is able to solve the zero gradient problem for negative values, as shown in Equation (1):

LeakyReLU(x) =

{
x x > 0
0.2x x ≤ 0

(1)

where x is the input tensor. The decoder employs a BUR model and adds skip connections,
enabling direct transfer of low-frequency information. The BUR module consists of a batch
normalization layer, an upsampling convolution layer (4 × 4 kernel, and with decreasing
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number of feature maps of 1024, 1024, 512, 256, 128, 64, 1, stride 2, padding 1), and an
activation function. The activation function used for the BUR-1–BUR-6 is ReLU:

ReLU(x) =

{
x x > 0
0 x ≤ 0

(2)
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The TanhL activation function is used in the BUR-7, so that the range of the output
result can be constrained within [0, 1], as shown below:

TanhL =
1
2

(
ex − e−x

ex + e−x + 1
)

(3)

The optimization objective function of training the generator network parameters is
as follows:

θ̂G = argmin
θG

1
N

N

∑
n=1

LG

(
Hn

pred, Hn
truth

)
(4)

Among them, N is the total number of images, LG(·) is the loss function of the generator
network G (see Section 3.3), θG is the parameter of the generator network. Hn

truth is the
nth ground truth DEM data of the corresponding input image, and Hn

pred is the nth
reconstruction results derived by the generator network. Hn

pred is calculated as:

Hn
pred = GθG(In, Hn

coarse) (5)
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where GθG is the generator network with network layer parameters θG, In is the nth input
high-resolution image, and Hn

coarse is the corresponding low-resolution DEM that provides
control information in the same area.

According to the structure of the GAN network, the output of the discriminator
network D is a probability value that denotes whether its input sample is real or fake. The
discriminator network used in this paper adopts the principle of PatchGAN to capture the
high-frequency information. PatchGAN divides the output of the last layer into M blocks,
and discriminates each block individually:

PH =
1
M

M

∑
m=1

D((Im, Hm
coarse), Hm) (6)

where Hm is the Hn
pred calculated by the generator network or the ground truth surface data

Hn
truth. Therefore, the optimization objective for the adversarial network parameters is:

θ̂D = argmin
θD

1
N

N

∑
n=1

LD

(
In, Hn

pred, Hn
truth

)
(7)

where LD(·) is the loss function of the discriminator network D (see Section 3.3).

3.3. Loss Function

The loss function of the LDEMGAN consists of generator network loss and discrimi-
nator network loss. The losses of the generator network include the loss representing the
difference between the prediction and the ground truth, the loss of local structure, and the
loss of the discriminator. Usually, the L2 loss function is used for the generator network,
which reflects the cumulative squared difference between the value predicted by the model
and the ground truth value. However, it can bring over smooth predictions. Hence, the
Huber loss is used, as shown in Equation (8):

LHuber(Hpred, Htruth) =

 (Hpred − Htruth)
2/2

∣∣∣Hpred − Htruth

∣∣∣ < δ

δ
∣∣∣Hpred − Htruth

∣∣∣− 1
2 δ2 otherwise

(8)

where δ is one fifth of the maximum of the difference of prediction and the ground truth.
When the difference is less than δ, the Huber loss is consistent with L2. Otherwise, the
Huber loss equals L1.

In order to maintain the relationship between each pixel and its adjacent pixels, a local
structure loss is added, as shown below:

Lgrad =
1

MN

M

∑
i=1

N

∑
j=1

[(∇x(Hpred, Htruth)
2 +∇y

(
Hpred, Htruth)

2
]

(9)

where M is the number of image rows and N is the number of image columns. By con-
sidering 5x and 5y, the x directional and y directional gradient differences between
the predicted value and the ground truth calculated in local windows, respectively, the
consistencies of the predicted value and the ground truth can be preserved on a local scale.

The loss of discriminator refers to the discrimination of the generated prediction
data by the discriminator network in LDEMGAN, indicating the similarity between the
generated prediction data and the ground truth, as shown below:

LGAN = log(1−D((I, Hcoarse), G(I, Hcoarse))) (10)

where I is the input image and Hcoarse is the input DEM (low-resolution DEM).
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Therefore, the overall loss of the generator network can be represented by:

LG = αLHuber + βLgrad + γLGAN (11)

where α, β, γ are the coefficients to balance the losses.
The loss function of the discriminator network is shown as:

LD =
1
2
[log(D((I, Hcoarse), G(I, Hcoarse))) + log(1−D((I, Hcoarse), Htruth))] (12)

3.4. Scale Recovery

As normalization of the input data is needed before entering the generator network
for better convergence, the values of the network output are within [0, 1]. Thus, postpro-
cessing is required to recover the reconstruction results to the correct scale as elevation
information. This study uses the normalized low-resolution DEM as a constraint, as shown
in Equation (10). In addition, in the scale recovery process, statistics of this low-resolution
DEM are used to restore the absolute elevation. First, mean and standard deviation of the
low-resolution DEM are calculated. Then the reconstruction results are stretched to obtain
the absolute heights, as shown in Equation (13). By adding geographic information to the
restored absolute heights, scale recovery is finally completed.

DEMabs = m + sd·DEMpred (13)

In the above equation, DEMabs is the absolute elevation value, m is the mean value of
the low-resolution DEM, and sd is the standard deviation of the low-resolution DEM.

3.5. Network Training

As mentioned in Section 3.1, practically the DEM restoration is carried out iteratively.
In our case, two reconstruction networks are employed and the structures of them are
identical. In fact, the restoration processes are similar in each iteration, so theoretically one
set of trained network parameters should work for both networks. However, in order to
obtain high-precision results, there is no doubt that the two networks should be trained
separately with training data the same as the actual situation.

Meanwhile, in order to enhance the universality of the network, the number of training
samples should be sufficient so that the network can avoid fuzzy solution caused by the
changes of illumination conditions or various landform characteristics. For adapting
illumination changes, the training data can be expanded from two aspects. First, the
existing training data can be rotated and flipped to simulate different sun azimuths. Second,
images captured at different sun altitude angles of the same area that pair with the same
corresponding coarse DEM should be added to enhance the network’s adaptation to shadow
properties. For adapting to changes of landform characteristics in various topographic
regions (e.g., lunar mare or highlands), the network performance can always be improved
if the training data are adequate. Generally, if the feature characteristics of the area to
be processed are hugely different from the areas that used for training the networks, the
recommended practice is to employ transfer training by using a small amount of data from
the destination area.

4. Experimental Results
4.1. Reconstruction Network Training

As described in the above sections, two networks with identical structure and trained
by different data are used to implement DEM reconstruction in a resolution-progressive
manner. The first network aims at generating DEM at a resolution of 10 m/pixel, which
is denoted as LDEMGAN-10 m. To train this network, the input data are downsampled
LROC NAC images of 10 m/pixel and normalized SLDEM of 60 m/pixel (upsampled to
the same grid spacing). Ground truth is downsampled LROC NAC DEMs at grid spacing
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of 10 m/pixel. The second network intends to generate DEM of 2 m/pixel and is denoted
as LDEMGAN-2 m. To train this network, the input data are LROC NAC image with
resolution of 2 m/pixel, together with the LROC NAC DEM downsampled to 10 m/pixel,
yet with similar pixel size to the NAC image. The ground truth is the LROC NAC DEM
of its original resolution. For clearer demonstration, the 10 m reconstruction network and
the 2 m reconstruction network are denoted as LDEMGAN-10 m and LDEMGAN-2 m,
respectively. From this, it can be seen that the areas that satisfy the conditions for producing
training data should include LROC NAC images, LROC NAC DEMs, and SLDEM at the
same time.

According to the availability of data by the above requests, eight regions were selected
for training the reconstruction networks. Some image samples of training data are shown
in Figure 3: samples with different lunar surface features (Figure 3a), samples with different
lighting conditions in the same area (Figure 3b), and samples after rotation or flipping
(Figure 3c).
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Figure 3. Examples of LROC NAC images from our training data: (a) images with different surface
topography and features; (b) images with different lighting conditions in the same area; (c) images
after rotation or flipping to simulate different sun azimuths.

A total of 89 scenes of LROC NAC images (2 m/pixel) and their corresponding LROC
NAC DEM (2 m/pixel), together with SLDEM (60 m/pixel) covering these areas were
selected to make training samples. A total of 6428 sets of training samples were made for
training the first 10 m/pixel reconstruction network, and 4024 sets of training samples were
made for training the second 2 m/pixel reconstruction network.

For LDEMGAN-10 m, the number of training epochs is 200, and the initial learning
rate is 2 × 10−4, which is linearly reduced to 10−6 after 100 epochs. The coefficients in
Equation (11) are set to α = 0.5, β = 0.5, and γ = 0.8, respectively. Next, LDEMGAN-2 m is
obtained through migration learning based on LDEMGAN-10 m. In addition, during the
LDEMGAN-2 m training, γ is reduced to 0.3 in Equation (11), and training epochs is set to
100. This experiment used the pytorch1.10 platform to build the network and was carried
out on two RTX 3090 graphics cards. The training took a total of 5.7 h.

4.2. Testing
4.2.1. Testing Dataset

In order to test the reconstruction network, another four areas (including 25 LROC
NAC images) different from training data areas containing LROC NAC DEM that aims
at evaluating the reconstruction results are selected as test areas. The four areas are
Apollo 11, Imbrium, Lichtenberg, and Hponds. The LROC NAC images of these areas are
superimposed on SLDEM (Figure 4). The experimental areas are named according to what
the LROC NAC DEMs contain.
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Figure 4. The LROC NAC images of the four test areas displayed on SLDEM: (a) Apollo 11;
(b) Imbrium; (c) Lichtenberg; (d) Hponds.

Details of the four areas are shown in Table 1. The images used in each area are
as follows: (1) Apollo 11: m150361817le, m150361817re, m150368601re; (2) Imbrium:
m183697099le, m183704246re, m1106080949le, m1106080949re, m1175588941le, m1226179201re,
m1265076277re; (3) Lichtenberg: m104955555le, m1096922142re, m1096929289le, m1096929289re,
m1096936436le, m1096943583le, m1096936436re; (4) Hponds: m1100101542le, m1100101542re,
m1102444668le, m1102444668re, m1110719713le, m1110719713re, m1113084806le, m1113084806re.
The above data are downloaded from https://ode.rsl.wustl.edu/moon/index.aspx (ac-
cessed on 10 July 2022).

Table 1. Information of the four test areas.

ID Test Area
Centre

Latitude, Longitude
(N, E/◦)

Number of
LROC NAC Images

SLDEM Resolution
(m/pixel)

1 Apollo 11 0.77, 23.44 3 55.22
2 Imbrium 28.66, 333.88 7 55.51
3 Lichtenberg 31.68, 292.43 7 59.22
4 Hponds 41.79, 167.36 8 59.20

https://ode.rsl.wustl.edu/moon/index.aspx
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4.2.2. Reconstruction Results and Analysis

The reconstruction results of the four areas are shown in Figure 5. We use the LROC
NAC DEMs of the experimental areas to evaluate the elevation accuracy of the reconstruc-
tion results. We choose two metrics, mean absolute error (MAE) and root mean square
error (RMSE), to evaluate the reconstruction results. The two metrics can reflect the overall
reconstruction performance of the statistics area, and the analysis of the local reconstruction
effect is further analyzed by the profile graph and the absolute difference plot.
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LROC NAC DEM as ground truth; the third column shows differences between the reconstruction
results and LROC NAC DEMs.
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The reconstruction effect of Apollo 11 (Figure 5a–c) is better than others in most
parts, because the training data contain a considerable number of areas that have similar
geomorphic characteristics and this area is relatively flat with less elevation variation.
Approximately 50% of pixels have elevation differences less than 2 m, and more than 90%
of pixels have elevation differences less than 10 m. The MAE of the whole experimental
area is 2.76 m and the RMSE is 3.02 m, revealing high-precision reconstruction performance.

The reconstruction effect of Imbrium (Figure 5d–f) is similar to that of Apollo 11, and
high reconstruction accuracy has been achieved in most parts of the area, the MAE and
the RMSE is less than 4 m for the whole area, and more than 85% of pixels have elevation
differences less than 10 m. The region with relatively large error in the Figure 5f bottom
right corner is Mons La hire, which is a hillside with large topographic relief. In this region,
the variation in image brightness (change in gray scale) is less than the other regions, yet the
elevation change is relatively large; therefore, the reconstruction network may not be able to
extract much effective information, leading to a comparatively large reconstruction error.

Experimental area Lichtenberg (Figure 5g–i) contains a large impact crater with diam-
eter of 19 km and depth of 2.2 km. As illustrated in Figure 5i, large reconstruction errors
mainly occur in the area with large topographic relief and less gray scale variation, such as
near the upper edge of the impact crater.

The Hponds experimental area (Figure 5j–l) is located in the Chandler area on the far
side of the Moon. Impact craters are densely and overlappingly distributed in this area.
There are a large number of impact craters in this area with diameter more than 500 m and
depth more than 100 m, which brings the existence of shading regions with brightness close
to 0 in the impact crater. Both the large variation in elevation and shadows caused larger
absolute reconstruction errors than the other test areas.

According to the above analysis of the reconstruction results, there are no obvious
artifacts in the reconstruction results. The reconstructed elevation accuracy is related to
the elevation and brightness ranges of the input area. The statistics of the reconstruction
errors in the four areas are listed in Table 2. As can be found in Table 2, experimental areas
Apollo 11 and Imbrium, which have moderate terrain fluctuation, have lower proportions
of elevation errors (i.e., the differences between reconstructed results and LROC NAC
DEMs) than the other two, which have relatively drastic topographic reliefs. The MAE and
RMSE in these four areas also reflect this trend.

Table 2. The overall statistics of the reconstruction errors in the four areas.

Area Reconstruction Error
<2 m (%)

Reconstruction Error
<4 m (%)

Reconstruction Error
<10 m (%) MAE (m) RMSE (m)

Apollo 11 48.32 73.06 91.54 2.76 3.02
Imbrium 42.27 70.47 85.67 3.03 3.64

Lichtenberg 27.21 45.11 68.89 9.26 10.52
Hponds 25.52 45.95 62.51 9.43 10.65

4.2.3. Detailed Analysis of the Reconstruction Results in Subareas

In order to obtain a more detailed analysis of the reconstruction results, four typical
subareas (numbered I–IV in Figure 5a,d,g,j) are selected to illustrate more elaborate analy-
sis. Figure 6 shows the zoomed subareas, the corresponding SLDEM, the reconstruction
results obtained by LDEMGAN, LROC NAC DEMs as ground truth for comparisons, and
sectional views of the reconstruction results and gray scale profiles of the LROC NAC
image, respectively. From Figure 6, it can be seen that the reconstructed DEMs from the
monocular LROC NAC images have good consistency with LROC NAC DEMs, showing
much finer elevation information than SLDEM, which provides control information.
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Figure 6. More detailed analysis of the results in the four subareas I–IV annotated in Figure 5. Each
column shows one subarea. Row 1: LROC NAC image of 2 m/pixel showing the zoomed subareas.
Row 2: SLDEM of 60 m/pixel. Row 3: network reconstruction results of 2 m/pixel. Row 4: LROC
NAC DEM of 2 m/pixel as ground truth for comparison purposes. Row 5: DEM profiles of the four
subareas with their profile locations shown in the first row. The green curves represent SLDEM, the
blue curves represent network reconstruction results, and the red curves represent LROC NAC DEMs.
Row 6: gray scale profiles of the LROC NAC image.

In subarea I (Figure 6a,e,i,m), the MAE of the reconstruction result is 1.26 m and the
RMSE is 1.84 m, as demonstrated in Table 3. The maximum elevation error is 6.43 m, which
is relatively small compared to the other subareas. From the elevation profiles (Figure 6d),
it is shown that LDEMGAN can recover detailed DEM that coincides with the ground truth.
Even the control information provided by SLDEM is with coarse grid and has shift in the
bottoms of the curves, which demonstrate that the details in the image have more impact
on the result.
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Table 3. Reconstruction error of subareas.

Subarea Degree of
Elevation Variation (m)

Reconstruction Error
<2 m (%) MAE (m) RMSE (m) Max Error (m)

I 47.68 88.53 1.26 1.84 6.43
II 103.55 80.10 1.93 2.26 8.20
III 381.20 65.51 7.28 8.63 19.70
IV 2858.62 38.72 9.43 10.33 28.82

In subarea II (Figure 6b,f,j,n), when SLDEM is greatly different from the LROC NAC
DEMs, as shown in Figure 6f,n, the reconstruction result is still highly consistent with the
ground truth, from which it can be deduced that the input LROC NAC image takes more
credit on recovering depth values. The MAE of the reconstruction result in this subarea is
1.93 m, the RMSE is 2.26 m, and the maximum elevation error is 8.20 m.

In subarea III (Figure 6c,g,k,o), the reconstruction result shows consistency with
SLDEM (Figure 6g), yet with more details, with a reconstruction MAE of 7.28 m, RMSE of
8.63 m, and a maximum error of 19.70 m compared to the ground truth LROC NAC DEM
(Figure 6k). It can be seen from the profile of this subarea (Figure 6s) that the center location
of the crater in the reconstruction result coincides more with the ground truth than that
of SLDEM, but there is an elevation drift of the reconstruction result from the real bottom
value in the shadow region of the crater as the gray scale profile shown in Figure 6w. We
found that when image brightness of the region is close to 0, the reconstruction network
would be unable to translate much effective information from the image and may rely more
on SLDEM to predict the elevation.

As can be seen from Figure 6a–c, the scales of subareas I, II and III are similar. The
reconstruction errors rise with the increase of the degree of the elevation variation in
these subareas.

In subarea IV (Figure 6d,h,p), the reconstruction result of a large impact crater with
diameter of approximately 13.2 km is shown. From the profile (Figure 6t), the reconstruction
results are better than the SLDEM (Figure 6h), especially on the edges of the craters.
However, the RMSE is relatively larger than other subareas, which is 10.33 m, and the
maximum error is 28.82 m. This is because the data are normalized at an imagery size of
256 × 256 to relative scale values before inputting into LDEMGAN and are recovered to
absolute values according to the elevation range of this area. In consequence, deep craters
or terrain with large elevation change would result in a relatively large absolute error.

In summary, based on the reconstruction results of these four subareas, the LDEMGAN
can produce DEM with rich detail comparable to the NAC DEMs with the assistance of
control information supplied by SLDEM. The accuracy of the reconstruction results is
related to both the brightness variation of the input image and the degree of regional
topographic relief. When the input images have less shading (the gray scale value is
close to 0) and the degree of elevation variation is less than 100 m, the percentage of the
reconstruction error less than 2 m (less than the input image grid spacing) can be more than
80%, the MAE can be less than 2 m, and the RMSE can reach below 2 m.

4.3. Discussion
4.3.1. Effect of Control Information

As demonstrated in the previous sections, the reconstruction results may rely more
on the input image. In order to verify the necessity of control information instead of
considering the process as just a style transfer operation from image to elevation, the
reconstruction results with and without control information are compared in this subsection.
The Apollo 11 landing area is selected as the test area, the input images are LROC NAC
images (m150361817re, m150361817le), and the input low-resolution DEM for providing
control information is downsampled LROC NAC DEMs (nac_dtm_apollo11) with grid
spacing of 10 m/pixel. Here, using downsampled LROC NAC DEM instead of SLDEM can
verify the improvement of the reconstruction effect under ideal conditions such that the
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low-resolution data are completely correct. At the same time, considering that the degree
of elevation change mentioned in Section 4.2 will affect the absolute error, the result of
accuracy evaluation in this subsection applies relative elevation without scale recovery
(i.e., the value range is [0, 1]) so that the error magnitude of each input datum is the same.

Figure 7 shows the comparison results using different inputs: using only LROC NAC
image as input or using both LROC NAC image and coarse DEM as input. For better
visualization, the relative elevation values are stretched to [0, 255] for display in Figure 7.
Figure 7c,h,m shows the reconstruction result taking only LROC NAC images as input.
Although the trend of the elevation changes of these reconstruction results are consistent
with the real lunar surface, which can indicate the locations of big craters, the extent of
elevation change is inaccurate, especially in the areas that are relatively flat. In this case, the
MAE of predicated results using only image is 0.11, the RMSE is 0.18, and the maximum
mean error is 0.21. After adding the downsampled low-resolution DEM (coarse DEM) as
input (Figure 7d,i,n), the reconstruction of elevation change extent is greatly improved
while maintaining the detail. The error of each pixel of the reconstruction results is less
than 0.14, the MAE is less than 2× 10−3 and the RMSE of the pixels of all predicated results
is 4.2 × 10−3, which indicates great improvement in the reconstruction. This experiment
verifies the necessity of using coarse DEM as control information, indicating that by adding
coarse DEM in the reconstruction network, the low-frequency part can be preserved and
noise can be reduced through the reconstruction process.

Remote Sens. 2022, 14, x FOR PEER REVIEW  16  of  21 
 

 

 

Figure 7. Comparisons of image reconstruction results with and without the help of coarse DEM. 

Each row shows results of one area. Column 1: The input image of LROC NAC image of 2 m/pixel. 

Column 2: The coarse DEM obtained by downsampling LROC NAC DEM  from 2 m/pixel  to 10 

m/pixel. Column  3: The  reconstructed  result  taking only  image as  input. Column  4: The  recon‐

structed result using both image and coarse DEM as input. Column 5: The ground truth DEM of 

LROC NAC DEM (2 m/pixel). 

4.3.2. Influence of Light Conditions 

Similar to the traditional SFS method, the foundation of recovering elevation infor‐

mation from images through LDEMGAN is image photometric content changes, such as 

diverse intensity values due to reflection of lights from the topographic relief of the lunar 

surface. Under different lighting conditions, such as solar altitude angle, the imaged land‐

forms  of  the  lunar  surface  vary  a  lot,  especially  in  the  regions with  severe  elevation 

changes. Although during the training process, images taken under multiple solar altitude 

angles are considered to build the training dataset, relatively extreme cases, such as im‐

ages captured at too high or too low solar altitude angles, are excluded to ensure network 

convergence. Therefore, in this subsection, elevation reconstructions are carried out on the 

images captured under different lighting conditions. The tested images also include some 

with solar altitude angles that are not included during reconstruction network training. 

In this way, how different illumination conditions affect reconstruction results can be an‐

alyzed. 

We selected 29 images captured at different solar altitude angles (see Table 4 for de‐

tails), combined their SLDEM covering the same area as input, and reconstructed DEMs 

through LDEMGAN established in Section 4.1, and part of the test results are shown in 

Figure 8. On the whole, the reconstruction results (Figure 8e–h) of each image captured at 

different solar altitude angles  (Figure 8a–d) are visually consistent, and  the maximum 

RMSE of all reconstructed results is 3.27 m, which shows the network can adapt to the 

change in lighting conditions to maintain the consistency of reconstruction results. 

   

Figure 7. Comparisons of image reconstruction results with and without the help of coarse DEM. Each
row shows results of one area. Column 1: The input image of LROC NAC image of 2 m/pixel. Column
2: The coarse DEM obtained by downsampling LROC NAC DEM from 2 m/pixel to 10 m/pixel.
Column 3: The reconstructed result taking only image as input. Column 4: The reconstructed result
using both image and coarse DEM as input. Column 5: The ground truth DEM of LROC NAC DEM
(2 m/pixel).

4.3.2. Influence of Light Conditions

Similar to the traditional SFS method, the foundation of recovering elevation infor-
mation from images through LDEMGAN is image photometric content changes, such
as diverse intensity values due to reflection of lights from the topographic relief of the
lunar surface. Under different lighting conditions, such as solar altitude angle, the imaged
landforms of the lunar surface vary a lot, especially in the regions with severe elevation
changes. Although during the training process, images taken under multiple solar altitude
angles are considered to build the training dataset, relatively extreme cases, such as images
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captured at too high or too low solar altitude angles, are excluded to ensure network conver-
gence. Therefore, in this subsection, elevation reconstructions are carried out on the images
captured under different lighting conditions. The tested images also include some with
solar altitude angles that are not included during reconstruction network training. In this
way, how different illumination conditions affect reconstruction results can be analyzed.

We selected 29 images captured at different solar altitude angles (see Table 4 for
details), combined their SLDEM covering the same area as input, and reconstructed DEMs
through LDEMGAN established in Section 4.1, and part of the test results are shown in
Figure 8. On the whole, the reconstruction results (Figure 8e–h) of each image captured
at different solar altitude angles (Figure 8a–d) are visually consistent, and the maximum
RMSE of all reconstructed results is 3.27 m, which shows the network can adapt to the
change in lighting conditions to maintain the consistency of reconstruction results.

Table 4. Solar altitude angle information of the experimental images used for testing influence of
light conditions.

ID Image Solar Altitude Angle (◦) ID Image Solar Altitude Angle (◦)

1 m1171733209le 0.22 16 m1159956344re 43.01
2 m1277607697le 5.04 17 m1129325970re 44.44
3 m102014464re 8.24 18 m1114014396re 46.40
4 m102000149re 10.25 19 m1114007294re 47.39
5 m1126986303re 15.50 20 m1121074527re 48.91
6 m1157600009re 16.36 21 m1121081627re 49.94
7 m1123426954re 21.27 22 m1197661005le 58.69
8 m1169345323re 23.45 23 m1282310415le 60.55
9 m1123448288le 24.38 24 m106719774le 62.77
10 m135032851le 28.86 25 m1192915976re 71.81
11 m113799518re 35.79 26 m1118716779re 76.14
12 m104362199re 36.03 27 m1116358477le 76.28
13 m129133239re 36.87 28 m1149338748re 76.90
14 m1129347305re 41.49 29 m1254093845le 80.50
15 m1129340193re 42.47
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Figure 8. Comparison of reconstruction results using images captured at different solar altitude angles.
Each column shows one result of one image. Row 1: the input image of LROC NAC image, solar
altitude angle: m1277607697le, 5.04◦; m129133239re, 36.87◦; m1282310415le, 60.55◦; m1118716779re,
76.14◦. Row 2: the reconstruction results. Row 3: the difference between the reconstruction results
(2 m/pixel) and the LROC NAC DEM (ground truth, 2 m/pixel).
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On the local scale, when the SLDEM due to the resolution limitation is also unable to
provide effective information of the region to network, too high or too low solar altitude
angle can lead to a decline in reconstruction accuracy. Especially, impact craters that cannot
be shown in SLDEM (the region marked in red in image and in black in reconstruction
results) have a noticeable difference. When the solar altitude angle is lower than 25◦ (as
shown in Figure 8a, m127760767le, solar altitude angle 5.04◦), the RMSE of the marked
region is 5.88 m. When the image brightness (gray scale value) of the region is close to 0,
the reconstruction network could be unable to translate much effective information from
the image. This results in a large reconstruction error in this region (the RMSE is 5.88 m).
When the solar altitude angle is higher than 70◦ (as shown in Figure 8d, m1118716779re,
solar altitude angle 76.14◦), the RMSE of the marked region is 6.23 m, and the RMSE of the
whole image is 4.48 m. The high solar altitude angle causes overexposure of the image. In
this kind of image, small impact craters in the image are bright entirely or mostly scattered
on the edge without distinguishable intensity changes, which leads to a certain degree of
increase in reconstruction error.

According to the experiment results shown and analyzed in this subsection, it is
proved that the network can be applied to different lighting conditions through the training
method described in Section 4.1, and the different elevation restoration results caused
by diverse lighting conditions have limited impact on the reconstruction results with
acceptable errors.

4.3.3. Discussion of Experimental Results

In terms of network structure, the generator network of our proposed LDEMGAN
adopts the U-Net structure, which takes both image and coarse DEM as input. The coarse
DEM, providing low-frequency information in the network, is taken as control information
for depth reconstruction (this is confirmed by the experiments in Section 4.3.1). However,
this is based on the assumption that the input image and DEM are accurate and their
spatial positions are consistent, which makes the accuracy of the reconstruction result
affected by the quality and spatial consistency of the input data. In other words, the offset
and systematic error in the spatial position of the input data will lead to unsatisfactory
reconstruction results. In this work, as registration error is less than one grid spacing of the
coarse DEM, the network is able to handle this error level, yet more research is needed to
be done concerning precise registration and systematic error elimination in future work.

The input of LDEMGAN is a single image and a low-resolution DEM, which is not
limited by stereo image coverage. The LDEMGAN is less affected by illumination changes
(see Section 4.3.2 for details). In Section 4.2, the LROC NAC DEM as the ground truth
was generated by stereophotogrammetry, and the RMSE and MAE in Table 2 are able
to demonstrate that the DEM reconstructed by LDEMGAN is very close to the results
reconstructed by stereophotogrammetry. Therefore, LDEMGAN is able to be used for
DEM reconstruction of a wider area of the Moon compared to stereophotogrammetry. In
addition, it is worth noting that the evaluation indicators MAE and RMSE used in this
work are aimed at accuracy in a statistical sense, which can reflect overall reconstruction
accuracy, but cannot reflect the spatial distribution of the error. In this paper, the spatial
distribution of errors is mainly analyzed by the visual effect of the absolute difference
plot (third column of Figure 5) and the profile of the subregion (fifth row of Figure 6).
Because no obvious regularities affecting the reconstruction accuracy were found from the
absolute difference maps or profile maps, the in-depth analysis was not continued in this
paper. If the subsequent application requires an in-depth study of the anisotropy or spatial
distribution law of the reconstruction effect, more relevant indicators will be needed for
experiments and evaluation.

From Figure 6, it can be seen that the reconstruction results of the network in the
area with large changes in elevation are not as accurate as that with small changes. We
suppose that this may be related to the following reasons. (1) The elevation variation
of the region where the training data was made is small, resulting in less ability of the
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network to learn to extract such informative features. (2) The scale recovery is carried
out according to Equation (13). When two areas with identical mean value but different
standard deviations (sd), e.g., greater degree of elevation change results in larger sd value,
the one with larger sd value probably leads to larger errors according to this scale recovery
method. (3) Scale recovery only depends on low-resolution DEM. The low-resolution DEM
may have systematic and random errors that are biased from the real lunar surface. These
errors will reflect on the reconstruction results through scale recovery. From the above
discussion, in future work, we need to firstly improve the normalization and scale recovery
mechanisms, and then add various training data so that the network may identify and
learn the different degree of elevation change. In this case, systematic errors caused by data
quality may be detected and corrected for better DEM reconstruction performance.

In subarea IV shown in Figure 6t, it seems that the reconstruction results are not
affected by the errors of SLDEM, and the reconstruction results are close to the ground
truth. The mean value of SLDEM in this subarea is close to the ground truth, but its
standard deviation is large. We deduce that gradient loss Lgrad included in the loss function
in Equation (11) of LDEMGAN may take this credit of eliminating errors. When the
network finds that the gradient information extracted from the image is inconsistent with
the elevation change of SLDEM, it will trust the high-frequency information obtained from
the image more.

5. Conclusions

In this paper, according to the current situation that there are high-resolution images
and low-resolution DEMs covering the whole lunar surface, but few high-resolution stereo
pairs, we propose a high-resolution lunar DEM reconstruction method based on GAN.
This method can reconstruct a high-resolution DEM using a single high-resolution image
and a much lower-resolution DEM in the corresponding area. The grid spacing of the
reconstructed DEM is as high as that of the high-resolution input image.

The experimental results verify the feasibility and effectiveness of the proposed
method and verify the necessity of using much coarser DEM taken as control informa-
tion in the network, instead of only using it to recover absolute depth. The RMSE of
the reconstruction results can reach about 2 m in the area where the degree of elevation
variation is less than 100 m, and the RMSE value ranges from around 3 m to 10 m without
considering the degree of the elevation variation in large area reconstruction. In addition,
the reconstruction accuracy is proved stable under nonextreme illumination conditions
(the solar altitude angle is between 25◦ and 75◦). In the future, we will continue to conduct
research on anisotropy of the reconstruction results, so as to further optimize and improve
the network.

Due to the current and near-future data situation on the lunar surface, the proposed ap-
proach has great potential for building global high-resolution DEMs for the lunar surface to
support more scientific and engineering applications, such as topographic characterization,
landing site selection, navigation, positioning, path planning, decision support, etc.
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