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Abstract: The olive (Olea europaea L.) is an iconic tree linked to the birth of some of the most ancient
civilizations and one of the most important cultivated tree species in the Mediterranean basin. Over
the last few decades, given the high socio-economic importance of the olive sector, there has been
much research involving remote sensing (RS) applications in olive growing, especially in precision
agriculture. This review article is part of a review that aims to cover the past, from the 2000s onwards,
and the most recent applications of remote sensing (RS) in olive growing to be able to include
research and all topics related to the use of RS on olive trees. As far as the use of RS platforms
such as satellites, aircraft, and unmanned aerial vehicles (UAVs) in olive growing is concerned, a
review of the literature showed the presence of several works devoted to it. A brief introduction on
the history of the olive tree and its distribution and cultivation around the world, together with a
summary of the leading RS platforms (a good portion of which are satellites) used in olive research,
anticipates the discussion of four topics about olive growing that have as their common thread
positive (and non-positive) impacts on the environment: preservation of olive landscape and soil
erosion, identification of olive groves, olive oil mill wastewater (OOMW) and relative environmental
risks, irrigation water management and the use of RS platforms for water stress monitoring. The
preservation of olive groves as an element of Mediterranean identity and strategic economic resource
in agriculture depends on sustainable environmental management alongside technological advances
brought by precision agriculture.

Keywords: olive landscape and land use; water stress; irrigation water management; olive oil mill
wastes (OOMW); unmanned aerial vehicles (UAVs) and satellite imagery

1. Introduction

The olive (Olea europaea L.) is an iconic tree linked to the birth of some of the most
ancient civilizations [1-3] and one of the most important cultivated tree species in the
Mediterranean basin. Moreover, the olive tree is considered one of the best biological
indicators of the Mediterranean climate [1,2,4,5]. According to archaeological and genetic
studies, the olive tree was probably domesticated from its wild ancestor, the oleaster
(Olea europaea ssp. europaea var. sylvestris), about 6000 years ago in the Middle East, in an
area between Turkey and Syria [1,6,7]. The olive tree as we know it today results from
selective breeding aimed at obtaining varieties without thorns (present with small olives in
the oleaster trees) and fruits containing more oil. The history of the olive is increasingly
intertwined with that of the people who learn to use and appreciate its main product, the
oil, first used only industrially for lighting and as an ointment, and then also as a food
product [8]. Olive growing shows a potential diversification of its production, and its
multifunctionality is demonstrated mainly by the types of products it can provide: the main
ones are oil and table olives [9,10]. Olive cultivation is widespread in fifty-eight countries on
five continents. The consumption of its products extends to 179 countries, thus showing an
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extremely localized production against a dispersed demand in the international context [9].
Today, olive crops cover more than 12 million hectares [11] globally. Olive growing is
roughly limited by 30° to 45° parallels [12]. The primary producers of olives are Spain, Italy,
Greece, and Portugal, followed by other Mediterranean countries such as Tunisia, Morocco,
Algeria, Egypt, and Turkey [11]. Among emerging producer countries, Argentina, Peru,
Chile, and Australia are particularly noteworthy [11] (Figure 1), where super-intensive
olive groves, irrigated and highly mechanized, represent the majority of newly cultivated
areas [13]. Over the last few decades, given the high socio-economic importance of the
olive sector over the last few decades, there has been much research involving Remote
Sensing (RS) applications in olive growing, especially in precision agriculture (PA). As far
as the use of RS platforms such as satellites, aircraft, and unmanned aerial vehicles (UAVs)
in olive growing is concerned, a review of the literature showed the presence of several
works devoted to it.

On the one hand, the increasing availability of data and the possibility of using increas-
ingly higher-resolution imagery helped make satellite the platform commonly associated
with RS in the first decade of the 2000s. On the other hand, technological advances have
affected UAVs over the last decade, making them a potential game-changer in PA applica-
tions [14], mounting sensors with centimeter spatial resolution and more independent of
climatic variables [15]. In addition, UAVs have the unique feature of being able to mount
several types of sensors simultaneously [16].

RS has the potential to provide biodiversity information at the site, landscape, con-
tinental, and global spatial scale and offers itself as an inexpensive means of obtaining
comprehensive spatial coverage of updatable environmental information [17-20]. The
spatial resolution image, increasing as technology advances in this field, provides data
on scales of individual tree canopies over a wide area. RS sensors allow the detection of
species or single trees and their density and land covers due to high spatial resolution,
which increases the accuracy of the data [21-23]. The potentialities of the application of RS
in olive growing have concerned so far several mapping and monitoring issues, such as the
identification of olive-cultivated areas and tree counting [24,25], evaluation of the effects of
pruning strategies [26,27], plant phenotyping [28], as well as the relationship between plant
structure and growth with irrigation and water stress [29], and yield estimation [30-32].
In addition to purely agronomic issues, RS data helps monitor the evolution of pathogens
and phytophagous infections and, on a larger scale, the olive landscape characteristics [33].
What is also critical for their environmental issues is managing wastewater produced by the
olive oil industry. Olive oil extraction generates enormous waste that significantly impacts
terrestrial and aquatic environments [34]. In this framework, the role of RS platforms can
be to monitor this source of underground pollution related to olive oil waste disposal areas,
which is considered a major environmental problem in Mediterranean countries [35].

This review aims to cover the past, from the 2000s onwards, and the most recent
applications of RS in olive growing, focusing on preserving the olive landscape and ad-
dressing environmental issues. A review of RS applications focusing on detecting and
counting trees, phenotyping, yielding, detecting olive diseases, and managing pests in
the framework of PA is reported in Messina and Modica [36]. The structure of the first
part of this review is the following: Section 2 contains brief mentions of RS platforms and
sensors, mainly satellites and UAVs, used in research focused on olive growing from the
early 2000s until now; Section 3 deals with the preservation of olive landscape and soil
erosion; Section 4 regards RS applications aiming to identify and mapping olive groves;
Section 5 is focused on monitoring and management of olive oil mill wastewater (OOMW)
and relative environmental risks; Section 6 concerns irrigation water management and the
use of RS platforms for water stress monitoring; finally, Section 7 contains discussions and
conclusions about the present—as well as future—challenges in the presented framework.

Figure 2 shows that of the 41 researches considered, most were published in the second
decade, from 2011 onward, while just over a quarter were published earlier. The sources
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for the search of works reviewed were the following databases: Scopus (Elsevier), Google
Scholar, and Web of Science (Clarivate Analytics).
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Figure 1. Map showing a comprehensive view of remote sensing (RS) applications distribution,
according to the distribution of research study sites in the countries reported in the analyzed papers
and the worldwide geographical distribution of olive cultivation. The main olive-producer countries
are highlighted in dark green, while the main emerging-producer countries are highlighted in light
green. The symbols of different color (shown in the upper right) distinguish the type of remote
sensing platform (satellite, airborne, or unmanned aerial vehicle) used in the research and the number
of research performed from 2000 to the end of March 2022. The table at the bottom left shows the
number of remote sensing researches in olive growing carried out in each country. Important to
consider that some researches include more than one RS platform.
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Figure 2. The trend of published articles based on publication year. The sources for the search of
works reviewed were the following databases: Scopus (Elsevier), Google Scholar, and Web of Science
(Clarivate Analytics). The x-axis shows the years of the period under consideration, while the y-axis
shows the number of searches carried out. The researches considered are those carried out from the
beginning of the year 2000 until the end of March 2022.

VOSviewer 1.6.18 software was used to perform cluster analysis on titles and abstracts
(the choice is due to the lack of keywords in some of the works considered), having a
frequency of at least six, and three categories were obtained (Figure 3). A temporal analysis
of the period under consideration (beginning of 2000—end of March 2022) was performed.
However, the software detected significant occurrences only from 2012. According to the
content of words occurrence, three clusters were obtained, and in line with what is covered
in this review, the most common were “environmental science”, “remote sensing”, and
“NDVI”. “Environmental science” encapsulates well the content of this review focused on
the analysis of research that has included applications of RS in olive growing aimed at the
conservation of the olive landscape, its monitoring, the management of irrigation resources,
and environmental issues arising from the olive industry. Occurrences involving the term
can be traced back to the last five years. Noteworthy are the terms “transpiration”, “water
content”, “water”, and “hydrology” inherent in both the problem of soil erosion, covered
in Section 3, and irrigation and water resource preservation, covered in Section 6. As for
the term “NDVI”, the most widely used of indices with the largest number of researches in
which it was used, and “vegetation indices”, we have indicated in Table 1 the main indices

used in the researches analyzed.

Table 1. The main vegetation indices (VIs) used in remote sensing research in olive growing.

Vegetation Index (VI) Acronym Equation Research
: : : : (NIR—Blue)

Blue Normalized difference vegetation index [37] BNDVI (NTR T Blue] [38]
Difference Vegetation Index [39] DVI NIR — R [38,40-43]
Enhanced Vegetation Index [44] EVI G x (NIR +(§I?e{d:Rggfue +1) [40,41]

Greenness index GI R554/R677 * [45]
; : y (NIR—Green) y
Green Normalized Vegetation Index [46] GNDVI (NTR T Green) [38,40,47,48]
Green Ratio Vegetation Index [49] GRVI GI\rESn [42]
Inverse Ratio Vegetation Index [39] IRVI Red [38,42,43]
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Vegetation Index (VI) Acronym Equation Research

Modified chlorophyll absorption in reflectance index [50] MCARI 1.2[2.5(NIR — Red) — 1.3(NIR — Green)] [45]
i . . . 1.5(2.5(NIR—Red)—1.3(NIR—Green))

Modified chlorophyll absorption in reflectance index [50] MCARI, \/ (2NIR+1)2— (6NIR_5 JRed) 05 [45]

Modified Simple Ratio [51] MSR % [40,47]
Modified Soil Adjusted Vegetation Index [52] MSAVI [2NIR + 1 — [(2NIR + 1) — 8(NIR — Red)]°®]/2  [38,40,41,4547]

Modified triangular vegetation index [50] MTVI, 1.2 x [1.2 x (NIR — Green) — 2.5 x (Red— Green)] [45]
. . L. 1.5(1.2(NIR—Green)—2.5(Red—Green) )

Modified triangular vegetation index [50] MTVI, /2NIR+1)2— (6NIR—5Red) 0.5 [45]
Normalized difference green/red index [53] NGRDI % [42]
Normalized Difference Red Edge Index [54] NDRE % [48]

Normalized Ratio Vegetation Index [55] NRVI (RVI-1)/(RVI+1) [42,43]
. . . (NIR—Red) [38,40,42,/43 /45,
Normalized Difference Vegetation Index [56]] NDVI (NRTRed) 47 48,57-66]
Optimized Soil Adjusted Vegetation Index [67] OSAVI 1.16 mg&{% [40,41,43,45,47]
NIR— Red
Renormalized Difference Vegetation Index [68] RDVI ﬁ [41]
; ; NIR
Simple Ratio [69] SR Red [40-42,47]
Soil Adjuted Vegetation Index [70] SAVI (Iﬁ}{”i% x (1+L) [40,41,47,71]
Soil and Atmospherically Resistant Vegetation Index [72] SARVI (1 + L)(NIR — Red,,)/(NIR + Red, + L) [38]
Transformed Soil Adjusted Vegetation Index [55] TSAVI W [38]
Transformed Vegetation Index [73] TVI (NDVI + 0.5)%5 [43]
Vogelmann Red Edge Index [74] VREI %&ge [42]

* R = reflectance. NIR = near-infrared. L = soil adjustment factor ranging from 0 to 1.
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Figure 3. Keywords occurrence and clustering by VOSviewer 1.6.18. Colors indicate the year in

which each title and word contained in the abstracts were used more. Lines represent co-occurrence
link strength among terms.
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2. Remote Sensing Platforms and Sensors
2.1. Satellites

Initially, RS relied on aircraft-mounted photographic instruments to capture Earth
features taking imagery flying within a height of 10 km above the ground [75]. Aerial
platforms proper include fixed-wing aircraft, helicopters, balloons, dirigibles, rockets, kites,
parachutes, and in recent times military-operated drones from which drones are derived
for civilian use, the UAVs [14]. Before the advent of the well-known UAVs, several satellites
regularly provided data covering a wide spectral range, using both active and passive
sensors [76], acquiring data from different orbits and at different spatial and temporal
resolutions [77]. Satellites have been used for RS imagery in agriculture since the early
1970s [78], using a sensor mounted on the Landsat 1 (also known as the Earth Resources
Technology Satellite—ERTS), launched in 1972. Landsat 1 was followed by its improved
versions (from Landsat 2 to 9, the latter launched on 27 September 2021) and equipped
with sensors with increasing higher performance in terms of bandwidth, radiometric and
spatial resolution. The satellite “evolved” from the initial 4 bands (green, red, and two
near-infrared—NIR-bands) to the current 11 bands (coastal aerosol, blue, green, red, NIR,
short-wave infrared (SWIR 1), and SWIR 2, panchromatic (PAN), cirrus and two thermal
bands). The spatial resolution increased from a maximum of 80 m of Landsat 1 to 30 and
15 m of the multispectral (MS) and panchromatic bands, respectively, of Landsat 7, 8, and
9 [79]. The Landsat historical archive was made freely available in 2008 (for Landsat 7)
and 2009 (for all archived Landsat scenes) [80]. The benefits of this decision can be seen
in the use of Landsat imagery in the multi-temporal monitoring of changes in land uses,
considering an increased awareness of the implications of rapid land use and cover changes
occurring in the landscape [75,81]. In olive growing-related research, Landsat imagery
was primarily used in land-use mapping and monitoring of sites of OOMW disposal ar-
eas [40,47,71,82-85]. Images with lower resolution than Landsat are those produced by
Terra satellite’s sensor, Moderate Resolution Imaging Spectro-Radiometer (MODIS), acquir-
ing at 250-500 m resolution data related to surface reflectance and land surface temperature
(LST) and emissivity, land cover/change, vegetation indices (VIs), thermal anomalies and
fire data, leaf area index (LAI), the fraction of photosynthetically active radiation (PAR),
net primary vegetation production, etc. [80]. Another Terra sensor, Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER), equipped with 15 bands and includ-
ing some of them with 15 m resolution, is suitable for the measurement of soil properties,
vegetation and crop monitoring, land temperatures, and generation of digital elevation
models (DEMs) [86]. In the framework of olive growing RS research, MODIS and ASTER
imagery was used to monitor canopies’ temperature, yield predicting, water stress, and
irrigation management [30,31,45,87,88].

Following the period of “preeminence” of the Landsat system, several private con-
sortia developed, between the late 90s and early 2000s, a new generation of satellites
with a high spatial resolution (between 0.5 and 4 m) to open up new markets for satellite
imagery [86]. Until then, satellite imagery has proven cost-effective compared to aerial
photography previously used for land use classification over large regions [89]. How-
ever, coarse spatio-temporal resolution satellite imagery is not entirely adequate for PA
applications. Among the first high-resolution systems launched and operated by private
companies were IKONOS and Quickbird. The IKONOS satellite system was launched in
September 1999. It was the first commercial satellite providing submeter imagery with
0.80 m resolution, using a PAN band or combined with other bands to produce pansharp-
ened MS imagery. Quickbird was launched in October 2001 and provided imagery at 0.60 m
resolution, exploiting pansharpened MS imagery and 2.4 m using MS bands [90]. With the
highest spatial resolution available, pansharpening routines are widely used to optimize
the spectral and spatial resolution of MS bands [91]. The availability of the first images
provided by these two satellites allowed researchers to address issues that previously could
not be studied from space or on the ground, such as individual mapping canopies, as
shown in research focused on detecting and counting olive trees [92-95].
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For some years, IKONOS and Quickbird satellites provided the highest resolution satel-
lite imagery available to the public before the advent of WorldView satellites (2007-2009)
and GeoEye-1 (in 2008) [80]. These satellites provide PAN imagery at a resolution from
30 to 50 cm and MS imagery at less than 2 m [86]. GeoEye, WorldView-2, and -3 images
were used to detect OOMW disposal areas [57] and monitor olive trees” health status using
VIs [96,97]. Another important commercial source of data, albeit limitedly used RS research
in olive growing [41,98,99], is the Planetscope constellation launched in the middle of the
past decade. PlanetScope constellation is composed of many small nano-satellites, 3U
CubeSats, also called “Doves” and equipped with MS sensors providing up to 3 m spatial
resolution with a one-day revisiting time [100,101].

While commercial satellites are worthy of consideration, the Sentinel constellations
operated through the Copernicus program proposed by the European Union (EU) and
the European Space Agency (ESA) today play a significant role. The Copernicus program
includes Sentinel-1’s constellation, with two satellites using radar C-band, and Sentinel-2’s
constellation, comprising two MS satellites, providing image resolution between 10 and
60 m. Sentinel images are particularly suitable both for the monitoring of environmental
risks and for the needs of the agricultural and academic communities considering the free
availability of data to users together with its spatial and temporal resolution [102-105].
Sentinel images have proven useful in monitoring the health of olive groves by detecting
water stress symptoms in olive trees caused by Verticillium dahliae Kleb. [106] and temporal
variations in the olive canopy associated with Xylella fastidiosa’s symptoms [107,108].
In addition to Sentinel-1 radar images, Radarsat 2, COSMO-SkyMed, and TerraSAR-X
satellites were exploited to map olive groves and characterize canopy biophysical param-
eters [109-111]. The main characteristics of satellites used in olive-growing applications
(from 2000 to date) are summarized in Table 2.

Table 2. The main characteristics of satellites used in olive growing applications.

. Ground Sample Temporal
Satellite and Sensors Spectral Bands Distance (GSD) Resolution Temporal Cover Age
COSMO-SkyMed X-band SAR 25m 5 days 2007—present
0.4 m PAN
GeoEye 1 PAN-VIS-NIR 1.6 m MS 2-5 days 2008-present
0.8 m PAN 3 days MS
IKONOS PAN-VIS-NIR 3.6 m MS 12 days PAN 1999-2015
Landsat 5 Thematic Mapper (TM) VIS-NIR 30 m 16 days 1984-2012
15 m PAN
Landsat 8 PAN-VIS-NIR 30 m MS 16 days 2013-present
PlanetScope VIS-NIR 3.6m 1 day 2017-present
. 0.5 m PAN
Pleiades PAN-VIS-NIR 2 mMS 1 day 2011-present
g 0.6 m PAN
Quickbird PAN-VIS-NIR 25 m MS 3 days 2001-2015
Radarsat 2 C-band SAR 3 to 100 m 3 days 2007—present
Sentinel-1 C-band SAR 5m x 20 m 1-3 days 2014—present
Sentinel-2 VIS-NIR 10m 5 days 2015-present
2.5-5m PAN
SPOT 5 PAN-VIS-NIR 10 m MS 2-3 days 2002-2015
SPOT 6 PAN-VIS-NIR 1.5mPAN 1 day 2010—present

6 m MS
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Table 2. Cont.

Satellite and Sensors

Ground Sample Temporal

Spectral Bands Distance (GSD) Resolution

Temporal Cover Age

Terra (EOS AM-1): Advanced
Space-Borne Thermal Emission and VIS-NIR 15m 4-16 days 1999—present
Reflection Radiometer (ASTER)

Terra (EOS AM-1): Moderate-resolution

Imaging Spectroradiometer (MODIS) VIS-NIR 250-500 m 2 days 1999-present
TerraSAR-X X-band SAR 3m 3 days 2007—present
. 0.46 m PAN
WorldView-2 PAN-VIS-NIR 1.84 m MS 1 day 2009—present
. 0.31 m PAN
WorldView-3 PAN-VIS-NIR 1.24 m MS 1 day 2014—present

VIS = visible. PAN = panchromatic. NIR = near-infrared. SAR = Synthetic Aperture Radar. MS = multispectral.

2.2. Unmanned Aerial Vehicles (UAVs)

UAVs are widely used in geomatics for data acquisition in research and operational
fields, among which security and surveillance, civil infrastructure inspection, monitoring
of archaeological sites, environmental monitoring, and applications in agriculture and
forestry [112-117]. In agricultural applications, UAVs’ use registered its spread over the
last decade [16].

UAVs are generally equipped with miniaturized and lower-cost versions than satellite
sensors. They include RGB, MS, thermal, hyperspectral cameras, and light-weight LIDAR
(light detection and ranging) sensors [118]. RGB sensors, on which many RS applications
in agriculture are based [119], were used, as shown in much olive-related research, for
tree canopy detection and tree counting [24,32,120-122], characterization of tree dimension
parameters [27,123-128], and health monitoring [129]. These are relatively low-cost, high-
resolution sensors but may be inadequate if not coupled with other types of sensors [112].
An alternative involves modifying RGB sensors to capture images on bands such as Red
Edge and NIR, avoiding the higher costs of purchasing MS cameras [119]. MS cameras
being able to operate on other bands, such as Red Edge and NIR, can be exploited for
monitoring plant physiological status by detecting drought and heat stress, the health status
in general, nutrient content, and plant biomass [48,130-135]. Multiple bands allow more
VIs to be exploited to highlight vegetation’s vigor and other vegetation properties [136]
(Table 1). In addition, MS UAV imagery is used for phenotyping; detecting olive trees based
on pixel or object-based image analysis (OBIA); assessing olive tree parameters such as
height, diameter, and volume [25,28,29,123,127,137,138]; and monitoring them in terms of
spectral behavior.

Thermal UAV cameras provide data of great agronomic relevance considering the
absence of high-resolution satellite thermal sensors. Thermal sensors capture information
about the temperature of objects by generating images that display them based on their
temperature, not on their visible properties [119]. Therefore thermal RS, when used on the
vegetation, allows for identifying the leaf surface’s thermal alterations due to physiological
changes induced by water stress [112]. Several researches focused on the field characteriza-
tion of water stress in olive groves [139-143], and a few [144,145] correlated olive canopy
temperature to the water stress symptoms to detect infected plants by Verticillium Wilt.

Hyperspectral sensors capture data in hundreds of bands providing high volumes
of information in agriculture and forestry [146,147]. However, the use of these sensors
mounted on UAVs is affected by some limitations: higher spectral resolution but lower
spatial resolution if compared, for example, to RGB sensors; read spectral ranges halved
when compared to aircraft-mounted sensors due to weight limitations; higher cost [118]. In
addition, hyperspectral sensors, similarly to and more so than MS sensors, may require



Remote Sens. 2022, 14, 5430

9 of 33

more complex data pre-processing methods to extract information [119]. The difficulties
linked to UAV hyperspectral use can explain the lack of much olive-related work [148].

LiDAR, mainly used for terrestrial scanning, has been used for aerial scanning since
1994, when commercial systems became available. LIDAR is an active RS system emitting
pulses whose return to the sensor after being reflected by an “object” of the terrestrial
surface is measured by calculating the time elapsed between the emission of the energy
pulse and its return [86]. From this information, it is obtained a cloud of points with X, Y,
and Z coordinates that corresponds to the impacts of the initial pulse energy on the Earth’s
surface objects, thus making it possible to reconstruct the structure of trees with high
precision digitally [26,149,150]. LIDAR sensors are known to be very accurate for acquiring
geometric data, such as those referring to tree canopies, many of which are carried out in
forestry [151,152]. 3D models obtained from LiDAR surveys can also be helpful in agriculture,
with applications similar to those used in forest areas. As the geometric characteristics of
trees are directly related to tree growth and productivity, they can be important indicators for
estimating growth, yield prediction, and water consumption [153]. However, even those with
a relatively low cost are still more expensive than RGB cameras and require higher payloads
(up to a few kilograms) [119,154]. For these reasons, the LiDAR system is not as readily
accessible as other UAV-based photogrammetric mapping systems [118].

3. Preservation of the Olive Landscape and Soil Erosion

The olive grove can be considered an essential and historical component of the Mediter-
ranean landscape mosaic, especially in Italy, Spain, and Greece [155-157]. The landscape
has the constant trait in this species, while other characters are given by different envi-
ronmental and cultural expressions such as climate, land geomorphology, and cultivation
techniques. The climate is a relatively limiting factor considering the spread in recent
decades of olive growing even in areas far from those “historical” cultivation [158]. Just
think of the growing importance that olive cultivation is acquiring in the countries of South
America (Argentina, Chile) and Australia [159]. As for the geomorphology, this is closely
linked to both the olive groves localization and the cultivation techniques adopted, and
examples of this are the traditional terraced olive groves typical of hilly-mountainous and
marginal areas of Greece’s and Italy’s regions, conversely, contrasted by location, planting,
and management to the super-intensive olive groves in Spain (or Australia) spread in
recent decades [160]. The protection of the cultivated landscape, specifically that of the
olive tree, must be pursued by complying with opposing requirements: opportunity for
protection through conservation (even with the introduction of compensatory mechanisms)
or freedom to organize the factors of production by appropriately modifying the productive
assets and, inevitably, landscape [161]. For example, in opposition to the advancement of in-
tensive olive growing in some areas, in others, the olive landscape’s detriment is caused by
urbanization’s effects on agricultural land [157]. It is often overlooked that olive represents
a typical crop with mixed urban-rural settlements, which provides environmental services
and biodiversity conservation and represents an integral part of periurban landscapes
while also supporting rural economies and tourism development [3]. The adverse effects of
the urban sprawl on agricultural land were covered by Doygun [162], which quantified the
loss of agricultural land, and olive land cover in particular, in a location in Turkey, from
1985, using aerial imagery, to 2006, using IKONOS’ image (panchromatic), and Quickbird
image (pansharpened). Three specific periods were analyzed and compared (1985-2000,
2000-2004, and 2004-2006), starting by superimposing the olive groves digitized in the
1985 aerial photographs on 2000 urban area images. The data obtained showed a loss of
25% of the area initially occupied by olive groves due to a progressive abandonment of
agricultural practices in favor of new residential building construction.

One challenge of RS is to effectively assess the impact of agriculture in risk situations
concerning soil erosion and environmental conservation [163]. Soil erosion represents one
of the principal environmental issues associated with olive growing in Mediterranean
countries, mainly in hilly areas characterized by more or less accentuated slopes [164,165].
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The evolution of soil erosion in olive groves finds in its causes both their expansion and
changes in soil management techniques [166]. Soil erosion can cause several negative
environmental impacts, including a reduction in production, risk of desertification, and
run-off with soil transport, fertilizer residues, and herbicides into water bodies [166]. Soil
erosion depends on the combination of soil characteristics, slope, rainfall patterns, and the
use of inappropriate agricultural practices [167]. Mechanical tillage is still the most widely
used practice for soil management as it improves not only the infiltration capacity but also
the distribution of water in the soil profile and contributes to the burial of fertilizers, the
prevention of fires, and the removal of weeds [168-170]. However, the continued use of
this practice, in the long run, can cause opposite and harmful effects on soil destructuring,
reduction of water infiltration rate, reduction of water availability in the rhizosphere,
and soil compaction with consequent loss of nutrients and organic matter depriving it of
protection from torrential rains [42,167,171]. Cover crops shield soil from the driving rain
while increasing infiltration and reducing surface sealing [172-174].

Furthermore, vegetation cover promotes more bacterial diversity, which can be con-
sidered a biological indicator of soil quality [175]. As highlighted by Lima-Cueto et al. [42],
the role of vegetation cover is acknowledged in the cross-compliance system of the EU
Common Agricultural Policy (CAP) (Regulation No. 1306/2013). Lima-Cueto et al. [42]
exploited RS for quantifying cover crops (CC) in olive groves where CC contributes to
improving soil fertility and water retention while reducing erosion risk. For this purpose,
the authors tested several Vs, chosen from those contained in their formula, the bands
Green, Red, Red Edge, and NIR, to verify their capacity to quantify the density of cover
crops in olive groves using UAV imagery. Results showed that the Inverse Ratio Vegetation
Index (IRVI, given by the ratio of Red to NIR) [39] was the most sensitive for quantifying CC
density at intervals of 10-25%. Given its impact on soil conservation in sloping farmlands,
Lima et al. [163] used UAV MS data and DEMs to map differences in tillage using OBIA
classification techniques. Authors automatically classified tillage furrows and computed
their main direction testing this procedure on twenty olive groves characterized by a wide
range of tree sizes, soil tones, plot shapes, and soil slopes.

Karydas et al. [137] investigated soil erosion risk mapped in Creta (Greece) caused by
the intensification of olive growing. As in other regions of the Mediterranean, long periods
of drought followed by heavy rainfall favor erosion on steep slopes and with shallow and
fragile soils. In this regard, the use of terraces and the presence of rural roads perpendicular
to the direction of the slope helps to divide the length of the slope and slow down the runoff
process, improving water penetration. Erosion is related to the speed with which water
passes or infiltrates the soil and the generation of runoff, the leading cause of soil loss [165].
The authors used Quickbird imagery, a DEM, a geologic map, and rainfall data collected by
two meteorological stations. The research aimed to quantify the supporting practice factor
(P) in the spatial domain and its incorporation into the Revised Universal Soil Loss Equation
(RUSLE) formula. RUSLE is a revised version of the model-based method Universal Soil
Loss Equation (USLE) used for quantifying the risk of soil erosion [176]. P factor depends
on the mapping landscape’s features indicative of existing support measures (terraces) or
conditions that prevent soil erosion (rural roads and paths). P factor was quantified using
visual photointerpretation for an overall image interpretation and object-oriented image
analysis for semi-automatically mapping terraces and rural roads. A soil erosion risk map
was produced, attributing differentiated values to the P factor.

Terraces perform an essential service by leveling the soil surface and stabilizing slopes,
resulting in better water infiltration and reduced erosion risk. In addition, terraces increase
landscape diversity and function as habitats and biodiversity corridors [177]. Conversely,
the abandonment of terraces may cause an aggravation of the eroding process [178-180].
Considering the aspects mentioned so far, Diaz-Varela et al. [143] proposed a low-cost
methodology for automatically classifying agricultural terraces (with permanent crops such
as olive trees) using high-resolution imagery acquired by a low-cost UAV equipped with
non-metric cameras. In the context of CAP monitoring, these objectives address the need to
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develop reliable and repeatable methods for automatically classifying landscape elements
that perform an ecosystem service. The UAV imagery was acquired and pre-processed
without ground control points for reducing flight planning costs and user interaction. The
classification of terraces and no-terraces was based only on the spectral and elevation data
derived from imagery and exploiting 3D photo-reconstruction methods.

Fernandez et al. [181] used UAVs high-resolution imagery to analyze the evolution
of a landslide affecting olive groves in Southern Spain. The proposed method allows a
monitoring analysis by calculating differential Digital Surface Models (DSMs) to measure
vertical displacements and identify depletion and accumulation areas inside the landslide.
DSMs of different epochs were compared to monitor landslides to reach this objective:
head and depletion area, primary and secondary scarp, body, toe, and accumulation area.
Moreover, the estimation of vertical displacements in areas not covered by vegetation
was performed. This work proved that UAVs could estimate vertical and horizontal
landslide displacement changes based on DSM and Digital Terrain Model (DTM). Both
models and orthophotos at different epochs were obtained from UAV surveys using a
methodology based on conventional photogrammetry and Structure from Motion (5fM)
techniques. The results allowed the characterization of the slope movement flow rate and
some morphological features (crown, scarps, head, lateral limits, tension cracks, foot, etc.)
on a hillslope of hectometric dimensions.

Part of the ecosystem functions of olive groves, especially traditional ones, is the
critical contribution to animal and plant biodiversity even when they are present in areas
dominated by other land uses, such as arable land and forests where, among other things,
olive groves can also serve as firebreaks [167]. In particular, the biological activity and biodi-
versity are generally higher in undisturbed olive groves semi-abandoned or those managed
according to modern techniques of conservation agriculture [182]. Tscheulin et al. [85] high-
lighted the olive tree’s function in preserving biodiversity in Mediterranean environments.
The authors analyzed the influence of the surrounding landscape, in particular olive groves,
on the presence of three size groups of bees. Depending on the size of the bees and the
distance they can cover, the use of resources such as pollen occurs on different spatial
scales. The landscape around the study area was assessed using thematic maps based on
the satellite image Landsat 5 and classifying land according to eight land cover categories.
Among these, the olive grove class positively impacted the abundance of bees.

Table 3 shows the researches in RS in olive growing dealing with the preservation of
the olive landscape and soil erosion.

Table 3. References dealing with the preservation of the olive landscape and soil erosion.

Reference Platform Sensor Type Used Aim of the Study
[59] UAV CIR Panasonic Lumix DMC-GF1 (MS) Identification of agricultural terraces
[183] Satellite W01jldView—3 RGB Eva}uating the vertical accuracy of Wc?rldView-B
UAV DJI Matrice 600 PRO Sony Alpha A7RII DSLR camera derived DSMs for application over olive groves
[162] Satellites IKONOS—Quickbird Aircraft PAN Loss of land
[181] UAVs Falcon 8 Asctec Sony Nex 5N (RGB) Landslide evolution
Aircraft FV-8 Atyges Canon G12 (RGB)
[62] Satellite Quickbird PAN-MS Soil erosion risk
[42] UAV Parrot Bluegrass Sequoia Parrot (MS) Quantify the vegetation ground cover
[163] UAV DJI Phantom 4 Pro Sequoia Parrot (MS) Mapping tillage direction
[85] Satellite Landsat 5 MS Influence of olive groves on the diversity of bees
[184] DJI Phantom 3 Mapir Survey 2 (Red and NIR bands) Monitoring soil losses in olive orchards

PAN = panchromatic. MS = multispectral. DSMs = digital surface models. NIR = near-infrared.
RGB = red-green-blue.
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4. Identification and Mapping of Olive Groves

Land use is a coupled human-environment system that describes how the land is
managed [75]. Land-cover mapping and monitoring represent one of the main applications
of Earth-observing RS sensors data and are crucial for estimating land cover change [185].
Photo interpreters can use RS data for deriving land use information by using patterns,
textures, or shapes [186]. Researchers recognized the importance of mapping land use and
creating databases for sustainable natural resource management on local, regional, and
national scales [187,188]. In addition, knowledge of soil’s physical, biological, and chemical
properties allows for the design and implementation of essential operations in PA, such
as irrigation, drainage, nutrient, and other crop management strategies [89]. Furthermore,
the importance of determining land uses is related, for example, to European financial
support to agricultural producers via several subsidies [189], the implementation of specific
agro-environmental measures, and the assessment of the impacts of existing management
and policies at regional and national scales. An example of the first research in the early
2000s concerning this topic on olive groves was given by De Bruin [82], which presented
an approach for predicting the areal extent of land cover types. In particular, the author
proposed a geostatistical method to model spatial uncertainty in estimating the area extent
of land cover types (including olive groves) derived from Landsat Thematic Mapper data.

Based on the European Union and national regulations for the subsidy of the creation of
cover crops between rows of olive groves, Pefia-Barragan et al. [64] evaluated RS techniques
for a rapid and accurate assessment of cover crops in olive groves at a farm and regional
level. The objectives of this research included determining the suitable time of the year for
taking aerial photographs and the better VIs for discriminating different land uses. Results
showed that the cover crop could not be distinguished from olive trees in spring, while
both can be distinguished from bare soil. Regarding the detection of olive trees, among
the VIs obtained by combining the Blue, Red, Green, and NIR bands, the best proved to
be the following ratio: R/(B+G), able to detect olive trees in summer with an accuracy
of almost 93%. Similar results in terms of accuracy were obtained in [65], developing a
land cover classification using satellite imagery. In this case, based on the use of Quickbird
images, the following objectives were pursued: selecting VIs for distinguishing each land
cover; defining image processing sequences to automatically complete the separation and
quantification of each land cover, among which olive groves. Land cover was randomly
determined and georeferenced, carrying out field inspections to validate the classification
procedure by tracing training zones to define the digital boundary values used in the
classification routines. Classified regions were created with each land cover or grouping
of land covers with similar digital value characteristics. The following bands, band ratios,
and VIs were tested to discriminate land covers: Blue, Green, Red, NIR, Ratio Vegetation
Index (RVI) [190], Blue/Green, Blue/Red, Red/Green, NIR/Blue, NIR/Green, Normalized
Difference Vegetation Index (NDVI) [56], Adapted Soil Adjusted Vegetation Index (ASAVI)
and Adapted Burnt Area Index (ABAI). A supervised classification method was employed
to distinguish land covers by creating classified regions defined using the digital boundary
values. In the case of olive groves cover class, it was identified by deleting the area resulting
from the merging of the three classes’ vegetation (consisting of the spring-sown herbaceous
crops and vineyards plus roadside trees classes), non-vegetation (consisting of the bare
agricultural soil and urban soil plus highways classes) and non-burnt stubble. Olive groves’
cover crops were estimated by exploiting the NDVI to discriminate the olive trees and the
Blue/Red ratio to discriminate cover crops, as shown in [64].

Weissteiner et al. [191] showed another methodology for classifying olive groves accord-
ing to management intensity using agro-economic (such as yields) and ecological parameters
(e.g., ground coverage and tree density). The input data were derived from a long-term time
series of NOAA AVHRR (Advanced Very-High-Resolution Radiometer of National Oceanic
and Atmospheric Administration) and calculation of the index Green Vegetation Fraction
(GVE [192]). Vegetation variables were derived from the parametrization of a long-term RS
time series of GVF using a model called SINFIT. This model obtains parameters for quantifying
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the component of permanent vegetation and that which changes seasonally. These parameters
allow classifying the olive grove according to the intensity of management.

Torkashvand and Shadparvar [193] focus on identifying and mapping olive in Iran’s
Roodbar region using Indian Remote Sensing (IRS) images and GIS. Two methods were
used: providing spectral reflectance stochastic (DN) of different land covers and supervised
classification for discriminating olive groves from other land covers. For the first method, a
training map was prepared and superimposed on a color composite sample consisting of
three bands. In supervised classification, four methods were used: Box Classifier, Maximum
Likelihood, Minimum Distance, and Minimum Mahalanobis distance. Dense olive groves
were differentiated from low-dense groves. The results showed less accuracy and precision
in classifying low-density olive groves due to the interference of the spectral signature of
the canopies with those of other vegetation and soil cover.

The monitoring of land use over time and, in particular, the abandonment of olive
growing or the reduction of land has been addressed by Efe et al. [83], which investigated
land-use change on olive tree cultivation in the Edremit region in the northwest of Turkey.
This research focused on the relationship between the natural environment and humans
over three decades (1979-2006). Both historical maps and satellite imagery provided the
data. In detail, topographic maps at 1:25,000 scale were used for land use determination in
1979, while Landsat Enhanced Thematic Mapper Plus (ETM+) images were used for land
use determination in 2006. Field surveys were carried out to confirm land use. Changes in
olive areas were determined by overlaying the surveyed data from 1979 and 2006. These
data were overlayed with DEM to show changes in the olive groves according to the
elevation levels. The tabular data expressed in hectares showed that in cases where areas
occupied by olive groves were allocated to other agricultural uses, almost 74% of these areas
were located at an altitude between 0 and 100 m. Moreover, the highest percentage (nearly
98%) in converting olive groves into residential areas is on the coast (0-100 m). This resulted
in the centralization of olive groves located in marginal lands with severe productive use
limitations, soil limitations, high altitude variation, and unfavorable ecological conditions.

Ghaderpour et al. [61] monitored vegetation variation (olive groves) through the
least-squares wavelet analysis (LSWA), a time series analysis method developed by [194].
Four regions of Tunisia with different characteristics have been chosen: the first region was
selected to study the relationship between the olive tree growth rate and temperature and
precipitation; the second region was selected because it was occupied by a forest area that
faces substantial degradation due to anthropogenic activities; the third region was selected
because it was affected by the growth of salt-loving plants and a large number of migrant
birds; the fourth region was chosen due to the vegetation cover degradation caused by the
urban sprawl. The Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite images,
acquired for the period from 2000 to 2018, were used to create the NDVI time series. The
results showed that NDVI time series of olive tree vegetation are highly coherent with
temperature and precipitation time series.

Table 4 shows the researches in RS in olive growing dealing with the identification
and mapping of olive groves.

Table 4. References dealing with the identification and mapping of olive groves.

Reference Platform Sensor Type Used Aim of the Study
[82] Satellite Landsat 5 MS Predicting the areal extent of land-cover types
[83] Satellite Landsat 7 MS Monitoring land use changes
[61] Satellite Landsat 7 MS Change detection
[64] Aircraft CESSNA 310 R WILD RC-10 (RGB) Assessing land-use in olive groves
[65] Satellite Quickbird MS Discriminating land uses
[193] Satellite Indian Remote Sensing MS Mapping olive groves
[191] Satellite NOAA AVHRR MS Classifying olive groves according to management intensity

MS = multispectral. RGB = red-green-blue.
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5. Olive Oil Mill Wastes (OOMW) Management

The olive oil industry is crucial in Mediterranean countries, being a source of wealth
and tradition and one of the fundamental sectors of agriculture in these countries [34].
However, the extraction of olive oil produces a considerable quantity of waste harmful
to the terrestrial and aquatic environment due to its phytotoxicity representing a critical
environmental issue, especially in Mediterranean areas [195]. The extraction of olive oil
consists of washing the olives, grinding, beating, and the extraction itself, representing the
fundamental phase of the entire process [196]. Waste from oil mills can be divided into
solid, olive husks, and a liquid component, OOMW [40]. The specific physicochemical
characteristics of OOMW are variable, depending on climatic conditions, the cultivars from
which the oil comes, the degree of ripeness of the olives, storage times, and the type of
extraction [197-199]. The effects of OOMW on physicochemical soil properties also depend
on the quantity, the time, the spreading method, and the surface slope [200]. OOMW could
be temporarily stored in evaporation ponds or lagoons and then distributed evenly over
agricultural land [201-204]. In European countries, the direct discharge of OOMW into
rivers, lakes, sewer systems, and soils is strictly prohibited because of its harmful effects
on the ecological balance [205]. However, this ban is often not respected. The impact of
OOMMW on aquatic ecosystems caused by phenols release, eutrophication, dissolved oxygen
reduction, and pH alterations are well known [206,207]. On the other hand, infiltration of
vegetation water into the soil affects carbonate distribution and can change pH, electrical
conductivity, and nutrient content [40]. In soils covered by crops, OOMW causes many
microorganisms’ inhibition, reduced seed germination, and altered soil characteristics such
as porosity and humus concentration [208]. To minimize environmental impact, OOMW
must be processed. In this regard, research is oriented toward developing treatment
technologies through physical, chemical, and biological processes [209]. Regarding the
solution involving distribution on agricultural land, research found that OOMW application
performs a positive effect on soil properties, if applied at controlled rates [210-214]. For
example, as highlighted by Koutsos et al. [215], the adoption of sustainable practices can
convert OOMW from a pollutant to a valuable resource, useful as an amendment in the
context of sustainable agriculture. In this framework and concerning the problem described
above, the RS can help detect OOMW disposal areas. The identification of the ground
investigation is long and expensive [34]. In this regard, several researches have included the
use of satellites providing medium and high-resolution imagery to achieve this objective [34,
38,40,47,57]. Alexakis et al. [40,47] developed an integrated geoinformatics approach for
monitoring the land pollution in Crete (Greece) caused by the OOMW disposal. The proposed
approach includes three steps: satellite RS data acquisition and processing (Landsat 8 OLI and
IKONOS), geophysical prospection, soil/water sampling/chemical analysis. Firstly, mapping
was carried out, detecting about 1300 OOMW tanks (topographically mapped). Hundreds
of OOMW disposal areas were detected by using high-resolution satellite images of Google
Earth, and more than 1000 sites were visited to record their position. Some different VIs were
tested to evaluate their ability to identify disposal areas. The authors also proposed a detection
index (DI) to improve the disposal areas’ spectral response in Landsat’s images. Results
showed that Enhanced Vegetation Index (EVI) [44] and Difference Vegetation Index (DVI) [39]
performed best. However, the spectral variance of OOMW makes their classification and
detection difficult because of the mixed pixel phenomenon. Agapiou et al. [38] analyzed the
spectral variance of the different components of olive oil wastes to identify the most suitable
spectral windows for their detection. In particular, they tested GeoEye 1 imagery coupled with
spectroradiometric ground measurements (between 350 and 1050 nm). Separability analysis
showed that Blue and NIR bands represent the two optimal wavelengths “regions” for OOMW
detection. The Blue Normalized difference vegetation index (BNDVI) [37], including in its
formula Blue and NIR bands, was proposed for detecting OOMW disposal areas.

Agapiou et al. [57] investigated the potential suitability of very high-resolution satellite
images (Pléiades, SPOT 6, Quickbird, WorldView-2, GeoEye 1) with a spatial resolution
between 0.4 m and 1.5 m for detecting OOMW disposal areas by testing two indices:
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NDVI and BNDVI. The tests showed that OOMW disposal areas, characterized by low
values of both indices, can be recognized in most satellite images as black targets. In
addition to optical satellite images, the COSMO-SkyMed radar image was preliminarily
tested and fused with the hyperspectral Earth Observing-1 Advanced Land Imagery with
a medium resolution image (30 m), proving its potential suitability for the detection of
OOMW disposal areas, although it needs further studies.

Issaoui et al. [41] tested imagery of satellites Sentinel-2 and PlanetScope for monitoring
OOMMW disposal sites in two sites in Tunisia and Greece. Some VIs, NDVI, Normalized
Difference Water Index (NDWI) [216], and DI were tested to evaluate their efficiency
in detecting OOMW disposal areas. Image processing methods, false-color composites
(FCC), Principal Component Analysis (PCA), and image fusion were applied to satellite
images with the aim of improving the monitoring of OOMW ponds. The classification
algorithms ISODATA, the Maximum Likelihood, and the Support Vector Machine (SVM)
were used to assist in the overall approach of detection. Results showed that the optimum
bands for monitoring OOMW are the NIR bands. PlanetScope imagery proved to be
ideal for monitoring disposal sites, and Sentinel’s medium-resolution (but free) images
demonstrated to be used in some cases with successful results for this purpose.

Karydas et al. [217] developed a methodology that allows for a dynamic cause-effect
linking of pollution sources and affected areas through OOMW pathways. Dataset used
included a Quickbird image, a DEM, and olive oil production data. The first step of the
methodology involves the creation of a database including possible sources of pollution
(oil mills and tanks, mapped with photo-interpretation of false-color band composition
Quickbird’s image), and hydrogeological characteristics of the territory; determination
of a set of risk parameters on the source scale by assigning to each source a risk value
calculated by Multi-Criteria Analysis and Simple Additive Weighting method; allocation of
all potentially impacted sites in the streams (receptor scale), calculating the risk values at
the allocated sites by summing up the risk values of the sources for each of the impacted
sites; calculation of the risk values for each watershed, summarizing risk values of the
impacted sites included in the specific watershed. The result produced an assessment of
the environmental risk caused by mill wastes at three different scales starting from the
possible sources of pollution (mill units or wastewater tanks) to the mapping of impacted
stream sites and finally considering the watershed as a whole.

Given the potential damage that OOMW can cause to aquatic ecosystems, Elhag et al. [218]
mapped and evaluated the environmental pollution risks caused by OOMW discharged into
surface stream networks. Firstly, the authors detected source points of pollution by visual
photointerpretation using Quickbird’s images. Land cover data and DEM were used to produce
a hydrological model in which the prior location of the steepest downhill neighbor for each
pixel of the DEM allows for the definition of the direction of movement of a water droplet from
each pixel of the DEM. In this way, it was possible to simulate the surface movement of the
OOMW according to the area’s topography. The stream power index (SPI) was used to detect
flat drainage areas susceptible to sedimentation.

Table 5 shows the researches in RS in olive growing dealing with the OOMW management.

Table 5. References dealing with the olive oil mill wastes (OOMW) management.

Reference Platform Sensor Type Used Aim of the Study
[38] Satellite GeoEye 1 MS Spectral analysis of the different components of OOMW
[57] wijltglfit;ig{eg;%sﬁ?go%ﬁgﬁ;ﬁéd MS Detection of OOMW disposal areas
[40,47] Satellites Landsat 8 and IKONOS PAN-MS Detection of OOMW disposal areas
[218] Satellite Quickbird PAN-MS Evaluation of the environmental pollution risks
[41] Satellites Sentinel-2 and PlanetScope MS Detection of OOMW disposal areas
[217] Satellite Quickbird PAN-MS Assessing and mapping risk of OOMW discharge to streams

PAN = panchromatic. MS = multispectral. OOMW = olive oil mill wastes.
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6. Irrigation Water Management

Although olive trees are drought-tolerant species with specific anatomical adaptations
and physiological mechanisms which allow for maintaining their vital functions under
extreme stress [219], their distribution in arid regions is limited by annual rainfall of
less than 350 mm, and water availability is an essential resource for improving final
yields [158,220]. Therefore, rainfall’s fundamental role in the economic profitability of
this crop is evident, which can be exacerbated by arid summers [221]. In the typical
Mediterranean areas of cultivation, where the climate is characterized by low and highly
variable precipitation during the growing season and high potential evaporation, the lack of
water is the main limiting factor for both the growth and productivity of the crop [8,222,223].
The characteristics of the soil also play an essential role in retaining water and thus in the
growth of the olive tree [223]. Although it has adapted to poor, shallow soils, the olive tree
prefers fertile, deep soils with moderate water content [12]. Indeed the olive groves mainly
present on marginal soils with low water retention capacity and poor nutrient levels are
characterized by compromised development and low yields [224]. Water stress can cause
negative consequences, including low leaf area, limited photosynthesis, low flowering and
fruiting, flower abortion, and cluster abscission [158,225].

Irrigation exploited to achieve greater production and economic competitiveness
started to spread in the early 2000s and be used in traditional and modern olive groves show-
ing positive effects on yield, fruit size, pulp-to-stone ratio, and oil content [220,222,226-230].
The high plant density, the scarcity of water resources for irrigation, and the high rainfall
variability from year to year make localized irrigation and water deficit irrigation strategies
necessary to maintain acceptable production levels [13,231]. Among the advantages of
localized irrigation are the reduction of irrigation volumes because the entire soil surface
is not irrigated. Consequently, the water savings can be used to increase the irrigated
area or allocated to other uses [165]. However, to save water resources in agriculture, it is
essential to improve water productivity, which corresponds to the ratio of yield (marketable
product or net income) to the water used by the crop [232-234]. In woody crops such
as olives, for which the production objective is not biomass, the most significant water
productivity can be achieved with water deficit irrigation rather than full irrigation [235].
Deficit irrigation strategies are becoming widely used in modern olive groves to improve
yield while maintaining low water consumption [236]. Optimizing water deficit irrigation
involves obtaining the best balance between yield, olive oil quality, and irrigation water
savings [236,237]. Among the advantages of the irrigation deficit, one is the improvement
of the quality and derivatives of the fruits (such as olive oil) and the control of growth
that allows reducing the intensity of pruning as well as the need for phytosanitary treat-
ments [223,235,238]. In this framework, precision irrigation is well suited to the olive
tree, a holistic approach to managing irrigation in cases of reduced water availability and
variability of soil characteristics [239,240].

Several methods based on plant variables have been developed to measure water
status and schedule irrigation. Conventional strategies include measuring leaf or stem
water status, stomatal conductance, or photosynthesis. Automatic methods provide con-
tinuous measurements based on sap flow, trunk diameter, and leaf turgor pressure [231].
Automated processes are preferred for precision irrigation to be implemented with data
transmission systems for remote access [231]. Furthermore, these methods can be combined
with remote imagery to manage differential irrigation in areas with different water require-
ments [239,241,242]. Although these methods allow for accurate water stress measurement,
they have some limitations, among which is the inability to be applied over large areas. The
knowledge about the response of the olive tree to water intake and stress and the use of
sensors for monitoring the water status combined with RS images facilitates the introduc-
tion of precision irrigation in olive groves [71,235]. Table 6 shows researches in RS in olive
growing dealing with irrigation and water management. As highlighted by several au-
thors [112,243-245], thermal RS has an essential role in plant water stress detection. Aerial
thermal RS imagery permits spatially continuous information on plant water status over a
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wider area than that obtained from local measurements [246,247]. Thermal images enable
the detection of water stress conditions of a plant. The closure of leaf stomata reduces
transpiration and evaporative cooling, causing an increase in leaf temperature detectable
by thermal sensors [140,243,248]. In this respect, the work of Sepulcre-Canto et al. [66]
investigated the high-spatial-resolution multi-channel airborne sensor’s capability to detect
water stress causing changes in olive groves’ canopy temperature. Aerial imagery was
collected by an airborne hyperspectral scanner (AHS) at 2.5 m spatial resolution, acquiring
80 spectral bands, including ten thermal bands used to derive LST. Temperature mea-
surements on the ground were made using a hand-held thermometer. Water potential
and stomatal conductance were measured using a Scholander pressure chamber and a
steady-state leaf porometer, respectively, while ten infrared sensors were placed on ten trees
to measure canopy temperature. The olive trees investigated were under three different
irrigation treatments to obtain three different water stress conditions. Results showed
a higher temperature in water-stressed trees than in well-watered trees suggesting the
ability of the AHS thermal data to detect changes in canopy temperature as a function
of water stress levels. The best results were obtained from measurements taken early in
the morning due to the slight temperature differences between the soil and the vegetation
and, consequently, less interference from the soil temperature. The results provided valuable
insights into managing controlled irrigation methods using RS techniques. These results were
confirmed by Sepulcre-Canto et al. [30], who focused on determining the potential of thermal
RS in detecting water stress and how it affects yield and fruit quality parameters in olive
and peach orchards. Images taken by AHS allowed for the detection of differences in tree
canopy temperature associated with irrigation levels. The yield and quality parameters oil
content (over dry fruit weight), fruit water content, oil yield, and fresh fruit weight were
considered. It was showed a high correlation between water stress and some parameters: fruit
water content and fresh fruit weight. The link between detected temperature and water stress
could allow to map potential yield indicators and some quality parameters. In addition, the
medium resolution of the satellite sensor (ASTER) was simulated and tested for detecting
water stress by reducing the spatial resolution of imagery taken by AHS. The test was per-
formed through a simulation of the spectral characteristics of the ASTER sensor, aggregating
the pixels of the canopy, soil and projected shadow. The high correlation between canopy
and the air temperature difference (T¢-T,), measured by AHS, and the temperature simulated
for the spectral characteristics of the ASTER sensor demonstrated the potentialities of using
medium-resolution satellite imagery for canopies’water stress monitoring.

ASTER'’s thermal imagery combined with VIs NDVI, greenness index (GI), Modified
triangular vegetation index (MTVI;) [50], MTVI, [50], Modified chlorophyll absorption in
reflectance index (MCARI;) [50], MCARI, [50], Modified Soil Adjusted Vegetation Index
(MSAVI) [52], and Optimized Soil Adjusted Vegetation Index (OSAVI) [67] was used by
Sepulcre-Canto et al. [45] for the discrimination between irrigated and rainfed open-tree
canopies olive groves. A radiative transfer simulation conducted with the DART model was
used to simulate open orchards scene (among which olive trees), evaluating the effects of
the vegetation cover, crown LAI, and background temperature on the canopy temperature
exploited for discriminating between irrigated and rainfed olive groves. The authors
positively assessed cases where irrigated groves had lower canopy temperatures (due to
increased canopy conductance) and higher NDVI than non-irrigated groves. In particular,
thermal differences of up to 2 K (Kelvin degrees) between irrigated and non-irrigated
groves were evident in summer while they disappeared in winter satellite imagery.

In the Mediterranean, where the growing season is hot and dry, an accurate estimation
of water needs is essential for better managing water resources in agriculture. For this rea-
son, it is important to have a reliable estimate of daily evapotranspiration (ET) fluxes. Using
airborne mounting MS and thermal cameras, Cammalleri et al. [58] tested an approach
based on a modified version of the standard FAO-56 dual crop coefficient procedure to
estimate ET in an area occupied by olive trees similarly to [249]. Estimating orchard water
requirements allows for establishing irrigation management strategies to increase water
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productivity and optimize the yield and quality of olive trees growing in water shortage
conditions [250]. The calculation of ET is influenced by the intra-orchard spatial variability,
such as canopy size, dependent on both the training system and soil water holding capac-
ity [143]. The training system and canopy geometries may affect the partitioning of net
radiation into sensible heat flux, soil heat flux, and latent heat flux. Ortega-Farias et al. [251]
used MS and thermal UAV imagery to evaluate energy balance components’ intra-orchard
spatial variability. A field experiment was carried out to develop an RS energy balance
(RSEB) algorithm for estimating olive evapotranspiration in a drip-irrigated grove. For
implementing the RSEB algorithm, measurements of climatic variables (Ta, u, and Rha),
UAV data, NDVI, and temperature were used. This research showed that UAVs alone, or
if complemented with satellites, can estimate intra-field spatial variability of the energy
balance components and water requirements.

Sobrino et al. [252] tested the reliability of thermal RS by analyzing the feasibility of
retrieving LST (in a 4-ha irrigated olive orchard). The second objective was the evaluation of
the accuracy obtained depending on the number of thermal bands used. The aerial surveys
were carried out using a hyperspectral scanner with 80 bands distributed in four “regions”
of the electromagnetic spectrum (visible, NIR, SWIR, Mid-wave infrared, and Long-wave
infrared). The authors chose to test three methods for LST retrieval: the single-channel
method, which exploits one thermal band; the two-channel method, which combines two
thermal bands; temperature and emissivity separation (TES) method [253], which provides
surface emissivity in addition to temperature by using MS and thermal data. Infrared
sensors were placed on poles to monitor the temperature of the canopy as a function of a
gradient in the water status of the olive trees obtained by the drip irrigation method. In
particular, band 75 (10.07 pm) showed the highest atmospheric transmissivity using the
single-channel method, which is the most suitable in this case. The combination of the
bands 75 and 79 (12.35 um) provided similar results by applying the two-channel method.

Some researches [63,84,88,254] stood apart from the others on water stress and con-
cerns with the management of water resources in olive groves in arid areas (North African
countries). Castelli et al.’s work [254] deals with the effect of jessour, traditional water
harvesting check dams, on olive growing in Tunisia. Time series of Normalized Difference
Infrared Index NDII [255] derived from Landsat 7 were retrieved from Google Earth Engine
imagery for analyzing olive trees” water conditions over a period ranging from 1999 to 2017.
Using a methodology that included ground-based soil moisture measurements, the authors
confirmed the usefulness of NDII in representing the state of soil moisture in dry soil
conditions, as shown by Sriwongsitanon et al. [256]. In addition, the monitoring showed
that jessour sites reduce olive trees” water stress compared with non-jessour sites. Kefi
et al. [84] detected irrigated and non-irrigated (rainfed) olive-growing farms in Tunisia
using Landsat 8 imagery and analyzing temporal changes exploiting NDVI, RVI, and
LST. The results showed the usefulness of NDVI and LST data in identifying irrigated
olive-growing farms characterized in summer by higher vegetation index values and lower
temperatures. Hoedjes et al. [88] aimed to calculate daily evapotranspiration using satellite
imagery (ASTER) to improve irrigation water management at the field scale of an irrigated
olive grove in Morocco. Kharrou et al. [63] evaluated an RS-based approach to estimate
the temporal and spatial distribution of crop evapotranspiration (ET) and irrigation water
requirements over irrigated areas in Morocco. The approach is based on the daily step
FAO-56 Soil Water Balance model, which was combined with a time series (2002-2003
and 2008-2009) of basal crop coefficients and the fractional vegetation cover derived from
Landsat TM satellite NDVI imagery. The model was calibrated and validated at a plot
scale using ET measured by eddy-covariance systems in wheat fields and olive groves. The
model showed to be able to provide reasonable estimates of ET both for wheat and olive.
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Table 6. References dealing with irrigation water management.

Reference Platform Sensor Type Used Aim of the Study
[139] Aircraft CESSNA C172S EC-JYN FLIR SC655 (TH) Water stress detection
[140] Aircraft - Hyperspectral Scanner (HY) Mapping canopy conductance and CWSI
UAV FLIR Thermovision A40 M (TH)
[58] Aircraft - MS-TH Measuring olive grove’s evapotranspiration
(71] Satellites Landsat 7-8 MS Detecting §11ffe1jences in spectral response on
the estimation of evapotranspiration
[254] Satellite Landsat 7 MS Monitoring effects of check dams on soil and
olive tree water status
[60] UAV - MS Delineating Management Zones
[88] Satellite ASTER TH Calculating daily evapotranspiration
[48] UAV DJI Phantom 4 Pro Parrot Sequoia (MS) Detection of irrigation inhomogeneities
[84] Satellite Landsat 8 MS-TH Detecting irrigated olive growing farms
Estimate the temporal and spatial
[63] Satellite Landsat 5 MS distribution of crop evapotranspiration (ET)
and irrigation water requirements
[257] UAV - EasIR9 (TH) Water stress detection
[143] UAV TAROT-1000 RC FLIR Tau 2 640 (TH) Estimating the intra-orchard spatial variability
Estimation of olive canopy and soil surface
[258] UAV senseFly eBee senseFly Thermomap (TH) temperatures, under different irrigation
treatments
[232] UAV—DJI Mavic Pro 2 Hasselblad L1D-20c (RGB) Detecting different irrigation systems
UAV DJI Matrice 600 Pro Nano Hyperspec (HY)
[66] Aircraft - Hyperspectral scanner (TH-HY) Water stress detection
Aircraft - Monitoring yield and fruit quality
[30] Satellite ASTER Hyperspectral scanner (TH-HY) parameters in groves under water stress
Aircraft - Discrimination of irrigated and rainfed
431 Satellite ASTER Hyperspectral scanner (TH-HY) tree orchards
[252] Aircraft CASA 212-200 Hyperspectral scanner (TH-HY) Measuring land surface temperature

MS = multispectral; TH = thermal; HY = hyperspectral; - = missing information. CWSI = Crop Water Stress Index.
RGB = red-green-blue.

The lack of high spatial and temporal resolution of satellite thermal images makes
them unsuitable for the estimation of water requirements of the olive tree in some pheno-
logical phases [143]. In the last decade, the first studies based on UAVs mounting thermal
(and MS or hyperspectral) cameras for applications in agriculture can be found. Crop irri-
gation management became a crucial application of UAV technologies in PA [119]. UAVs,
equipped with several sensors, among which are thermal, can detect possible deficiencies in
the irrigation of different sites. These data can be processed through photogrammetry tech-
niques to produce a high-resolution vegetation map highlighting the water-stressed areas.
The detection of water stress was studied in different tree species, including the olive tree,
together with the estimation of orchards” water requirements [48,140,141,143,232,257,258].
To our knowledge, a couple of researches on olive trees [139,140] have used UAV thermal
images exploiting the Crop Water Stress Index (CWSI). CWSI [246] is a temperature-based
index that can assume values between 0 and 1 and is directly proportional to the water
stress level of many species of interest in agriculture. In several studies, CWSI was shown
to have good correlations with leaf water potential (Y1) [229,259,260]. Berni et al. [140]
used thermal imagery (taken by UAV and airborne) to calculate and map the tree canopy
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conductance and the CWSI in a heterogeneous olive orchard by combining the energy
balance equations and the theoretical formulation of CWSL

Bellvert et al. [139] compared CWSI derived from thermal UAV imagery and leaf
water potential (Y1) measured using a Scholander pressure chamber in olive trees. The
linear relationships between CWSI and Y1, allowed for the remote estimation of Y1, and
the detection of spatial variability of plant water status in an olive orchard. Similarly,
Egea et al. [141] proved the usefulness of the CWSI, both obtained by thermal UAV imagery
and field measurements, for monitoring water stress in a super-intensive olive grove by
evaluating relationships between CWSI and other water stress indicators, such as stomatal
conductance, stem water potential, and leaf transpiration rate.

Scholander pressure chamber can provide accurate knowledge of olive water sta-
tus [261] but is impractical due to the large number of measurements required [262]. The
same applies to the calculation of stomatal conductance [263]. Taking into account the
need, in the framework of PA, to overcome these limitations, Poblete-Echeverria et al. [257]
evaluated the accuracy of water stress detection performed using aerial and terrestrial
infrared thermography in a vineyard and in an olive grove. Field measurements included
calculating ¥stem on several twigs while canopy temperature was measured using a hand-
held thermal camera (lateral imagery) and UAV for nadir-view thermal imagery. Results
showed that the difference between the canopy’s temperature and air temperature (Tc—T,)
was related to differences in water potential for different irrigation treatments when the
olive was under stress.

Riveros-Burgos et al. [143] used UAV thermal imagery and meteorological data to
estimate the intra-orchard spatial variability in olive water requirements in super-intensive
drip-irrigated orchards. For this purpose, the authors used the clumped model of Brenner
and Incoll [264], which is considered suitable for producing maps to estimate the intra-
orchard spatial variability in the presence of heterogeneous canopies (typical of intensive
and super-intensive groves), which influences the partitioning of ET into tree transpiration
and soil surface evaporation.

Using sensors other than thermal ones allows the discrimination of management
zones, irrigation inhomogeneities, and irrigation methods based on the olive tree’s spectral
response, as shown in [48,60,232]. Gertsis et al. [60] used NDVI, obtained from RS ground-
level measurements, and UAV to identify different areas in crops grown and to delineate
Management Zones in an olive orchard in Greece. Jorge et al. [48] compared several
VIs (NDVI, NDRE, Green Normalized Vegetation Index GNDVI [46], and Soil Adjusted
Vegetation Index SAVI [70]) using MS UAV imagery for detecting inhomogeneities in
irrigated vineyards and olive groves. According to their results, the NDRE (Normalized
Difference Red Edge Index) [265] highlighted irrigation irregularities more effectively.
Santos-Rufo et al. [232] used UAV hyperspectral data to compare the performance of some
wavelength selection methods based on Partial Least Square (PLS) regression [266,267]
to discriminate two systems of irrigation used in olive groves: subsurface drip irrigation
and surface drip irrigation. As the spectral response of the olive trees is sensitive to the
irrigation technique used, the authors were able to map the irrigated areas.

7. Final Remarks and Conclusions

This review covered the past, from the 2000s onwards, and the most recent applications
of aerial RS technology in olive growing. To the best of our knowledge, we are the first
to focus on this specific topic. Starting synthesis on RS platforms and sensors, mainly
satellites and UAVs used in research, is followed by the discussion of several topics by
reviewing research conducted over the twenty years analyzed, from the protection of the
olive-growing landscape from erosion and pollution.

Concerning the platforms used, overall, the use of satellite data is equivalent to that of
UAV images, with a prevalence of one of them according to the specific topic and objectives
in olive growing. Considering the several factors to consider when comparing platforms
and sensors, both technical (spatial, temporal, and radiometric resolutions, areal coverage,
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targeted features) and economic (UAV equipment vs. satellite images costs), it is complex
to evaluate and suggest what would be the best approach to use in a survey [268]. Indeed,
in the early 2000s, most of the research involved satellite and aircraft imagery, used for
mapping and inventorying olive groves, as it was still early for the spread of UAVs and
their use in agriculture [269].

In light of the researches reviewed, the identification of olive groves and OOMW
management monitoring concerned the predominant use of satellite imagery over aircraft
and UAVs. One of the main advantages of satellite imagery is the possibility of covering
large areas. In particular, providing data over large areas with spatial resolutions ranging
from 30 m of Landsat to less than 4 m using IKONOS and Quickbird allowed for achiev-
ing remarkable results in the topics addressed by the research in the first decade of 2000.
Moreover, Landsat imagery remains a reliable data source for studying land-use changes
because of its relatively high spatial resolution and long-term archives, now reaching fifty
years (considering the first images since 1972). However, even though significant progress
has been made in developing high-resolution satellite sensors since 1999, some challenges
remain. Many satellites capable of providing high-resolution images close to or below one
meter belong to commercial companies, which means costs for a farm to obtain and reuse
images. To date, the highest spatial resolution images free of charge are those provided
by the Sentinel satellites. In addition, although many satellites provide images of an area
with a temporal resolution of between one and five days, it is necessary to consider the
local weather conditions that may prevent obtaining long periods of continuous images of
acceptable quality [270]. Therefore, integrating images from various satellites to create high-
quality, dense time-series data becomes a critical task for studies requiring observations
with high frequency and high spatial resolution [271]. Because multiple satellite sensors are
available, potential customers can order images provided by more than one satellite sensor,
increasing the possibility of having images rapidly despite the difficulties posed by the
cloudiness and the different revisit frequencies of a specific area. The introduction of new,
relatively recent platforms, including nano-satellites, and mounting sensors providing high
or ultra-high resolution images, less than 3 m and 1 m, respectively, have made satellites
more competitive with UAVs in PA applications [15]. However, to our knowledge, only
three papers dealing with olive groves used nanosatellite images such as Cubesats from
PlanetScope [41,98,99]. This is despite the affordable price of the images compared to satel-
lites with similar or higher resolution, such as Pleiades and WorldView [272]. In the topics
of olive grove identification and management of OOMW, the preponderant role of satellites
in achieving the objectives and in reducing the complexity of environmental monitoring
can be observed even in those without both high spatial and temporal resolution. Imagery
from satellites capable of “covering wide areas” can be used primarily at the territorial
level, and in olive growing, for monitoring large olive groves with “traditional” planting
distances such that individual canopies can be distinguished by public administrations and
control bodies [33]. To better exploit the wide variety of publicly available satellite data and
produce high temporal and spatial resolution data, several data fusion approaches have
been proposed that can combine high /medium spatial resolution data with high temporal
resolution data [271]. Satellites have difficulty producing images that have both high spatial
and temporal resolution because of the tradeoff between scan width and pixel size [273].
In this regard, a novelty is constituted by a constellation of satellites soon to be launched
called WorldView Legion, which will consist of six satellites capable of providing images
at a resolution of less than 30 cm and with high frequency (up to 15 times per day) on the
areas most in demand (www.maxar.com, last access 3 October 2022). Images from aircraft,
which present better quality than satellite images, can also be used in PA [114]. Like the
other platforms, the limitations dictated by weather conditions and, concerning the areas
covered, by the presence or absence of companies that provide RS imagery services remain,
in addition to the costs not accessible to all users [89,119]. It is desirable that the use of RS
platforms and sensors in agriculture is not only the prerogative of research institutions but
that it continues the trend of increasing user-friendliness of these technologies for all types
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of users. Motivating and developing the skills of a wide variety of farmers may be the main
challenge toward real-world applications of RS platforms in agriculture. However, proper
use of the technologies requires increasing farmer confidence and knowledge even when
using a more readily available platform such as the UAV. Training to implement the entire
workflow, including the proper use of sensors, is critical in the instrumentation’s use and
repair and maintenance aspects [148]. Cheaper, consumer-grade optical (RGB) sensors are
not always suitable for agricultural applications. NIR-equipped MS sensors are needed
for calculating many VIs, just as thermal cameras are critical in water stress monitoring.
Furthermore, using more complex sensors, such as LIDAR and hyperspectral cameras,
often requires a higher load capacity from the UAV and a consequent higher expense in
purchasing the RS platform. Beyond a desirable and probable lowering of the weight and
cost of UAVs and sensors in the future, the considerations made so far are essential to
understanding the current user base that can afford this technology. Outside the scope
of research, the farms with greater economic resources and extensions are certainly more
facilitated and interested in the purchase of UAV and its use for crop monitoring (including
equipment cost and data processing through a specific software). In addition, the training
required to implement the entire workflow in the data acquisition and processing phases
is of paramount importance. Critical steps that can be improved, mainly on automation,
include preparing the optimal flight plan, configuring and calibrating sensors before and
during flight, in the case of UAV data, and reducing the time required for data processing.
From this, it follows that using RS technologies in agriculture demands both in phases of
acquisition and processing the presence of expert and qualified experts with aggravation
of expense for the company. Unlike satellites whose applications are generally associated
with a processing chain that ensures final data quality, images from UAVs require several
sometimes complex steps to be retrieved and used after surveying [274].

For this reason, adopting UAV technologies by individual farmers with few and small
agricultural fields is less common [119]. It is desirable that continued development of
sensor technologies, lower costs, and input cost savings will bring benefits that will make it
easier to overcome this obstacle in the future. So far, if compared to satellites, UAVs have
been shown to provide significantly better spatial resolution imagery and greater flexibility
in selecting the appropriate spatio-temporal resolution [275]. Compared to aircraft, UAVs
can fly at lower altitudes and, in the case of monitoring performed on tree species, fly closer
to tree tops and provide a very detailed view of the dynamics of the vegetation [276]. The
application of UAVs in aerial photogrammetry is accepted as a reliable and accurate remote
sensing method for environmental protection and mapping vegetation species, including
the olive tree.

The preservation of olive groves as an element of Mediterranean identity both in
landscaping and as a strategic economic resource in agriculture depends on sustainable
environmental management based on improving the competitiveness of the agricultural
sector and technological progress in compliance with the guidelines of PA [97,277,278].
Landscapes should be regarded as a land-use system at the center of human-nature re-
lations that to be managed efficiently to preserve and restore ecosystem services while
contributing to sustainable solutions, including the challenge of food security [279,280].
Characterization of agricultural systems with a focus on agricultural intensification is
useful for understanding the sustainability of agricultural lands. In this framework, the
contribution of RS is important, as shown in the applications seen in landscape monitoring
and soil defense, olive grove monitoring, and OOMW management. Coupled with the
challenges facing olive growing and agriculture, more generally in terms of production,
are those related to climate change, the most obvious consequences of which include a
changing distribution of rainfall and an increasing number of extreme weather events,
and increased environmental pressures represented by the risks of overexploitation of
groundwater resources, degradation of water and soil quality [77,223]. Among the uses
of RS, beyond the type of platform employed, the synthesis between the need to meet the
needs of consumers and producers in terms of economic as well, while at the same time
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preserving the environment and its resources is represented by its use in water resource
management. RS has been shown both to be able to contribute to the defense of water bod-
ies from wastewater pollution risk (citation) and, through the determination of irrigation
inhomogenedities, spatial variability within the orchard, evapotranspiration, etc., to be able to
give guidance for irrigation optimization in the balance between yield, product quality, and
equitable consumption of water. In pursuit of these goals, an already well-established use of
RS in olive crop research becomes evident and equally desirable on farms, in line with the key
principles of PA, ie., “ ... support management decisions according to estimated variability
for improved resource use efficiency, productivity, quality, profitability and sustainability of
agricultural production” and the present and future needs of the olive sector [281].
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