Estimation of Potato Above-Ground Biomass Using UAV-Based Hyperspectral images and Machine-Learning Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Location and Experimental Design
2.2. Ground Data Acquisition and Processing
2.3. Acquisition and Processing of UAV Hyperspectral Remote-Sensing Data
2.4. Selection of Vegetation Indices
2.5. Analysis Methods
2.6. Statistical Analysis
3. Results and Analysis
3.1. Extraction of Potato Crop Height
3.2. Potato AGB Estimates Based on Canopy Spectra
3.3. Potato AGB Estimates Based on Vegetation Indices
3.4. Estimation of Potato AGB Using Canopy Spectra and Vegetation Indices Combined with Crop Height
4. Discussion
4.1. Monitoring Potato Crop Height
4.2. Estimation of Potato AGB Based on Canopy Spectra
4.3. Estimation of Potato AGB Based on Vegetation Indices
4.4. Estimation of Potato AGB Based on Canopy Spectra, Vegetation Indices, and Crop Height
4.5. Estimation of Potato AGB Using SVM, RF, and GPR Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swain, K.C.; Thomson, S.J.; Jayasuriya, H.P. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Trans. Asabe 2010, 53, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K. Closing yield gaps through nutrient and water management. Nature 2013, 494, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Morier, T.; Cambouris, A.N.; Chokmani, K. In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop. Agron. J. 2015, 107, 1295–1309. [Google Scholar] [CrossRef]
- Franceschini, M.D.; Harm, B.; Apeldoorn, D.; Suomalainen, J.; Kooistra, L. Intercomparison of unmanned aerial vehicle and ground-based narrow band spectrometers applied to crop trait monitoring in organic potato production. Sensors 2017, 17, 1428. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Rumpf, T.; Welke, P.; Dehne, H.W.; Plumer, L.; Steiner, U.; Oerke, E.C. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.H.; Boelman, N.T.; Magney, T.S.; Prager, C.M. Estimating aboveground biomass and leaf area of low stature arctic shrubs with terrestrial LiDAR. Remote Sens. Environ. 2015, 164, 26–35. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Yang, G.J.; Wang, J.H.; Song, X.Y.; Feng, H.K. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Miao, Y.X.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.K.; Huang, S.Y.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crop. Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; Pauw, E.D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Angela, K.; Heather, M.; David, L.; Mark, S.; Catherine, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. 2015, 34, 235–248. [Google Scholar]
- Asari, N.; Suratman, M.N.; Jaafar, J. Modelling and mapping of above ground biomass (AGB) of oil palm plantations in Malaysia using remotely-sensed data. Int. J. Remote Sens. 2017, 38, 4741–4764. [Google Scholar] [CrossRef]
- Melian, J.M.; Jimenez, A.; Diaz, M.; Morales, A.; Horstrand, P.; Guerra, R.; Lopez, S. Real-time hyperspectral data transmission for UAV-based acquisition platform. Remote Sens. 2021, 13, 850. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.F.; Greenberg, J.A.; Diers, B.W. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle-based platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Lydia, S.; Iolanda, F.; Josep, P. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop. Sci. 2000, 40, 723–731. [Google Scholar]
- David, A.J.; Hernan, D.B.; Jocelyn, C. Graph-based data fusion applied to: Change detection and biomass estimation in rice crops. Remote Sens. 2020, 12, 2683–2705. [Google Scholar]
- Han, L.; Yang, G.; Dai, H.Y.; Xu, B.; Yang, H.; Feng, H.K.; Li, Z.H.; Yang, X.D. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant. Methods 2019, 15, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.L.; Dwyer, L.M.; Costa, C.; Cober, E.R.; Morrison, M.J. Early prediction of soybean yield from canopy reflectance measurements. Agron. J. 2001, 93, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Jan, C.; Lammert, K.; Marnix, V.B. Using sentinel-2 data for retrieving LAI and Leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405–427. [Google Scholar]
- Gitelson, A.A.; Vian, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248–1270. [Google Scholar] [CrossRef] [Green Version]
- Kanemasu, E.T. Seasonal canopy reflectance patterns of wheat, sorghum, and soybean. Remote Sens. Environ. 1974, 3, 43–47. [Google Scholar] [CrossRef]
- Kooistra, L.; Clevers, J.W. Estimating potato leaf chlorophyll content using ratio vegetation indices. Remote Sens. Lett. 2016, 7, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Daughtry, C.T.; Walthall, C.L.; Kim, M.S.; Colstoun, E.B.; Mcmurtrey, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Spangenberg, G.; Kant, S. Fusion of spectral and structural information from aerial images for improved biomass estimation. Remote Sens. 2020, 12, 3164. [Google Scholar] [CrossRef]
- Monica, H.; Pablo, R.G.; Katy, M.R. Yield prediction by machine learning from UAS-based multi-sensor data fusion in soybean. Plant. Methods 2020, 16, 78–91. [Google Scholar]
- Guo, A.T.; Huang, W.J.; Dong, Y.Y.; Ye, H.C.; Ma, H.Q.; Liu, B. Wheat yellow rust detection using UAV-based hyperspectral technology. Remote Sens. 2021, 13, 123. [Google Scholar] [CrossRef]
- Eweys, O.A.; Elwan, A.A.; Borham, T.I. Integrating WOFOST and Noah LSM for modeling maize production and soil moisture with sensitivity analysis, in the east of The Netherlands. Field Crop. Res. 2017, 210, 147–161. [Google Scholar] [CrossRef]
- Zhou, G.X.; Liu, X.N.; Liu, M. Assimilating remote sensing phenological information into the WOFOST model for rice growth simulation. Remote Sens. 2019, 11, 268. [Google Scholar] [CrossRef] [Green Version]
- Onisimo, M.; Elhadi, A.; Moses, A.C. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. 2012, 18, 399–406. [Google Scholar]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Behmann, J.; Mahlein, A.K.; Rumpf, T.; Romer, C.; Plumer, L. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis. Agric. 2015, 16, 239–260. [Google Scholar] [CrossRef]
- Andres, V.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar]
- Yue, J.B.; Yang, G.J.; Tian, Q.J.; Feng, H.K.; Xu, K.J.; Zhou, C.Q. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Jia, M.; Li, W.; Wang, K.; Zhou, C.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W. A newly developed method to extract the optimal hyperspectral feature for monitoring leaf biomass in wheat. Comput. Electron. Agric. 2019, 165, 104942. [Google Scholar] [CrossRef]
- Jin, X.L.; Yang, G.J.; Xu, X.G.; Yang, H.; Feng, H.K.; Li, Z.K.; Zhao, C.J. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat Using HJ and RADARSAR-2 Data. Remote Sens. 2015, 7, 13251. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Feng, H.K.; Yue, J.B.; Li, Z.H.; Yang, G.J.; Song, X.Y.; Yang, X.D. Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images. Comput. Electron. Agric. 2022, 198, 107089. [Google Scholar] [CrossRef]
- Tao, H.L.; Feng, H.K.; Xu, L.J.; Miao, M.K.; Long, H.L.; Yue, J.B. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data. Sensors 2020, 20, 1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, J.B.; Feng, H.K.; Yang, G.J.; Li, Z.H. A Comparison of regression techniques for estimation of above-ground winter wheat biomass using near-surface spectroscopy. Remote Sens. 2018, 10, 66. [Google Scholar] [CrossRef]
- Pugh, N.A.; Horne, D.W.; Murray, S.C.; Carvalho, G.; Malambo, L.; Jung, J.H. A Temporal estimates of crop growth in sorghum and maize breeding enabled by unmanned aerial systems. Plant. Phenome J. 2017, 28, 170006. [Google Scholar] [CrossRef]
- Varela, S.; Assefa, Y.; Prasad, P.V.; Peralta, N.R.; Griffin, T.W.; Sharda, A.; Ferguson, A. Spatio-temporal evaluation of plant height in corn via unmanned aerial systems. J. Appl. Remote Sens. 2017, 11, 12–32. [Google Scholar] [CrossRef] [Green Version]
- Muharam, F.M.; Bronson, K.F.; Maas, S.J.; Ritchie, G.L. Inter-relationships of cotton plant height, canopy width, ground cover and plant nitrogen status indicators. Field Crop. Res. 2014, 169, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Fenner, H.; Andrew, R.; Adam, M.; Wooster, M.J.; Hawkesford, M.J. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 2016, 8, 1031. [Google Scholar]
- Zheng, B.H.; Zhang, L.; Xie, D.; Yin, X.L.; Liu, C.J.; Liu, G. Application of synthetic NDVI time series blended from Landsat and MODIS data for grassland biomass estimation. Remote Sens. 2016, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.A.; Zhou, X.D.; Zhu, X.K.; Dong, Z.D.; Guo, W.S. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop. J. 2016, 4, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.Y.; Yang, G.J.; Li, Z.H.; Song, X.Y.; Li, Z.H.; Xu, X.G.; Wang, P.; Zhao, C.J. Winter wheat nitrogen status estimation using UAVbased RGB imagery and gaussian processes regression. Remote Sens. 2020, 12, 3778. [Google Scholar] [CrossRef]
- Verrelst, J.; Alonso, L.; Camps-Valls, G.; Delegido, J.; Moreno, J. Retrieval of vegetation biophysical parameters using gaussian process techniques. IEEE Trans. Geosci. Remote. Sens. 2012, 50, 1832–1843. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Tao, H.L.; Feng, H.K.; Xu, L.J.; Miao, M.K.; Yang, G.J. Estimation of the yield and plant height of winter wheat using uav-based hyperspectral images. Sensors 2020, 20, 1231. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2018, 20, 611–629. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Gleason, C.J.; Junho, I. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Gitelson, A.; Delegido, J.; Moreno, J.; Camps-Valls, G. Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int. J. Appl. Earth Obs. 2016, 52, 554–567. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Bareth, G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 2014, 6, 10395. [Google Scholar] [CrossRef] [Green Version]
- Brocks, S.; Bareth, G. Estimating barley biomass with crop surface models from oblique RGB imagery. Remote Sens. 2018, 10, 268. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.D.; Lamparelli, R.C.; Rocha, J.V. Height estimation of sugarcane using an unmanned aerial system (UAS) based on structure from motion (SfM) point clouds. Int. J. Remote Sens. 2017, 38, 2218–2273. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; Moreno, M.A. Onion biomass monitoring using UAV-based RGB imaging. Precis. Agric. 2018, 19, 840–857. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.K.; Huang, J.; Sun, Q.; Yang, F.Q. Estimation of potato biomass based on UAV digital images. Trans. Chin. Soc. Agric. Eng. 2020, 36, 182–192. [Google Scholar]
- Zarco, P.J.; Diza, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bareth, G. UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogramm. Fernerkund. Geoinf. 2013, 6, 551–562. [Google Scholar] [CrossRef]
- Fan, L.L.; Zhao, J.L.; Xu, X.G.; Liang, D.; Yang, G.J.; Feng, H.K. Hyperspectral-based estimation of leaf nitrogen content in corn using optimal selection of multiple spectral variables. Sensors 2019, 19, 2898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masjedi, A.; Crawford, M.M.; Carpenter, N.R.; Tuinstra, M.R. Multi-Temporal predictive modelling of sorghum biomass using UAV-based hyperspectral and LiDAR data. Remote Sens. 2020, 12, 3587. [Google Scholar] [CrossRef]
- Feng, W.; Guo, B.B.; Zhang, H.Y.; He, L.; Zhang, Y.S.; Wang, Y.H.; Zhu, Y.J.; Guo, T.C. Remote estimation of above ground nitrogen uptake during vegetative growth in winter wheat using hyperspectral red-edge ratio data. Field Crop. Res. 2015, 180, 197–206. [Google Scholar] [CrossRef]
- Oppelt, N.; Mauser, W. Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using AVIS data. Int. J. Remote Sens. 2004, 25, 145–159. [Google Scholar] [CrossRef]
Vegetation indices | Equation | Reference |
---|---|---|
OSAVI (optimizing soil-adjusted vegetation index) | 1.16 × (R800 − R670)/(R800 + R670 + 0.16) | [46] |
MTVI2 (modified triangular vegetation index 2) | 1.5 × (1.2 × (R800 − R500) − 2.5 × (R670 − R550)) /(2 × (R800 + 1)2 − (6 × R800 − 5 × (R670)1/2) − 0.5)1/2 | [10] |
SAVI (soil-adjusted vegetation index) | (1 + 0.5) × (R800 − R670)/(R800 + R670 + 0.5) | [8] |
RVI (ratio vegetation index) | R810/R660 | [10] |
NDVI (normalized-difference vegetation index) | (R800 − R680)/(R800 + R680) | [10] |
EVI (enhanced vegetation index) | 2.5 × (R800 − R670)/(R800 + 6 × R670 − 7.5 × R450 + 1) | [47] |
MCARI (modified chlorophyll-absorption ratio index) | ((R700 − R670) − 0.2 × (R700 − R550))(R700/R670) | [36] |
RDVI (renormalized-difference vegetation index) | (R800 − R670)/(R800 + R670)1/2 | [36] |
SPVI (spectral-polygon vegetation index) | 0.4 × [3.7 × (R800 − R670) − 1.2 × |R550 − R670|] | [36] |
GNDVI (green normalized-difference vegetation index) | (R750 − R550)/(R750 + R550) | [48] |
CI1 (red-edge chlorophyll index 1) | R800/R740 − 1 | [49] |
MSR (modified simple ratio index) | (R800/R670 − 1)/(R800/R670 + 1)1/2 | [48] |
SIPI (structure-insensitive pigment index) | (R800 − R450)/(R800 + R680) | [50] |
VARI (visible atmospherically resistance index) | (R555 − R680)/(R555 + R680 − R480) | [51] |
NGRDI (normalized green–red difference index) | (R560 − R680)/(R560 + R680) | [42] |
TVI (triangular vegetation index) | 0.5 × [120 × (R750 − R550) − 200 × (R670 − R550)] | [52] |
Dataset | Crop Parameters | Min | Mean | Max | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Calibration | AGB | 307 | 1144 | 2897 | 493 | 43.17 |
CH | 15.12 | 28.68 | 40.87 | 5.69 | 20.66 | |
Validation | AGB | 608 | 1281 | 2268 | 405 | 31.67 |
CH | 15.75 | 27.55 | 37.25 | 4.56 | 15.92 |
Growth Stages | Feature Types | Selected Spectra Features (nm) |
---|---|---|
BBCH-41 | COS | 778, 802, 950 |
FDS | 682, 718, 754, 762, 946, 950 | |
BBCH-44 | COS | 742, 746, 750, 934, 938, 942 |
FDS | 558, 774, 798, 806, 862, 898, 950 | |
BBCH-47 | COS | 570, 698, 702, 850 |
FDS | 610, 618, 642, 710, 722, 730, 758, 766, 850, 870, 922 |
Growth Stages | Methods | Modeling | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (kg/hm2) | NRMSE (%) | R2 | RMSE (kg/hm2) | NRMSE (%) | ||
BBCH-41 | SVM | 0.31 | 308.33 | 25.25 | 0.41 | 218.17 | 21.43 |
RF | 0.38 | 276.21 | 22.62 | 0.45 | 205.14 | 20.15 | |
GPR | 0.42 | 250.69 | 20.53 | 0.56 | 187.52 | 18.42 | |
BBCH-44 | SVM | 0.49 | 299.97 | 23.27 | 0.53 | 201.50 | 22.19 |
RF | 0.55 | 271.48 | 21.06 | 0.59 | 166.36 | 18.32 | |
GPR | 0.58 | 238.22 | 18.48 | 0.61 | 148.38 | 16.34 | |
BBCH-47 | SVM | 0.29 | 377.69 | 26.03 | 0.38 | 221.89 | 25.72 |
RF | 0.33 | 357.23 | 24.62 | 0.42 | 207.82 | 24.09 | |
GPR | 0.35 | 341.41 | 23.53 | 0.53 | 193.51 | 22.43 |
Growth Stages | Methods | Modeling | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (kg/hm2) | NRMSE (%) | R2 | RMSE (kg/hm2) | NRMSE (%) | ||
BBCH-41 | SVM | 0.37 | 284.88 | 23.33 | 0.54 | 210.23 | 20.65 |
RF | 0.47 | 247.64 | 20.28 | 0.57 | 196.18 | 19.27 | |
GPR | 0.58 | 226.27 | 18.53 | 0.61 | 175.61 | 17.25 | |
BBCH-44 | SVM | 0.56 | 278.57 | 21.61 | 0.58 | 168.17 | 18.52 |
RF | 0.61 | 242.09 | 18.78 | 0.62 | 161.45 | 17.78 | |
GPR | 0.65 | 223.92 | 17.37 | 0.68 | 143.65 | 15.82 | |
BBCH-47 | SVM | 0.32 | 369.27 | 25.45 | 0.41 | 212.05 | 24.58 |
RF | 0.34 | 335.61 | 23.13 | 0.51 | 197.91 | 22.94 | |
GPR | 0.43 | 326.32 | 22.49 | 0.58 | 185.92 | 21.55 |
Growth Stages | Selected Vegetation Indices |
---|---|
BBCH-41 | OSAVI, SAVI, NDVI, MSR, NGRDI, TVI |
BBCH-44 | OSAVI, MTVI2, SAVI, NDVI, RDVI, SPVI, MSR, VARI, TVI |
BBCH-47 | MTVI2, SAVI, NDVI, RDVI, SPVI, MSR, NGRDI, TVI |
Growth Stages | Methods | Modeling | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (kg/hm2) | NRMSE (%) | R2 | RMSE (kg/hm2) | NRMSE (%) | ||
BBCH-41 | SVM | 0.45 | 270.47 | 22.15 | 0.61 | 205.44 | 20.18 |
RF | 0.62 | 243.61 | 19.95 | 0.65 | 174.70 | 17.16 | |
GPR | 0.64 | 213.45 | 17.48 | 0.68 | 165.33 | 16.24 | |
BBCH-44 | SVM | 0.59 | 266.90 | 20.71 | 0.63 | 163.63 | 18.02 |
RF | 0.68 | 231.13 | 17.93 | 0.72 | 139.57 | 15.37 | |
GPR | 0.71 | 218.11 | 16.92 | 0.75 | 135.66 | 14.94 | |
BBCH-47 | SVM | 0.43 | 356.21 | 24.55 | 0.58 | 205.93 | 23.87 |
RF | 0.53 | 329.66 | 22.72 | 0.62 | 184.79 | 21.42 | |
GPR | 0.60 | 318.20 | 21.93 | 0.64 | 170.47 | 19.76 |
Growth Stages | Selected Vegetation Indices |
---|---|
BBCH-41 | 718(FDS), NDVI, RDVI, SPVI, MSR, VARI, CH |
BBCH-44 | 746(COS), 762(FDS), SAVI, EVI, RDVI, SPVI, MSR, SIPI, VARI, TVI, CH |
BBCH-47 | 722(FDS), SAVI, NDVI, RDVI, SPVI, MSR, VARI, TVI, CH |
Growth Stages | Methods | Modeling | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (kg/hm2) | NRMSE (%) | R2 | RMSE (kg/hm2) | NRMSE (%) | ||
BBCH-41 | SVM | 0.58 | 263.39 | 21.57 | 0.66 | 196.38 | 19.29 |
RF | 0.69 | 228.71 | 18.73 | 0.75 | 172.35 | 16.93 | |
GPR | 0.72 | 201.24 | 16.48 | 0.78 | 158.30 | 15.55 | |
BBCH-44 | SVM | 0.64 | 245.19 | 19.02 | 0.69 | 168.17 | 18.52 |
RF | 0.74 | 223.79 | 17.36 | 0.79 | 141.84 | 15.62 | |
GPR | 0.76 | 199.68 | 15.49 | 0.82 | 130.31 | 14.35 | |
BBCH-47 | SVM | 0.56 | 334.59 | 23.06 | 0.62 | 198.25 | 22.98 |
RF | 0.62 | 310.80 | 21.42 | 0.65 | 176.94 | 20.51 | |
GPR | 0.68 | 291.35 | 20.08 | 0.72 | 161.93 | 18.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Feng, H.; Yue, J.; Fan, Y.; Jin, X.; Zhao, Y.; Song, X.; Long, H.; Yang, G. Estimation of Potato Above-Ground Biomass Using UAV-Based Hyperspectral images and Machine-Learning Regression. Remote Sens. 2022, 14, 5449. https://doi.org/10.3390/rs14215449
Liu Y, Feng H, Yue J, Fan Y, Jin X, Zhao Y, Song X, Long H, Yang G. Estimation of Potato Above-Ground Biomass Using UAV-Based Hyperspectral images and Machine-Learning Regression. Remote Sensing. 2022; 14(21):5449. https://doi.org/10.3390/rs14215449
Chicago/Turabian StyleLiu, Yang, Haikuan Feng, Jibo Yue, Yiguang Fan, Xiuliang Jin, Yu Zhao, Xiaoyu Song, Huiling Long, and Guijun Yang. 2022. "Estimation of Potato Above-Ground Biomass Using UAV-Based Hyperspectral images and Machine-Learning Regression" Remote Sensing 14, no. 21: 5449. https://doi.org/10.3390/rs14215449
APA StyleLiu, Y., Feng, H., Yue, J., Fan, Y., Jin, X., Zhao, Y., Song, X., Long, H., & Yang, G. (2022). Estimation of Potato Above-Ground Biomass Using UAV-Based Hyperspectral images and Machine-Learning Regression. Remote Sensing, 14(21), 5449. https://doi.org/10.3390/rs14215449