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Abstract: Road extraction from high-resolution remote-sensing images has high application values in
various fields. However, such work is susceptible to the influence of the surrounding environment
due to the diverse slenderness and complex connectivity of roads, leading to false judgment and
omission during extraction. To solve this problem, a road-extraction network, the global attention
multi-path dilated convolution gated refinement Network (GMR-Net), is proposed. The GMR-Net is
facilitated by both local and global information. A residual module with an attention mechanism is
first designed to obtain global and other aggregate information for each location’s features. Then, a
multi-path dilated convolution (MDC) approach is used to extract road features at different scales,
i.e., to achieve multi-scale road feature extraction. Finally, gated refinement units (GR) are proposed
to filter out ambiguous features for the gradual refinement of details. Multiple road-extraction
methods are compared in this study using the Deep-Globe and Massachusetts datasets. Experiments
on these two datasets demonstrate that the proposed method achieves F1-scores of 87.38 and 85.70%,
respectively, outperforming other approaches on segmentation accuracy and generalization ability.

Keywords: road extraction; attention mechanism; multi-scale feature; local and global information

1. Introduction

With the development of remote sensing and computer science, high-resolution remote-
sensing images are extensively applied in have received extensive attention in disaster
management, urban planning, and other fields [1–3]. Obtaining target information quickly
and intelligently from high-resolution remote-sensing images is an urgent challenge to be
solved in the remote-sensing community today. Road-based geographic information serves
city planning [4], vehicle navigation [5], geographic information management [6,7], etc.,
and is one of the key contents in the target extraction of remote-sensing-image extraction.

Road segmentation of remote-sensing images is a very challenging task [8] that es-
sentially belongs to the classification of pixels. In such images, each pixel is classified
and recognized. Compared with the general target segmentation, road segmentation is
unique and complex. As important geographic information, roads are often affected by
various factors [9], resulting in low segmentation accuracy. For example, (1) The narrow
and connectivity of the road determines its small proportion in the whole image; (2) long
and narrow roads will be blocked by vegetation, buildings and their shadows, making it
more difficult to extract them from high-resolution remote sensing images; and (3) desert,
bare soil, etc., have similar texture and spectral features with roads, which will also increase
the difficulty of extraction.

Among the traditional road-extraction methods, Sun et al. [10] proposed a high-
resolution remote-sensing-image road-extraction method based on the fast-progress and
mean-shift methods. Road nodes are used as input and the mean-shift method is then
used to initially divide them. Finally, the road between the set nodes is extracted by the
fast-progress method. Anil et al. [11] proposed a method based on the active contour model.
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This method uses a median filter to pre-process the image, enters the initial seed point,
and then uses the active-contour model to extract the road. Chen et al. [12] established the
global features of the road by automatically merging the road vector and road skeleton, and
then extracted the local features of the image under the global feature constraints. It can be
seen that the traditional methods mostly start from the morphological structure of the road,
but with the improvement in remote-sensing image resolutions, complex situations reduce
the effectiveness of such methods. With fast development in deep learning, increasingly
more segmentation networks have been developed in recent years. As the first end-to-
end learning network, fully convolutional networks (FCNs) [13] use convolution, up-
sampling, and skip structures to achieve pixel-level classification. The target segmentation
effect under complex conditions is poor due to the limited receptive field. Later, multi-
scale [14] context semantic fusion modules were proposed, such as the Spatial Pyramid
Pooling (SPP) module of the Pyramid Scene Parsing Network (PSPNet) [15] and the Atrous
Spatial Pyramid Pooling (ASPP) module of deeplabv3 [16], which fully utilized context
information [16]. Compared with traditional methods, neural networks can automatically
extract multiple features other than colors, such as textures, shapes and lines. With the
ability to automatically extract high-dimensional features, neural networks have been
widely used in image fields, such as image classification, scene recognition, target detection,
and semantic segmentation. Several scholars have also applied it to the field of remote
sensing. Hong et al. provided a baseline solution for remote sensing image classification
tasks using multimodal data by developing a multimodal deep learning framework [17].
Hong et al. proposed a mini graph neural network (miniGCN) that enables the combination
of CNN and GCN for hyperspectral image classification [18]. Wang et al., proposed a new
tensor low-rank and sparse representation method for hyperspectral anomaly detection [19].
Zhu et al., effectively extracted and fused global and local environmental information
through an attention-enhanced multi-path network. The network uses multiparallel paths
to learn multi-scale features of the space and attention modules to learn channel features
for accurate extraction of building footprints and precise boundaries [20].

Some researchers apply neural networks to road extraction. For example, Chen et al.
investigated the methods of automatic road extraction from remote sensing data and
proposed a tree structure to analyze the progress of road extraction methods from different
aspects [21]. Tamara et al. [22] proposed a road-segmentation model that combined a
residual network with a U-Net network and used the residual structure to deepen the
network to extract strong semantic information features. Zhang et al. [23] defined a DCGAN
with specific conditions and achieved road segmentation by continuously optimizing the
relationship between the generation network and confrontation network. Zhou et al. [24]
improved the D-Linknet by adding a dilated convolutional layer based on LinkNet [25],
using dilated convolution to expand the receptive area and retain spatial information, and
fusing contextual information on multiple scales. Zhou et al. propose a new fusion network
to fuse remote sensing images and location data to play the role of location data in road
connectivity inference. A reinforced loss function is proposed to control the accuracy of
road prediction output, which improves the accuracy of road extraction [26]. Yan et al. [27]
proposed HsgNet based on global higher-order spatial information, modeled by bilinear
pooling to obtain the feature distribution of weighted spatial information. Wan et al. [28]
proposed a dual-attention road extraction network and constructed a new attention module
to extract road-related features in spatial and channel dimensions, which can effectively
solve the problem of road extraction discontinuity and maintain the integrity of roads.
Li et al. [29] proposed a cascaded attention enhancement module considering multi-scale
spatial details of roads to extract boundary-refined roads from remotely sensed images.
Liu et al. [30] proposed a road extraction network based on channel and spatial attention
(RSANet). Huo et al. [31] proposed a remote sensing image road extraction method with
completion UNet, which introduces multi-scale dense dilation convolution to capture
road regions.
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The high-resolution remote-sensing image provides detailed road information but
with significant noise [21]. In addition, the road structure is more complex. The global
information of roads affects the structure and continuity of the road, and the local informa-
tion affects the details of the road. Extracting and combining global and local information
are very important for road segmentation. In the encoding-decoding network, U-Net [32],
LinkNet, D-Linknet, and other networks only use simple convolution and pooling op-
erations to extract features. The global information of the road is not fully taken into
account, and no further attention is paid to the dependence between channels on the same
level. Although the HsgNet method considers global information, it is indistinguishable
from the above-mentioned network in combining global and local information, and are
all connected by concat through a skip structure. Compared with deep features, shallow
features have more location information, but their semantics are weaker and road features
are not obvious [33]. The features directly supplemented by the skip structure have vague
and ambiguous information, which is not conducive to refining the details. Therefore, this
study aims to efficiently extract and fuse global and local context information to reduce
the interference of fuzzy features [34,35], ensure the representativeness and usefulness of
road features, and improve the accuracy of target segmentation. Finally, a high-resolution
remote-sensing road-extraction network (GMR-Net) is proposed. The specific contributions
of this study are the following.

• A new segmentation network for road extraction, called GMR-Net, is proposed, in
which the encoding part uses the GC block attention module to enhance the focus on
global information, and the decoding part filters out useless features by gating units
to refine the segmentation details.

• To verify the accuracy and generalization ability of the model, experiments were con-
ducted on the DeepGlobe Road Extraction dataset [36] and Massachusetts Roads
dataset [37]. Experimental results show that, compared with D-Linknet, U-Net,
RSANet, and PSPNet, the method proposed in this study achieves the expected
results and shows better performance.

The rest of this article is organized as follows. In Section 2, the GMR-Net high-
resolution remote-sensing road-extraction method is introduced. Experimental details and
results are presented in Section 3 and discussion in Section 4. Conclusions are given in
Section 5.

2. Method

This study proposes a method for extracting roads from high-resolution remote-
sensing images. First, the original remote-sensing image is pre-processed. To prepare
the training dataset, all the remote-sensing images and corresponding label images are
intercepted by a fixed-size sliding window. Then, the designed deep neural network GMR-
Net model is used to extract the road. All the pre-processed samples are used as the model’s
input, and the binary classification maps predicted by feature maps at different scales in
the decoding stage are the output. The road-extraction result categories are “road” and
“others”.

2.1. Structure of the Deep Convolution Neural Network

The GMR-Net proposed in this article consists of three parts, as shown in Figure 1.
The first part is the encoding end, consisting of a residual network with a global attention
mechanism. The second part is multi-path dilated convolution (MDC), which extracts more
comprehensive local and global information. The third part is the gated refinement unit
(GR), which fully fuses the extracted local and global information. The refinement unit
realizes the gradual refinement of the segmentation results, and the gating unit selects
favorable features to supplement the details.
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Figure 1. A schematic of the GMR-Net architecture.

Roads occupy a small proportion of the entire map due to the slenderness and con-
nectivity of road structures. Therefore, it is particularly important to strengthen the focus
on global context information. To better focus on extracting road features, the structure
of ResNet34+GCblock is used to extract remote-sensing-image features. We use Resnet
as the backbone network, and Resnet uses residual connections to solve the problem of
disappearing gradients in the deep network. ResNet34 has a smaller number of parameters
and can extract richer feature information of the image compared to ResNet18.

Among these, ResNet34 [38] has been pre-trained on the ImageNet dataset to accel-
erate the convergence rate of the model through transfer learning. Compared with the
common residual network, GC-resnet adds the GC block global attention module [39] after
each down-sampling. The GC-block module, a lightweight attention module formula, is
expressed as (Equation (1)):

zi = xi + Wv2ReLU(LN(Wv1δ)),
δ = xi × So f tmax(Wkxi)

(1)

where x = {xi}
Np
i=1 is the input feature, z = {zi}

Np
i=1 is the output feature. Wv1 and Wv2

represent two 1 × 1 convolutions that change the number of channels of the feature map
for capturing the relationship between channels. δ represents the attentional feature map
generated after the global attentional pooling operation for the input features x. LN
represents the normalized layer LayerNorm and ReLU represents the nonlinear activation
function. Wk represents 1 × 1 convolution.

The purpose of adding LayerNorm (LN) [40] is to reduce the difficulty of optimization
and improve the generalization ability as a regularization. Finally, the output z is obtained
by feature fusion through broadcasting. Although GC-resnet deepens the number of net-
work layers and extracts deep features, it pays more attention to global context information,
focuses attention on the target road, and avoids learning background features.
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The proposed GMR-Net is a single-input, multi-output learning network. An in-
put remote-sensing image corresponds to four prediction output segmentation maps of
different sizes.

After the front end extracts the features with global information, the MDC module
is then used to obtain different sizes of perceptual fields. The context information is fully
used through different degrees of receptive fields to extract road features of different size
areas. Finally, in the decoding stage, the local and global context information is further
efficiently aggregated using GR. Among these, the gating unit takes deep and shallow
features as input and uses the deep semantic features to filter out the fuzzy information
in the shallow features. The refinement unit is used to predict the segmentation results of
each stage and gradually refine the details based on the prediction of the previous stage.
Before each output result, the model uses a 1 × 1 convolution to map features to “road”
and “others”.

The training part uses backpropagation to calculate the gradient and update the
network weights. Considering the fineness of roads, the road area accounts for a very small
proportion of the entire high-resolution image. So, Dice loss, which is based on binary
cross-entropy, is introduced [41]. Dice loss establishes the correct balance between the
target foreground and background.

The loss of binary cross-entropy is defined as follows (Equation (2)):

lossBce = −
1
N

N

∑
1
[yi log(ŷi) + (1− yi) log(1− ŷi)] (2)

where N means the number of samples used in network training, yi means the label of the
sample, and ŷi means the result of the sample predicted to be road category after network
prediction. The function of Dice loss is (Equation (3)):

lossDice = 1−
2

N
∑
i

pigi + smooth

N
∑
i

p2
i +

N
∑
i

g2
i + smooth

(3)

where N is the total number of pixels in each image, gi represents the ground-truth value of
the i pixel, and Pi is the confidence score of the i pixel in prediction results, and smoothing
is set to 0.0.

To accelerate the convergence of the network and improve segmentation accuracy,
predictions are made for the binary maps of each refinement stage [42]. Since every stage
requires prediction, the nearest down-sampling is performed on the label to make its
sizes 64 × 64, 128 × 128, 256 × 256, and 512 × 512. The final loss function is defined as
(Equations (4) and (5)):

loss64, loss128, loss256, loss512 = lossBce + lossDice (4)

loss = loss64 + loss128 + loss256 + loss512 (5)

where lossBce is the binary cross-entropy function, i.e., Equation (2), and lossDice is the Dice
loss function, i.e., Equation (3).

2.2. Multi-Path Dilated Convolution

The road as a complex continuum, the surrounding trees and buildings, and its
inflection points as local information often affect the accuracy of road segmentation [43].
Efficiently extracting local and global information is particularly important. To this end,
the central part of the network is designed as an MDC that includes cascade and parallel
modes. MDC combines dilated convolutions with different dilation rates to make the
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combined receptive fields different. Features can extract more comprehensive local and
global information through the attention of different receptive fields, as shown in Figure 2.
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Considering that the resolution of the input feature is 32 × 32, the dilation rate D in
the design structure is 1, 3, 5, and 6. Through multi-path combination, this module can
form eight scales, i.e., (1), (1, 3), (1, 5), (1, 6), (1, 3, 5), (1, 3, 6), (1, 5, 6), and (1, 3, 5, 6), and
Equation (6) can be used to calculate the receptive fields, i.e., 3, 9, 13, 15, 19, 21, 25 and 31.
In the end, the large receptive field covers the input features well, realizing multi-scale.

r1 = d× (k− 1) + 1, rn = d× (k− 1) + rn−1 (6)

where d is the dilation factor, k is the size of the convolution kernel, and r denotes the size of
the convolution kernel after the ordinary convolution kernel is passed through the dilation
design. rn−1 denotes the size of convolution kernel before multi-layer dilation convolution,
and rn denotes the size of convolution kernel after multi-layer dilation convolution.

When feature x is input, the feature channel is first compressed by a 1 × 1 convolution.
Next, the compressed features are fed into the multi-path structure to obtain x1, x2, x3,
x4, x5, x6, x7 and x8. To prevent the loss of feature-space information resulting from the
discontinuity of the dilated convolution kernel, the design includes a convolution kernel
with a dilation rate of 1 to fill the gap [42]. Finally, the features passing through different
receptive fields are added to extract the context information of different scales before
outputting the features. The specific definitions are as follows (Equation (7)):

x1 = C1(x)
x2 = C3(C1(x))
· · ·
x8 = C6(C5(C3(C1(x))))
y = x + x1 + x2 + · · ·x8

(7)

where x represents the input, y the output, and Cn is the convolution with a dilation rate
of n.

2.3. Gated Refinement Unit

As the network deepens, features have strong semantics, while shallow features have
more location information [44]. To avoid the loss of detailed information in the encoding-
decoding network, most networks use a skip structure to supplement the details in the
decoding process. However, the number of convolutions corresponding to the coding
layer is less, and the extracted local information and global information are not fully
fused. Therefore, although the road features have more detailed location information, they
do not have sufficient semantics. The supplementary information is mixed with fuzzy
information. Here, the features of the corresponding coding layer and the deeper features
are sent to the gating unit, and the deep semantic features are used to assist the shallow
features in recovering the fuzzy information. After the gating unit outputs the features,
it is processed into a binary map, and the refinement unit is used to gradually refine the
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details of the binary map and separately predict the refined binary map. This process fully
fuses the extracted local and global information and appears in every upsampling stage.
By fusing the global and local information of roads, the fuzzy and ambiguous information
brought by the shallow features is avoided, and the detailed information of roads is better
supplemented. The detailed network structure is shown in Figure 3.
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GR consists of two parts, the gating unit (GU) and the refinement unit (RU). The
GU first takes the features m in the corresponding coding layer and the features g f−1 of
the previous GU (n − 1) as input. Then, “conv+bn+relu” processing is done on the two
features so that the two feature channels have the same number, where g f−1 reuses the
deconvolution with a step size of 2 to achieve consistency in the size of the feature map [45].
Finally, the corresponding positions of the features are multiplied to obtain g f . The formula
is defined as follows (Equation (8)):

v= Dc0(C3×3(g f−1)), u = C3×3(m), g f = v⊗ u (8)

where C3×3 represents the ConvBnRelu operation with a convolution kernel size of 3 × 3.
Dc0 represents the deconvolution operation to achieve 2 times upsampling. ⊗ represents
the matrix multiplication operation. g f is the feature map of the output of the gate unit.

The second part is the refinement unit (RU), which uses the result generated by g f and
the previous layer of RU (n − 1) as input. After g f is input, the “conv+bn+relu” operation
is performed to change the number of channels to 2, and then added to the RU (n − 1)
result r f−1 by concat. Finally, the output result is obtained by deconvolution. The formula
is (Equation (9)):

w f = C3×3(g f ), γ = w f ⊕ r f−1, r f = Dc1(γ) (9)

where C3×3 represents the ConvBnRelu operation with a convolution kernel size of 3 × 3.
Dc1 represents the deconvolution operation. ⊕ represents feature concatenation. r f is the
feature map output after the refinement unit.

3. Results

The experiments conducted in this study use pycharm under Windows to write the
program. The configuration of the experimental platform is an Intel Core i9-9900K CPU and
an Nvidia RTX2080Ti (11 G) GPU. Both Intel and Nvidia are headquartered in Santa Clara,
CA, USA.

3.1. Dataset

To verify the neural network effectiveness in extracting road extraction in different
environments, the DeepGlobe Road Extraction dataset [36] is used. The original size of the



Remote Sens. 2022, 14, 5476 8 of 19

DeepGlobe Road Extraction dataset is 19,584 × 19,584, and the ground resolution of the
image pixels is 0.5 m/pixel. There are various types of roads, including those in mountains,
cities, and suburbs. To save memory and adapt to the network structure, the image size is
cropped to 512 × 512. The selected training set contains 6152 images and corresponding
label images, and the verification set contains 300 images and corresponding labels. To
improve the generalization ability of the model and reduce overfitting, data-enhancement
operations such as rotation and mirroring are performed on the dataset.

3.2. Metrics

In this study, three metrics commonly used in semantic segmentation are used to
evaluate the performance of the different algorithms in the experiments: accuracy, re-
call [43], and F1-score [46], which are defined below. See Table 1 for the four types of
road-extraction results.

Table 1. Four types of road extraction results. GT is the ground truth, and P is the prediction, TP is a
positive sample that is correctly judged, and FP is a positive sample that is incorrectly judged. TN is
a negative sample that is correctly judged and FN is a negative judgement (false judgement).

P Is 1 P Is 0

GT is 1 TP FN
GT is 0 FP TN

The three metrics in Table 1 are calculated as follows (Equations (10)–(12)).
Recall (R):

recall =
TP

TP + FN
(10)

Precision (P):

precision =
TP

TP + FP
(11)

F1-score (F):

F1 =
2TP

2TP + FN + FP
(12)

3.3. Experimental Results

In this work, the proposed GMR-Net model calculates the loss value of the output
four scale images and sets the loss function as the sum of the loss values of each scale.
RMSprop [30] is selected as the optimizer, the parameter LR is set to 1 × 10−4, w_decay is
1 × 10−4, and the training batch is 6. To more intuitively observe the GMR-Net road ex-
traction effect, we perform road extraction on the remote sensing images of the verification
set. The final segmentation result is shown in Figure 4. The final extraction accuracy on
the verification set is given in Table 2. The accuracy is 87.97%, the recall is 88.86%, and the
F1-score is 88.41%.

Table 2. Results of the evaluation metrics.

Precision (%) Recall (%) F1-Score (%)

Output (512) 87.97 88.86 88.41
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Figure 4. The results of road extractions using the proposed GMR-Net model. (a,d) Original images,
(b,e) corresponding ground truths, and (c,f) predictions from the GMR-Net method.

The extraction and fusion of local and global information have a significant influence
on the road extraction performance from high-resolution remote sensing images. The three
modules proposed in this paper are the residual network with global attention, MDC, and
GR. The first two modules extract local and global information, and the latter module
fully fuses the extracted information. First, a comparative experiment is carried out on the
network encoding part to verify that the migrated Resnet34 and global attention modules
can effectively improve the model’s performance and to validate the feasibility of the road
extraction model. Figure 5 shows that during the model training, the loss value of each
scale on the road verification set of the DeepGlobe satellite-image changes as the number
of iterations increases. It can be seen that after the migration of the Resnet34 parameter and
the addition of the global attention module, the initial loss value of the network is low, the
convergence speed is fast, and the loss value is always kept to the minimum during the
training process. Table 3 shows the final fitting loss value of each scale on the verification
set. The final loss value of the encoding part designed in this paper is lower than other
encoding parts at the 512 scales, specifically 0.11587. This proves that transfer learning and
global attention modules can help the model improve the accuracy of road extraction and
speed up the fitting speed in the training process.

Table 3. Loss values at different scales, where the values in bold are the best.

ResNet34 ResNet34 + Gc ResNet34 + Gc + Transfer

Output (64) 0.17155 0.13932 0.11765
Output (128) 0.16586 0.13912 0.11734
Output (256) 0.15965 0.13738 0.11626
Output (512) 0.15788 0.13710 0.11587
Output_sum 0.65494 0.55292 0.46712

3.4. Ablation Experiments

To further illustrate the performance of each of our proposed modules, we performed
ablation experiments. Next, the models that do not contain the MDC and GR structures
are compared to illustrate the contribution of the MDC and GR to the road extraction task
(Figure 6). Table 4 shows the loss value on the validation set. The same training data set and
encoding part are used. It is found that when the designed model does not include MDC
and GR, the highest loss value is 0.13871. When the model includes these two modules,
the loss value drops to the lowest at 0.11587. It can be seen that whether it is extracting the
overall structure of the road or the details of the road, the network including the MDC and
GR modules can achieve better performance. Although the network containing MDC can
extract the local and global information of the road, it does not fully integrate the local and
global information by GR. The network that contains GR fully integrates the information,
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but the extracted local and global information is not sufficient. Therefore, the performance
of these two structures is insufficient when they exist alone. By combining MDC and GR,
the network can extract and integrate local and global information, and accurately extract
roads from remote sensing images.
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Table 4. The results of ablation experiments. The values in bold are the best.

Elements Loss Value Precision (%) Recall (%) F1-Score (%)

Without both 0.13871 85.42 86.14 85.77
Only MDC 0.12881 86.58 87.42 86.99
Only GR 0.12322 86.34 87.68 87.00

MDC and GR 0.11587 87.97 88.86 88.41
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Figure 6. The results of road extraction from the remote sensing imagery with and without MDC and
GR. (a) Input images; (b) ground truth; (c) prediction results without MDC and GR; (d) prediction
results without GR; (e) prediction results without MDC; (f) prediction results using the GMR-Net
model. The red-dashed frame indicates the local details of semantic segmentation.

4. Discussion
4.1. Analysis of the GMR-Net Road Extraction Results in Different Environments

To evaluate the relative performance of GMR-Net on the DeepGlobe Road Extrac-
tion dataset, three other methods (U-Net, PSPNet, RSANet, and D-Linknet) are used to
extract different types of road images. The results are stitched together to obtain a remote-
sensing image with a 1024 × 1024 resolution. All methods are trained and tested on the
same datasets.

In research areas A and B, the roads are located in forest and desert areas. Road
segmentation is mainly affected by vegetation coverage and tree shadows, which can
easily lead to omissions. To evaluate the model’s effectiveness in this environment, some
common methods are compared, and the results are shown in Table 5. It can be seen that the
various methods are generally highest in Recall and lowest in Precision, which can prove
that misjudgments are potentially high in such environments. In addition, the GMR-Net
model has the highest Precision and F1-score, with an average increase of 5% and 4%,
respectively, compared to D-Linknet. From Figure 7, it is found that the D-Linknet and
RSANet can complete the extraction of most of the blocked roads (red-dashed frame) and
avoids the edge aliasing, but it cannot be well divided for the areas with more serious
blocking. PSPNet performs the worst under this condition. Considering that when roads
are covered by vegetation, shadows, etc., local information is easily lost. Therefore, the
proposed GMR-Net pays attention to more detailed local information through dilated
convolution of different receptive fields and uses GR to enhance the semantics of the local
information. In the end, the GMR-Net can better extract the covered road and ensure road
continuity as much as possible.



Remote Sens. 2022, 14, 5476 12 of 19

Table 5. A results comparison between the GMR-Net method and other methods in research areas A
and B. The values shown in bold are the best.

Area A Area B

P (%) R (%) F (%) P (%) R (%) F (%)

U-Net 81.42 99.64 88.36 72.36 98.73 80.74
PSPNet 79.62 99.39 87.03 59.69 99.71 68.33
RSANet 79.76 99.06 87.92 75.68 99.52 84.26

D-Linknet 83.19 98.41 89.29 77.53 99.57 87.18
GMR-Net 89.72 98.99 93.83 83.71 99.17 90.26
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local information of the yellow-dashed frame is considered and the focus on global infor-
mation is not strengthened, it is easily mistaken as a road. As shown by U-Net and 
PSPNet, these networks misclassify the empty area. The area that does not contain roads 
in the original label is divided into roads, resulting in over-segmentation. Although 
RSANet’s performance has been improved, there are still several errors for several small 
traces. The same is true for D-LinkNet. The GC-block referenced by GMR-Net extracts 
global information on a lightweight basis, focusing on the channel-to-channel depend-
ency. MDC also pays attention to both global and local information. The method advanced 
in this study avoids the interference of this kind of environment, distinguishes the road 
from the wasteland, and reduces false judgment of such situations. 

Figure 7. A comparison of classification results in study areas A and B. (a,h) Input images; (b,i) ground
truth; (c,j) U-Net; (d,k) PSPNet; (e,l) RSANet; (f,m) D-Linknet; and (g,n) GMR-Net. The position of
the red-dashed frame indicates the area where the judgment is missing.

Research areas C and D belong to the suburbs, and the surrounding environment
mainly comprises wasteland and housing construction. Roads are usually located in
barren land, and the spectral information is relatively close to the land, which can easily
result in false judgment. The comparison results of road extraction in this type of area are
shown in Table 6 below. It is found that Recall is generally low, indicating that this type
of area is indeed prone to misjudgment. The method comparison shows that GMR-Net
has the highest Recall score, and its F1-score is higher than that of RSANet (U-Net) by
approximately 5% (9%). It can be seen from the yellow-dashed frame area in Figure 8
that there are some traces similar to the color and structure of the road in the wasteland.
If only the local information of the yellow-dashed frame is considered and the focus on
global information is not strengthened, it is easily mistaken as a road. As shown by U-Net
and PSPNet, these networks misclassify the empty area. The area that does not contain
roads in the original label is divided into roads, resulting in over-segmentation. Although
RSANet’s performance has been improved, there are still several errors for several small
traces. The same is true for D-LinkNet. The GC-block referenced by GMR-Net extracts
global information on a lightweight basis, focusing on the channel-to-channel dependency.
MDC also pays attention to both global and local information. The method advanced in
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this study avoids the interference of this kind of environment, distinguishes the road from
the wasteland, and reduces false judgment of such situations.

Table 6. A results comparison between the GMR-Net method and other methods in research areas C
and D, where the values shown in bold are the best.

Area C Area D

P (%) R (%) F (%) P (%) R (%) F (%)

U-Net 88.06 61.50 72.43 71.21 70.61 70.91
PSPNet 85.21 63.25 72.45 65.61 74.06 69.42
RSANet 88.69 62.45 73.29 77.56 68.83 72.94

D-Linknet 89.56 64.98 75.10 74.10 71.64 72.85
GMR-Net 89.16 77.56 82.69 72.38 80.34 75.73
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The segmentation diagram in Figure 9 demonstrates that U-Net and PSPNet are more 
seriously affected by noise and perform poorly in urban road segmentation. These meth-
ods cannot accurately divide an urban road under the condition of occlusion and mistake 
the gaps between buildings as roads. GMR-Net benefits from the increased attention to 
local and global information and has achieved relatively satisfactory performance in ur-
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Figure 8. A classification results comparison of study areas C and D. (a,h) Input images; (b,i) ground
truth; (c,j) U-Net; (d,k) PSPNet; (e,l) RSANet; (f,m) D-Linknet; and (g,n) GMR-Net. The position of
the yellow-dashed frame indicates areas where false judgment occurs.

Research areas E and F belong to urban roads. Vehicles on highways, vegetation, city
buildings and cement structures similar to road textures all interfere with road extraction.
Table 7 shows that the F1-score of GMR-Net is nearly 4% higher than that of D-Linknet,
and is much higher than those of U-Net and PSPNet. Precision increased by nearly 5%.
The segmentation diagram in Figure 9 demonstrates that U-Net and PSPNet are more
seriously affected by noise and perform poorly in urban road segmentation. These methods
cannot accurately divide an urban road under the condition of occlusion and mistake
the gaps between buildings as roads. GMR-Net benefits from the increased attention to
local and global information and has achieved relatively satisfactory performance in urban
environments, segmenting more continuous roads.
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Table 7. A results comparison between the GMR-Net method and other methods in research areas E
and F, where the values shown in bold are the best.

Area C Area D

P (%) R (%) F (%) P (%) R (%) F (%)

U-Net 74.26 85.38 79.42 77.82 80.03 78.73
PSPNet 67.83 86.92 76.14 71.80 83.72 77.17
RSANet 80.15 87.03 83.22 79.27 82.08 80.39

D-Linknet 78.83 90.24 84.15 72.63 88.01 79.45
GMR-Net 85.02 90.04 87.43 77.01 90.74 83.17
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ages. After cropping, 3384 training sets and 156 validation sets are obtained, with a reso-
lution of 512 × 512. 

In Figure 10, the final segmentation comparison results show that the GMR-Net 
model can extract a more complete road, and is closest to the label. It is also found that U-
Net, PSPNet, RSANet, and D-LinkNet have omission areas (red-dashed frame) due to the 
complex and curved nature of the road network in this area. In particular, from the second 
row of the figure, the road network in the red-dashed frame is crisscrossed, and the dis-
tance between the roads is small. Except for the GMR-Net model, all other methods have 
discontinuous and incomplete results. The yellow-dashed frame marks the false judgment 
of the road network. U-Net and other networks recognize the ground features similar to 

Figure 9. A classification results comparison for study areas E and F. (a,h) Input images; (b,i) ground
truth; (c,j) U-Net; (d,k) PSPNet; (e,l) RSANet; (f,m) D-Linknet; and (g,n) GMR-Net. The red-dashed
frame shows areas where judgement is missing and the yellow-dashed frame is the false judg-
ment area.

4.2. Model Generalization Ability Analysis

Based on the above analysis, it is found that the GMR-Net model achieves a high
segmentation accuracy on the DeepGlobe Road Extraction dataset and effectively eliminates
false judgment and omission.

To further verify the generalization ability of GMR-Net, the model is trained and tested
on the Massachusetts Roads dataset [37], which covers more than 2600 km2 of remote-
sensing satellite images of Massachusetts, with a size of 1500× 1500 and a ground resolution
of 1 m/pixel. The Massachusetts Roads dataset originally consisted of 1171 images. After
cropping, 3384 training sets and 156 validation sets are obtained, with a resolution of
512 × 512.

In Figure 10, the final segmentation comparison results show that the GMR-Net
model can extract a more complete road, and is closest to the label. It is also found that
U-Net, PSPNet, RSANet, and D-LinkNet have omission areas (red-dashed frame) due
to the complex and curved nature of the road network in this area. In particular, from
the second row of the figure, the road network in the red-dashed frame is crisscrossed,
and the distance between the roads is small. Except for the GMR-Net model, all other
methods have discontinuous and incomplete results. The yellow-dashed frame marks
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the false judgment of the road network. U-Net and other networks recognize the ground
features similar to the road texture and color characteristics as roads, leading to excessive
segmentation. The GMR-Net algorithm effectively avoids this phenomenon. Table 8 shows
the evaluation indicators of each model on the two verification datasets. The Precision,
Recall, and F1-score of GMR-Net on the DeepGlobe Road Extraction dataset reach 87.97,
88.86, and 87.38%, respectively. On the Massachusetts Roads dataset, these values are 83.91,
87.60, and 85.70%, respectively. From the time-complexity comparison, this method takes a
long time since the model is not computationally lightweight enough. Overall, although
the extraction speed of this method is slow, it can obtain higher accuracy and has a certain
generalization ability.
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  U-Net PSPNet RSANet D-LinkNe GMR-Net 

DeepGlobe Road Ex-
traction dataset 

P(%) 78.50 83.73 80.19 82.01 87.97 
R(%) 83.19 73.44 83.16 87.40 88.86 
F(%) 78.76 76.67 80.34 84.62 87.38 
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dataset 
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4.3. Feature Visual Analysis 
To explore the process of extracting road features from the network, the feature vis-

ualization analysis of the encoding part is performed (Figure 11). 

Figure 10. A comparison of classification results on the Massachusetts Roads dataset. (a) Input
images; (b) ground truth; (c) U-Net; (d) PSPNet; (e) RSANet; (f) D-Linknet; and (g) GMR-Net. The
red-dashed frame shows the area where the judgement is missing and the yellow-dashed frame is the
false judgment area.

Table 8. Using DeepGlobe Road-Extraction and Massachusetts Road datasets, the results of the
GMR-Net method are compared with other methods, in which the values shown in bold are best.

U-Net PSPNet RSANet D-LinkNe GMR-Net

DeepGlobe Road
Extraction dataset

P(%) 78.50 83.73 80.19 82.01 87.97
R(%) 83.19 73.44 83.16 87.40 88.86
F(%) 78.76 76.67 80.34 84.62 87.38

T(ms) 24 40 41 56 60

Massachusetts
Roads dataset

P(%) 70.24 65.23 80.57 85.80 83.91
R(%) 82.90 81.74 85.78 81.97 87.60
F(%) 75.56 72.10 82.95 83.84 85.70

T(ms) 24 40 41 56 60

4.3. Feature Visual Analysis

To explore the process of extracting road features from the network, the feature
visualization analysis of the encoding part is performed (Figure 11).
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Figure 11. The visualization of features at each stage. (a) First stage visualization; (b) second stage
visualization; (c) third stage visualization; (d) fourth stage visualization; (e) fifth stage visualization.

Using a randomly selected 512 × 512 × 3 high-resolution remote sensing image as
input, the image passes through a convolutional layer with a convolution kernel size of
7 and a step size of 2 in the first stage of the encoding process. The size of the output
image becomes 256 × 256 × 64 (Figure 11a). The remote sensing image is only convolved
once, and the extracted features are weak in semantics, but the resolution is higher and the
detailed features are more.

In the second stage, the feature image passes through the 3 residual modules and the
global attention module, resulting in an image size of 256 × 256 × 64 (Figure 11b). It can
be seen that after the first global residual block, the network has stronger semantics than
the features extracted in the first stage.

In the third stage, the feature image passes through the 4 residual modules and the
global attention module, and the output image size becomes 128 × 128 × 128 (Figure 11c).
At this time, the network has passed the second global residual block, the feature chan-
nel of the image is increased, the resolution is reduced, and the feature semantics is
further enhanced.

In the fourth stage, the feature image passes through 6 residual modules, and the
output image size becomes 64 × 64 × 256 (Figure 11d). The feature channel increases and
the resolution is further reduced.

In the fifth stage, the feature image passes through 3 residual modules, and the output
image size becomes 32 × 32 × 512 (Figure 11e). At this stage, the feature resolution
extracted by the network is reduced to the lowest level, and more detailed information
is lost. However, it extracts features with strong semantics. The visual feature map
demonstrates that the network focuses on the roads and avoids interference from buildings.

To further illustrate the effect of feature extraction in the GMR-Net coding part, the
visualization of the deep partial feature channel is provided in Figure 12. It can be observed
that GMR-Net focuses attention on the target road, avoiding interference from background
features. Compared with D-Linknet, more complete and continuous road features are
extracted, and the road structure is clearer. The effectiveness of the global information for
extracting road features is confirmed, and the extracted road features are more continuous.
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Figure 12. A visualization of different channels’ features. Samples (a,b) are features extracted by the
encoding part in D-Linknet. Samples (c,d) are extracted features after introducing GC-block.

5. Conclusions

Roads have the characteristics of narrowness, complexity and connectivity, posing
different problems to road extraction in different environments. It is particularly important
to focus on the information in global and local contexts and remove interference from
other features. Therefore, a neural network for remote-sensing road extraction based
on the fusion of local and global information is proposed in this study. The proposed
network, GMR-Net, consists of three parts. The first part is the GC-resnet. A GCblock,
which extracts deep features, is used to realize global context modeling and capture the
relationship between channels. The second part is the MDC, through which the context
information of different regions can be aggregated. The third part efficiently combines the
global and local information through GR, filters the ambiguous features in the encoding
stage, and gradually refines the segmentation details. This model is separately tested,
compared and analyzed using the DeepGlobe Roads and Massachusetts Roads datasets,
and the extraction results of U-Net, PSPNet, RSANet, and D-Linknet. It is found that the
GMR-Net can effectively extract road features, ensure the continuity and integrity of road
extraction, and show good generalization ability. Although the proposed method improves
the accuracy of road segmentation, the speed of road extraction is slow and the network is
not computationally lightweight enough. Therefore, there is still room for improvement
in the proposed method. Ensuring high-precision road extraction while accelerating the
segmentation speed is worth further investigation.

Transformer structures have excellent global information modeling capability and are
currently advanced and competitive in the field of computer vision. Our future work will
design a Transformer-based model for road extraction tasks and investigate the potential of
Transformer structures for road extraction in remote sensing images.
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