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Abstract: Significant wave height (SWH) is one of the most important descriptors for ocean wave fields.
The polynomial regression (PolR) and Gaussian process regression (GPR) models are implemented to
explore the effects of polarization and incidence angles on the SWH estimation from multi-incidence
angle quad-polarization Gaofen-3 SAR wave mode data, based on the collocated data set of approxi-
mately 12,000 Gaofen-3 wave mode imagettes, matched with SWH from the fifth generation reanalysis
(ERA5) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The results show that
the model performance improves, as long as polarimetry information increases. The hybrid polariza-
tions perform stronger than the co-polarizations or cross-polarizations alone, and they show better
performance over the low to high seas. The lower incidence angles are more favorable for SAR SWH
inversion. It is superior to introduce incidence angle in piecewise way, rather than to include it as
an independent variable in the models. Then, the final PolR and GPR models, with the superior input
scheme that includes the quad-polarized features and introduces the incidence angle in piecewise
way, are assessed independently through a comparison with observations from altimeter and buoys.
The accuracies of our SWH estimates are comparable or even higher than other published results.
The GPR model outperforms the PolR model, due to the superiority of the added nonlinearity of GPR.

Keywords: Gaofen-3 SAR wave mode; SWH retrieval; polarization; incidence angle; PolR; GPR

1. Introduction

Ocean surface waves are one of the most obvious and fundamental phenomena present
at the interface between the atmosphere and the ocean, and they can have dramatic impacts
on coastal and offshore natural environments (beaches, shoals, etc.) and anthropogenic
structures (harbors, offshore oil platforms, etc.). An ocean surface wave is composed of
many components with different heights, lengths, and directions. Significant wave height
(SWH), defined as the mean wave height of the highest one-third of all waves present,
is one of the most important statistical parameters of ocean waves. Since the launch of
Seasat in 1978, synthetic aperture radar (SAR) has developed into the most powerful instru-
ment for observing SWH from space at a fine spatial scale under all weather conditions.
The mechanisms of SAR imaging ocean waves generally include tilt modulation, hydro-
dynamic modulation, and velocity bunching [1]. There is still a lack of understanding of
hydrodynamic modulation [2]. Velocity bunching, which is a complex nonlinear distortion
induced by the radial wave motions, can cause image smearing and a loss of information,
beyond the so-called azimuth cutoff wavelength [3]. Therefore, estimation of SWH from
SAR is not straightforward [4].

There are two categories of retrieval algorithms that allow for the estimation of SWH
from SAR. One is to retrieve directional wave spectra first, and then compute SWH via
spectral integration. Such algorithms include the Max Planck Institute algorithm (MPI) [5,6],
the cross-spectral algorithm (CSA) [7], the semi-parametric retrieval algorithm (SPRA) [8],
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the partition rescaling and shift algorithm (PARSA) [9], and the parameterized first-guess
spectrum method (PFSM) [10]. MPI uses the nonlinear mapping relation of wave spectra to
image spectra and requires a priori first-guess of the wave spectrum to complement the
missing high-frequency waves. CSA takes an image cross-spectrum of two SAR looks that
can remove the 180◦ ambiguity of wave propagation direction to retrieve a wave spectrum
restricted to the swell wave regime. SPRA and PFSM restore an entire wave spectrum with
external wind field input. PARSA blends the image spectra and prior first-guess wave
spectra and uses the cross-spectra to remove the 180◦ ambiguity. These methods are all for
a single co-polarization SAR system. There is also an algorithm using full polarization SAR
images to retrieve wave slope spectra linearly, which, however, has limited applicability
under multimodal or high sea conditions [11,12]. Therefore, directional wave spectra from
SAR cannot be used to estimate SWH independently, which limits the applications of the
SAR data.

Instead of using the above physics-based inversion schemes, alternative approaches
have been developed to empirically estimate SWH from SAR ocean scenes. The first attempt
of an empirical algorithm was the CWAVE, proposed by Schulz-Stellenfleth et al. [13], for
C-band ERS-2 wave mode SAR data. Later, the CWAVE-like algorithms were developed
for other C-band wave mode data, such as Envisat ASAR [14] and Sentinel-1 SAR [15].
The CWAVE models relate SWH to 22 parameters of SAR scenes, including the normalized
radar cross-section (NRCS), the image variance (cvar), and 20 orthogonal components of the
image spectrum. The model functions were built using the quadratic polynomial stepwise
regression at a fixed incidence angle of 23◦ for ERS-2 and Envisat. For Sentinel-1, separate
functions were created using a neural network for the two incidence angles of 23◦ and 36◦.
Several semiempirical and empirical algorithms that linearly use azimuth cutoff (λc) to
retrieve SWH, with consideration of the effect of incidence angle, were developed for
the C-band satellite systems, as well [16–18]. Then, the linear algorithms were improved
for Gaofen-3 SAR by using the basic formulation of the quadratic CWAVE model with
additional introduction of variables of NRCS, cvar, etc. [19]. Currently, machine learning
and deep learning have become the mainstream methods for the SAR SWH estimation,
owing to their ability to consider a variety of SAR features and approximate nonlinear
behavior, without prior knowledge of the interrelationships among the features [20–22].

In general, only the single-polarization (mostly vertical-vertical, VV) SAR information
was exploited in the above-mentioned empirical algorithms. Recently, several studies have
demonstrated the potential of multi-polarization SAR for the enhancement of empirical
SAR SWH estimation. For example, Ren et al. [16] explored the effect of polarization
on their λc-based algorithm using the RADARSAT-2 fine quad-polarization SAR data.
Pramudya et al. [23] proposed a polarization-enhanced λc-based algorithm for Sentinel-1
SAR, which uses the combination of the spectra of VV and vertical-horizontal (VH) po-
larization SAR images to optimize the estimate of λc, and thus, the estimate of SWH.
Wang et al. [24] developed a new λc-involved quadratic model, based on the quad-
polarization Gaofen-3 SAR wave mode data, which additionally introduces VH NRCS,
besides the VV features, and found the dual-polarized model performs better in the high sea
state. Collins et al. [25] investigated the effect of polarization on the CWAVE-type models
using the quad-polarization RADARSAT-2 images. Wang et al. [4] proposed a novel deep
convolutional neural network for SWH retrieval from Gaofen-3 SAR wave mode data and
found that quad-polarimetry information can improve SAR SWH retrieval under high sea
conditions. Besides, most of the empirical models introduced the effect of incidence angle,
either by being implemented within incidence angle bins or by including the incidence
angle as an independent variable.

Given the above, polarimetric SAR has been demonstrated to be more effective for
SAR SWH estimation. However, how to fully utilize the SAR polarimetry information
to achieve optimal SWH estimation is still open to controversy. Moreover, the effect of
incidence angle on SWH retrieval from polarimetric SAR still needs to be further discussed.
Therefore, in the research reported here, we perform a systematic analysis and compari-
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son of the performance of estimating SWH from polarimetric Gaofen-3 SAR wave mode
data using polynomial regression (PolR) and Gaussian process regression (GPR) models
under different polarization combinations, which gives a further insight into the effect of
polarization on SAR SWH estimation; we also further investigate the effect of the incidence
angle on the SWH estimation from multi-incidence Gaofen-3 SAR wave mode data us-
ing PolR and GPR models. This paper is organized as follows. Section 2 introduces the
Gaofen-3 SAR wave mode data and the selected SAR features, the SWH data from buoys,
Jason-3 radar altimeter, the fifth-generation reanalysis (ERA5) of the European Centre for
Medium-Range Weather Forecasts (ECMWF), the method for collecting matchups, and
the PolR and GPR models. In Section 3, the effects of polarization and incidence angle
on the SWH estimation from Gaofen-3 wave mode data using the PolR and GPR models
are systematically analyzed, and then the final PolR and GPR models are determined and
independently assessed. Discussions and conclusions are presented in Sections 4 and 5.

2. Materials and Methods
2.1. Gaofen-3 Wave Mode

The Chinese Gaofen-3 satellite carrying a C-band (5.3 GHz) SAR sensor has been in
orbit since August 2016. Gaofen-3 SAR can operate in 12 imaging modes, of which wave
mode is dedicated to ocean wave detection. In wave mode, Gaofen-3 SAR collects small SAR
images (called imagettes) with an approximate coverage of 5 km × 5 km every 50 km along
the flight direction and a nominal spatial resolution of 4 m over the open ocean. It provides
quad-polarimetric (HH (horizontal–horizontal)+HV (horizontal–vertical)+VH+VV) capability,
and its incidence angle is designed to be capable of switching from 20◦ to 50◦ corresponding
to 27 radar beams (denoted as ID, ranging from 189 to 216). In this paper, the Level-1A single-
look complex (SLC) wave mode imagettes for the years from 2016 to 2020 were collected.
The SAR scenes contaminated by non-wave phenomena were rejected, based on the following
procedure: (1) The power saturated data were rejected by checking ‘echoSaturation’ value
provided in the Gaofen-3 SAR product annotation file; (2) The imagettes contaminated by ice
and land/island were excluded; (3) The homogeneity was checked, according to the method
proposed by Schulz-Stellenfleth [26]. The percentage of rejection by the quality controls
was approximately 30%, and finally, approximately 11200 Gaofen-3 SAR imagettes were
selected in this study (Figure 1). Figure 2 displays a typical example of the quad-polarization
Gaofen-3 SAR imagettes, which was acquired on 7 February 2017, at 18:17 UTC. The images
shown in Figure 2 were normalized by the min–max method, from which a clear wavy
structure can be seen.
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Image of normalized backscattering for (a) HH, (b) HV, (c) VH, and (d) VV polarizations.

In the previous studies (e.g., [4,21,27]), the normalized radar cross-section (NRCS), the
normalized image variance (cvar), and the azimuth cut-off wavelength (λc) were the three
SAR features assumed to be strongly correlated with SWH, and they were most commonly
used for SAR SWH inversion. In addition, the radar incidence angle (θ) was assumed
to be an important parameter and has been considered for SAR SWH retrieval in recent
studies. Therefore, in this paper, these four features were selected. The ways to extract
these features are provided below.

(1) Normalized radar cross-section (NRCS)
The NRCS of the SAR image is typically related to the ocean surface wind, and thus,

can represent information on short wave roughness [25]. The Gaofen-3 NRCS values at
HH, HV, VH, and VV polarizations can be obtained by the following formula:

σ0
pq = 10 log10

〈
DNpq

〉
− Kpq (1)

where pq denotes the polarization state, σ0 is the NRCS in dB, <DNpq> denotes the mean
value, DN = Is × (qv/32767)2 denotes the image intensity, Is = I2 + Q2 with I (Q) being the
value of real (imaginary) channel for the single look complex SAR image, qv is the maximum
qualified value stored in the product annotation file according to the polarizations, and
K is the calibration constant also stored in the product annotation file according to the
polarizations. However, only a small portion of the official Gaofen-3 wave mode products
provide the quad-polarization K values. Moreover, there are still some problems with the
official radiometric calibration, though great efforts have been made. The comparisons of
the Gaofen-3 NRCS values calibrated using the calibration constant of officially released
values with those predicted by the empirical geophysical model functions (GMFs) at HH,
HV, VH, and VV polarizations are shown in Figure 3a. The GMF CMOD5.n was used for
VV; the combination of CMOD5.n and the VV-HH polarization ratio (PR) model proposed
in Zhang et al. [27] was used for HH; and the C-3PO developed in Zhang et al. [28] was
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used for HV and VH. As seen, the calibrated NRCSs by the calibration constant of official
released values significantly deviated from the GMF predictions with an RMSE up to
~4 dB, even in the best performing case of VV polarization. That is to say, extra calibration
consideration and activity are needed to improve the accuracy of the Gaofen-3 SAR wave
mode products.
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Figure 3. Comparison of the calibrated quad-polarization Gaofen-3 SAR NRCSs with the GMF
predictions. (a) The SAR NRCSs were calibrated using the official calibration constants. (b) The SAR
NRCSs were calibrated using the ocean recalibration procedure. Different colors represent different
polarizations, with blue for HH, orange for HV, green for VH, and red for VV.

This paper performs an ocean recalibration for the quad-polarization Gaofen-3 wave
mode imagettes, based on the GMFs of CMOD5.n, CMOD5.n+PR, and C-3PO. The recal-
ibration dataset was obtained by interpolating the 10-m height ocean winds from ERA5
at a 0.25◦ spatial and a 1-hour temporal resolution into the acquisition times and center
locations of Gaofen-3 wave mode imagettes. For every imagette, the mean DN values at
HH, HV, VH, and VV polarizations were computed by averaging all DN values within the
corresponding 5 km × 5 km Gaofen-3 SAR images. The corresponding GMF-based NRCS
values were computed using the collocated ERA5 winds. By correspondingly subtracting
the GMF-predicted NRCS values (in dB) from the mean Gaofen-3 measured DN values
(in dB), the new quad-polarization calibration constants were obtained for every imagette.
Then, finally, 24 groups of quad-polarization recalibration constants were determined by
averaging these new quad-polarization calibration constants within each Gaofen-3 radar
beam (here, it was 24, not 27, since there were no imagettes in three radar beams with
IDs of 192, 194, and 196 in the collected Gaofen-3 wave mode dataset). The values of the
quad-polarization recalibration constants of the 24 Gaofen-3 radar beams are provided in
Table A1 of Appendix A. Figure 3b shows the comparisons of the Gaofen-3 NRCS values
calibrated using the ocean recalibration procedure with the GMF predictions at HH, HV,
VH, and VV polarizations. It can be seen that the recalibrated NRCSs show good agreement
with the GMF predictions.

(2) Normalized image variance
The normalized image variance (cvar) contains information on the sea state of longer

waves. It is defined as the variance of the Gaofen-3 image normalized by the mean intensity:

cvarpq = var

(
DNpq −

〈
DNpq

〉〈
DNpq

〉 )
(2)

where <DNpq> is the mean intensity of the pq polarization Gaofen-3 image in linear unit.
In this study, the normalized variances for HH-, HV-, VH-, and VV-polarized wave mode
images were considered.

(3) Azimuth cutoff
In the azimuth direction, SAR image processing relies on the backscattered signal

phase analysis assuming a homogeneous and frozen surface to achieve high resolution.
Over the ocean, according to the SAR-ocean imaging mechanism of velocity bunching, the
surface wave motions may distort the phase history of the backscattered signal, leading to
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nonlinear transformation between the local wave and the SAR image. As a result, the small
wave components propagating near the azimuth direction may be blurred. This leads to
a cutoff value, where waves with wavelengths below the cutoff cannot be resolved by SAR.
Using linear wave theory, the azimuth cutoff (λc), in meters, can be written as:

λc = πβ

√∫ ∞

0
ω2F( f )d f (3)

where F is the wave spectrum, f is the wave frequency, ω = 2πf denotes the angular
frequency, and β = R/V, with R being the satellite slant range and V being the satellite
velocity. The magnitude of the spectral integration is directly related to the sea state
conditions [23]. Therefore, the azimuth cutoff, normalized by the ratio of β, was chosen
as another input parameter for our models. The azimuth cutoff can be estimated by
fitting a Gaussian function to the inter-correlation of SAR cross-spectrum (real part) [29].
The Gaussian fit function C is stated as follows:

C(x) = exp(−(πx
λc

)
2
) (4)

where x denotes the spatial distance in the azimuth direction. Figure 4 shows estimation
of azimuth cutoff from the imagette shown in Figure 2 at polarization channels of HH,
HV, VH, and VV. As seen, the values of the azimuth cutoff obtained from SAR images at
different polarizations were different. The HV and VH cutoffs were larger than the HH
and VV estimates. This is probably attributed to the fact that the smearing effects of cross-
polarization SAR were larger for shorter coherence times [30]. The HH cutoff was slightly
larger than the VV estimate. This may have been related to the larger HH-polarization
modulation transfer function [30]. The azimuth cutoff estimates under HH, HV, VH, and
VV configurations were considered in our models.
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Figure 4. Estimation of azimuth cutoffs for (a) HH, (b) HV, (c) VH, and (d) VV polarizations from the
Gaofen-3 wave mode imagette shown in Figure 1. Dashed blue line represents the inter-correlation
along the azimuth direction, and the solid red line represents the Gaussian fit.

(4) Incidence angle
The incidence angle (θ) is an important parameter that should be considered when

building empirical models for SAR SWH retrieval (e.g., [4]). Unlike the wave mode
imagettes from European SAR satellites involving only one or two specific incidence angles,
the incidence angle of Gaofen-3 wave mode could be switched from 20◦ to 50◦. Figure 5
shows the histogram of incidence angles in 1◦ bin for Gaofen-3 wave mode data used in this
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study. As seen, the incidence angles were mostly distributed around 36◦ and 40◦. Inspired
by Wang H. et al. [24], and considering the amount of data, we categorized the Gaofen-3
wave mode data into five groups, with respect to incidence angle, called WV01 for 20–33◦,
WV02 for 33–37◦, WV03 for 37–42◦, WV04 for 42–46◦, and WV05 for 46–50◦. Details are
listed in Table 1. The incidence angle range of WV01 was set so wide because of the small
amount of data. The incidence angle was considered in two ways: first, it was included as
an independent variable in the models, and second, the models were separately built at
each incidence angle bin.
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Table 1. Information on Gaofen-3 wave mode data for different incidence angle bins.

Data
Incidence Angle Number of Gaofen-3 Wave Mode Data

Range Mean Standard Deviation Total Training Validation

All 20–50◦ 39.13◦ 5.40◦ 11164 7813 3351
WV01 20–33◦ 26.72◦ 3.79◦ 845 591 254
WV02 33–37◦ 35.92◦ 0.68◦ 3731 2612 1119
WV03 37–42◦ 40.12◦ 0.79◦ 3775 2642 1133
WV04 42–46◦ 44.10◦ 1.08◦ 1358 950 408
WV05 46–50◦ 47.38◦ 1.19◦ 1455 1018 437

2.2. Buoy, Altimeter, and ERA5 SWH Data

The SWH observations from the standard meteorological data of the 61 moored buoys
in the waters around the U.S., operated by the National Data Buoy Center (NDBC), were
collected in this paper. All the buoys were located in the waters more than 50 km away
from land and over 150 m deep in depth. The quality of the NDBC SWH observations was
very high, with an accuracy of approximately 0.2 m [31]. The NDBC SWH observations
were used as an independent data source to validate the derived SWH from the models.
Besides, they were also used to assess the quality of the altimeter and ERA5 SWH data.

The SWH observations from Jason-3 altimetry mission were selected as an additional data
source for the independent verification. The Jason-3 satellite was launched in January 2016
and carries a dual frequency (Ku- and C-bands) radar altimeter. The geophysical data records
distributed by the Archiving, Validation, and Interpretation of Satellite Oceanographic Data
(AVISO) for the period 2016–2020 were collected, and the SWHs retracted from Ku-band data
were selected here. The Jason-3 SWH observations were recognized as being of good quality.
The comparison between Jason-3 SWH and buoy SWH with correlation coefficient (Corr), root
mean square error (RMSE), mean bias (Bias), and scattering index (SI) are shown in Figure 6a.
As can be seen, the Jason-3 SWH observations were rather consistent with the buoy ones, with
RMSE being about 0.252 m.
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Figure 6. (a) Scatter point density plot of Jason-3 SWH versus buoy SWH. (b) Scatter point density
plot of ERA5 SWH versus buoy SWH. The black solid lines indicate the one-to-one diagonal. The red
solid lines join the mean values from SAR estimates in each 0.1 m bin of buoy SWH. Colors denote
the data point numbers within 0.1 m × 0.1 m bins. Jason-3 collocation was limited to 1 h and 100 km.
ERA5 collocation was performed based on the time/space interpolation over the year of 2017.

ERA5 is the fifth generation ECMWF atmospheric reanalysis for the global climate
and weather [32]. It combines as many observations as possible into model estimates using
advanced modeling techniques and latest data assimilation systems, and it provides new
best estimates of the state of the atmosphere, ocean waves, and land surface. Compared
to its predecessor, ERA-Interim, ERA5 has an improved temporal resolution as 6-hour in
ERA-Interim to hourly in ERA5. The ERA5 hourly data on single levels published so far
cover the period from 1 January 1950 to near real time. This dataset provides estimates
for a number of ocean-wave variables at a regular lat-lon grid of 0.5 degrees, in which
the significant height of combined wind waves and swell, i.e., SWH, are focused here.
The accuracy of the ERA5 SWH was quantitatively assessed by comparing with the buoy
observations. Figure 6b shows the comparison of ERA5 SWH with buoy SWH. As can be
seen, the ERA5 SWH estimates were well-consistent with the corresponding buoy SWH
observations, with RMSE being about 0.243 m.

The Gaofen-3 SAR imagettes were collocated, respectively, with the NDBC buoy
SWH observations and the Jason-3 altimeter SWH observations using the criteria of time
separation within 1 h and spatial separation less than 100 km. This procedure yielded
only 43 SAR-buoy matching points, of which, the buoy SWHs were mainly distributed
2–3 m. The collocation with Jason-3 yielded 215 points, of which, the Jason-3 SWHs were
between 1–7 m. Each Gaofen-3 imagette was collocated with the time/space interpolated
SWH from ERA5, yielding approximately 11,200 matched up cells, and the collocated
ERA5 SWHs roughly ranged from 0.3 to 8 m. The collocations of Gaofen-3 SAR wave
mode imagettes and ERA5 data were used to maximize the samples, since the collocations
of SAR-buoy and SAR-altimeter were not sufficient for the model training. That is, the
SAR-ERA5 data were used for the training of the PolR and GPR models. The SAR-buoy and
SAR-altimeter data were never seen by the models when tuning to ensure an independent
verification. The SAR-ERA5 data were randomly divided into two subsections for training
(70% of the data) and for testing (30% of the data), both for the development of the models.
The training set tuned the parameters of the PolR and GPR models, while the validation set
cross-validated and determined the parameters. The effects of polarization and incidence
angle on the models for estimating SWH from Gaofen-3 wave mode data were analyzed
based the SAR-ERA5 data, as well.

2.3. PolR and GPR Models

The polynomial regression (PolR) model and the Gaussian process regression (GPR)
model were adopted in this study for the multi-incidence angle polarimetric Gaofen-3 SAR
SWH retrieval. The PolR model uses the basic formulation of the CWAVE model as:

Hs = a0 +
n

∑
i=1

ai × si +
n

∑
i,j=1

ai,j × si × sj (5)
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where Hs is the SWH, si represents the SAR-based parameters, and ai, j (i ≤ j ≤ n) repre-
sents the tuned coefficients. The PolR model states that the SWH is expressed as linear
combinations of the SAR-derived parameters (s1, . . . , sn) with the extended coefficient
vector (a0, . . . , an, a11, . . . , ann) in a dimension of 0.5 (n2 + 3n + 2). The second-order terms
in the model function reflect the nonlinear combinations among the SAR image parameters.
The derivation of the PolR model was based on the collocated Gaofen-3 SAR wave mode
imagettes and ERA5 SWH data, using a least squares minimization procedure.

The GPR is a machine learning model with strong adaptability and good general-
ization ability for dealing with high dimensional nonlinear data. It is a flexible nonpara-
metric Bayesian approach, using nonlinear mapping to relate the output to the input [33].
The salient feature of GPR is that it directly defines a prior probability over a latent function.
The functional relationship of GPR is typically expressed in the form:

y = f (X) + ε (6)

where y is the model output, X is the model input, ε is the independent identically dis-
tributed Gaussian noise with zero mean and constant variance, and f (X) is a Gaussian
process that can be specified by its mean (which is taken to be zero) and covariance matrix
K. The elements of K can be computed by using a kernel function. Several kernel functions
were evaluated here, and it was found that the anisotropic exponential kernel was the most
suitable. This exponential kernel function can be expressed as:

k
(
xi, xj

)
= θ2

1exp

−
√(

xi−xj
)T(xi−xj

)
θ2

 (7)

where k(xi, xj) is the (i, j) element of covariance matrix K, xi and xj are the ith and jth input
parameters, and θ1 and θ2 represent hyper-parameters that should be optimized. In this
work, the hyper-parameters of kernel function were estimated based on minimization of
the negative log marginalized likelihood (NLML) [34]. To optimize the NLML, the quasi-
newton optimization method was employed. The extracted features from the polarimetric
Gaofen-3 SAR images were used as the input, and the ERA5 SWH was used as the training
output. The inputs were transformed into the standardized values, so that the mean was
0 and the standard deviation was 1. Of particular note is that the GPR model does not
need to include squared terms and cross-terms as input because it can model the nonlinear
interactions between the input independent variables.

3. Results

In this section, the effects of polarization and incidence angle on the SWH estimation
from multi-incidence angle quad-polarization Gaofen-3 SAR wave mode data using the
PolR and GPR models were analyzed based on the SAR-ERA5 collocations. Then, the pre-
diction accuracies of the final models were independently assessed based on the collocations
of SAR-buoy and SAR-altimeter.

3.1. Effects of Polarization

Polarimetric SAR has shown significant advantages in SWH estimation, due to its richer
backscattering information (e.g., [4,25]). Considering that how to make full use of SAR po-
larimetry information to achieve optimal SWH estimation is still an open question, the effects
of polarization on the Gaofen-3 wave mode SAR SWH retrieval were further analyzed here,
based on the collocated data set of approximately 12,000 quad-polarization Gaofen-3 imagettes
matched with SWH from ERA5 by comparing the prediction accuracies of the PolR and GPR
models under nine different polarization modes, including four single-polarization modes
(HH, HV, VH, VV), four dual-polarization modes (HH+HV, VV+VH, HV+VH, HH+VV), and
the quad-polarization mode (HH+HV+VH+VV). For this analysis, the recalibrated NRCS,
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cvar, and λc/β were used as inputs for the models. The θ was not considered. The training
dataset and the validation dataset were kept unchanged in this experiment.

The performance of the PolR and GPR models in the nine polarization modes is
recorded in Table 2. For both the PolR and GPR models, the four single-polarization
modes performed similarly weaker, with lower correlation coefficients and higher RMSEs.
Then, there were the dual-polarization modes of HH+VV and HV+VH, which showed
slightly higher correlation coefficients and lower RMSEs. The dual-polarization modes of
HH+HV and VV+VH had similarly stronger performance, with even higher correlation
coefficients and lower RMSEs. The quad-polarization mode was the strongest, with the
highest correlation coefficient and the lowest RMSE. Overall, the dual-polarization modes
performed better than the single-polarization modes, and the quad-polarization mode
performed better than the dual-polarization modes, indicating the more polarized content,
the better performance of SAR SWH estimation. Note that HH, VV, and HH+VV are co-
polarization channels; HV, VH, and HV+VH are cross-polarization channels, while HH+HV,
VH+VV, and HH+HV+VH+VV are hybrid polarization channels. The hybrid polarization
has stronger performance than the co-polarization or the cross-polarization alone. This is
probably due to the fact that the combination of co-polarization and cross-polarization
can work effectively over the whole sea state, as the co-polarization only works at low to
moderate seas, while the cross-polarization works at high seas [4]. In addition, one can
see that the performance of PolR model was obviously weaker than that of GPR model.
The RMSEs of PolR model were approximately 0.1 m larger than the corresponding GPR
ones. This suggests that the added nonlinearity of the Gaussian process regression was
able to model SWH more accurately than the polynomial regression.

Table 2. Model performance for PolR and GPR under different polarization modes.

Input
PolR GPR

Corr RMSE (m) Bias (m) SI (%) Corr RMSE (m) Bias (m) SI (%)

HH 0.77 0.586 −0.007 4.68 0.80 0.551 0.002 5.76
HV 0.78 0.573 0.007 14.04 0.81 0.535 0.011 12.14
VH 0.79 0.566 0.007 8.56 0.82 0.533 0.008 0.69
VV 0.79 0.567 −0.004 1.26 0.81 0.535 0.006 2.43

HH+VV 0.79 0.563 0.001 1.65 0.86 0.477 0.007 4.19
HV+VH 0.80 0.549 0.009 7.77 0.84 0.499 0.015 11.55
HH+HV 0.85 0.487 0.002 5.54 0.90 0.406 0.012 5.01
VV+VH 0.86 0.474 0.007 1.93 0.90 0.403 0.017 5.52

Quad 0.87 0.449 0.015 9.77 0.92 0.365 0.018 5.64

Taking the GPR model as an example, the performance of Gaofen-3 SWH estimation
at different sea states under the nine polarization modes was illustrated to demonstrate
further the advantages of multi-polarization, especially hybrid polarization, in SAR SWH
retrieval. Similar results were obtained for PolR. Figure 7 shows the plots of Gaofen-3
SWH retrievals from GPR against ERA5 SWH, independent of the model training process
(validation dataset) for the nine polarization modes. The solid red lines represent the
mean values of SAR retrievals in each 0.1 m bin of ERA5 SWH. Figure 8a–c display the
dependency of the SWH residuals (GPR estimates minus ERA5 SWH) against ERA5 SWH
over the range from 0 m to 8 m, stepped by 1 m at the nine polarization modes. Figure 8d
shows the histogram of ERA5 SWH in a bin size of 1 m.



Remote Sens. 2022, 14, 5480 11 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

retrieval. Similar results were obtained for PolR. Figure 7 shows the plots of Gaofen-3 

SWH retrievals from GPR against ERA5 SWH, independent of the model training process 

(validation dataset) for the nine polarization modes. The solid red lines represent the 

mean values of SAR retrievals in each 0.1 m bin of ERA5 SWH. Figure 8a–c display the 

dependency of the SWH residuals (GPR estimates minus ERA5 SWH) against ERA5 SWH 

over the range from 0 m to 8 m, stepped by 1 m at the nine polarization modes. Figure 8d 

shows the histogram of ERA5 SWH in a bin size of 1 m. 

One can see from Figures 7 and 8 that, for all the polarization modes, reasonably good 

SWH estimates were archived via the GPR model under moderate sea conditions (roughly 

1–4 m), where the mean lines almost overlapped the one-to-one straight line, and the re-

siduals were close to zero. This probably resulted from two reasons: (1) both co-polariza-

tion and cross-polarization work well at moderate sea states; (2) the data were mostly 

distributed in moderate seas. However, overestimation/underestimation could be found 

under low/high sea conditions. Compared to the co-polarization modes, such as HH, VV, 

and HH+VV, the cross-polarization modes, such as HV, VH, and HV+VH, showed larger 

overestimation in low wave regime, but smaller underestimation in high wave regime. 

This implies that the co-polarization/cross-polarization can benefit SWH estimation under 

low/high sea conditions. The hybrid polarization modes, such as HH+HV, VV+VH, and 

HH+HV+VH+VV, achieved better performance by combining the advantages of co-polar-

ization and cross-polarization. Their mean lines were closer to the one-to-one straight line, 

and their residuals were closer to zero over the whole SWH range. In addition, it can be 

seen that the dual-co-polarization performed better than HH or VV alone; the dual-cross-

polarization performed better than HV or VH alone; the quad-polarization performed bet-

ter than the dual-hybrid polarizations. That is to say, the performance of Gaofen-3 SWH 

inversion improved, as long as polarimetry information increased, which further demon-

strates the enhancement effect of multi-polarization on SAR SWH retrieval. However, the 

improvement was found to not be considerable in low to moderate seas (about < 4 m), 

when dual-polarized information or even quad-polarized information were exploited. 

This implicates that single-polarized SAR data are sufficient for accurately retrieving 

SWH under low-moderate sea states. 

 

Figure 7. Plots of Gaofen-3 SWH retrievals from the GPR model versus ERA5 SWH for the nine po-
larization modes of (a) HH, (b) HV, (c) HH+HV, (d) VV, (e) VH, (f) VV+VH, (g) HH+VV, (h) HV+VH,
and (i) HH+HV+VH+VV. The red solid lines join the mean values from SAR estimates in each 0.1 m
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Figure 8. Comparison of SWH residuals against ERA5 SWH, with error bars presenting the standard
deviation. The Gaofen-3 SAR SWH estimates were obtained from the GPR model under the nine
polarization modes of (a) HH (green), HV (red), HH+HV (blue); (b) VV (green), VH (red), VV+VH
(blue); and (c) HH+VV (green), HV+VH (red), HH+HV+VH+VV (blue). (d) Histogram of ERA5 SWH
in bin size of 1 m, where the data count is labeled in black text.

One can see from Figures 7 and 8 that, for all the polarization modes, reasonably
good SWH estimates were archived via the GPR model under moderate sea conditions
(roughly 1–4 m), where the mean lines almost overlapped the one-to-one straight line,
and the residuals were close to zero. This probably resulted from two reasons: (1) both
co-polarization and cross-polarization work well at moderate sea states; (2) the data were
mostly distributed in moderate seas. However, overestimation/underestimation could
be found under low/high sea conditions. Compared to the co-polarization modes, such
as HH, VV, and HH+VV, the cross-polarization modes, such as HV, VH, and HV+VH,
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showed larger overestimation in low wave regime, but smaller underestimation in high
wave regime. This implies that the co-polarization/cross-polarization can benefit SWH
estimation under low/high sea conditions. The hybrid polarization modes, such as HH+HV,
VV+VH, and HH+HV+VH+VV, achieved better performance by combining the advantages
of co-polarization and cross-polarization. Their mean lines were closer to the one-to-one
straight line, and their residuals were closer to zero over the whole SWH range. In addition,
it can be seen that the dual-co-polarization performed better than HH or VV alone; the
dual-cross-polarization performed better than HV or VH alone; the quad-polarization
performed better than the dual-hybrid polarizations. That is to say, the performance of
Gaofen-3 SWH inversion improved, as long as polarimetry information increased, which
further demonstrates the enhancement effect of multi-polarization on SAR SWH retrieval.
However, the improvement was found to not be considerable in low to moderate seas
(about < 4 m), when dual-polarized information or even quad-polarized information were
exploited. This implicates that single-polarized SAR data are sufficient for accurately
retrieving SWH under low-moderate sea states.

3.2. Effects of Incidence Angle

The quad-polarization PolR and GPR models were tuned and tested, respectively, for
each of the five incidence angle bins (see Table 1 for details), based on the training and
validation datasets used in Section 3.1, which were subdivided into five incidence angle
bins separately, to explore the dependence of Gaofen-3 SWH retrieval on incidence angle.
Table 3 shows the error metrics for the quad-polarization PolR and GPR models under
different incidence angle bins. In general, both PolR and GPR models performed differently
across different incidence angle bins. They had better performance at lower incidence
angles than at higher incidence angles, which may reveal that lower incidence angles are
more favorable for SAR SWH inversion. This is possibly owing to the higher signal-to-noise
ratio and the stronger tilt modulation at lower incidence angles [15]. However, it should
also be noted that WV03 (θ around 40◦) outperformed WV02 (θ around 35◦). This occurred
in the research of Wang et al. [24], as well. It may imply that the Gaofen-3 radar beams
within WV03 enable relatively high-quality imaging. In addition, it is worth mentioning
that the quad-polarization PolR model performed better than the QPCWAVE_GF3 model
proposed in [24], which used a similar formulation, but only additionally introduced
VH NRCS, besides the VV features. This further confirms the necessity of fully exploiting
the quad-polarized information.

Table 3. Performance of the quad-polarized PolR and GPR models under different incidence angle bins.

Data
PolR GPR

Corr RMSE (m) Bias (m) SI (%) Corr RMSE (m) Bias (m) SI (%)

WV01 0.81 0.401 0.007 6.68 0.91 0.281 0.011 5.50
WV02 0.90 0.419 0.024 8.71 0.93 0.361 0.026 7.84
WV03 0.84 0.384 0.014 5.27 0.89 0.318 0.002 1.29
WV04 0.90 0.419 0.003 22.77 0.92 0.375 0.016 18.15
WV05 0.88 0.511 0.029 13.07 0.92 0.410 0.042 0.91

There are two ways to introduce incidence angles in the PolR and GPR models.
First, as the above, the Gaofen-3 SAR wave mode data were categorized into five groups,
with respect to incidence angle, and piecewise functions were created for the PolR and
GPR models. Second, the incidence angle was used as one of the independent inputs
to the PolR and GPR models. It should be noted that the same training and validation
datasets as Section 3.1 were adopted here. Figure 9 displays the scatter plots of Gaofen-3
SWH retrievals from (a) the piecewise quad-polarization PolR model, (b) the piecewise
quad-polarization GPR model, (c) the quad-polarization PolR model that included θ as
an independent variable, and (d) the quad-polarization GPR model that included θ as
an independent variable against independent ERA5 SWH. It was found that the quad-
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polarization models showed obvious improvement in performance when θ was additionally
considered, particularly in the piecewise way. The piecewise models from the incidence
angle bins performed slightly stronger than the corresponding models that included θ as
an independent variable, especially for the PolR model and at high sea states. The impact
of the ways to consider θ on the performance of the GPR model was rather little.
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variable against ERA5 SWH. Red lines join the mean values from SAR estimates in each 0.1 m bin of
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3.3. Final Model Performance

To sum up, with the input scheme that included the quad-polarized features and intro-
duced the incidence angle in a piecewise way, the PolR and GPR models achieved superior
performance for SWH inversion from the Gaofen-3 wave mode data. The final optimal PolR
and GPR models were independently assessed here by comparing their predictions with
measurements from the Jason-3 altimeter and NDBC buoys. Figure 10 presents the scatter
plots of Gaofen-3 SWH retrievals from the final PolR and GPR models against the SWH
measurements from Jason-3 altimeter and NDBC buoys. The final PolR model achieved
an RMSE of 0.514 m, compared to altimeter data, showing almost no reduction in RMSE
from QPCWAVE_GF3 in [24] of 0.52 m. The expected optimizations did not significantly
occur, possibly due to the large uncertainty in the validation data set, caused by the small
amount of altimeter collocations (only 215). The final GPR model achieved 0.34 m RMSE,
compared to the altimeter data, which was close to that of GF3WVResNet_QP (0.32 m),
a more complex, deep convolutional network-based SAR SWH retrieval algorithm in quad-
polarization proposed in [4] and the previous state-of-the-art algorithm for estimating
SWH from Gaofen-3 wave mode data. The final GPR model even achieved a higher cor-
relation coefficient (0.94 to 0.96), lower bias (0.05 m to -0.01 m), and lower SI (12.59% to
7.39%). On the test set of 43 buoy collocations, the final PolR and GPR models, respectively,
achieved RMSEs of 0.507 m and 0.311 m. The errors on the buoy data set were smaller
because the buoys tend to be located in the waters where there are more moderate sea
states and smaller errors. For both models, the mean lines had slopes less than 1, which
reflects that the models overestimated small SWH (< 2 m) and underestimated large SWH
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(> 6 m). In addition, the final GPR model, with nearly 0.2 m lower RMSE, outperformed
the final PolR model.
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measurements from Jason-3 altimeter and NDBC buoys. (a) Estimates via PolR versus Jason-3 SWH.
(b) Estimates via GPR versus Jason-3 SWH. (c) Histogram of Jason-3 SWH. (d) Estimates via PolR
versus buoy SWH. (e) Estimates via GPR versus buoy SWH. (f) Histogram of buoy SWH. Red lines
join the mean values of SAR estimates in each 0.1 m bin of the measured SWH.

4. Discussion
4.1. Importance Study of the Polarization Features

From Section 3.1, one can conclude that the hybrid polarization had obvious advantages
in Gaofen-3 SAR SWH estimation. However, it remains questionable whether all input
polarization features could cause the polarization enhancement. Therefore, feature importance
studies were performed here for the PolR and GPR models developed in Section 3.1 (θ was not
considered), under the hybrid polarization modes of HH+HV, VV+VH and HH+HV+VH+VV.
For each of the hybrid polarization modes, additional models were trained with one of the
input features removed and other features unchanged. Table 4 shows the error metrics for
the PolR and GPR models, with different input features removed under the polarization
mode of HH+HV. Table 5 shows the VV+VH case. The quad-polarization case is provided
in Table 6. For both dual-hybrid polarization modes, degradation in performance can be
seen when removing any one of the input features, suggesting that every feature contains
additional information that is relevant to predicting SWH, given the other inputs. For both
PolR and GPR models, the degradation caused by NRCS and cvar was larger than that caused
by λc. The largest reduction in error could be seen when removing the cross-polarization
NRCS, which was not unexpected, as it can represent information on wind-sea energy under
extreme wind/wave conditions, where saturation is observed in co-polarization. The removal
of cross-polarization λc causes the smallest reduction in error. For the quad-polarization mode,
most of the input features caused similar, albeit smaller, degradation. Additionally, the effects
of NRCS and cvar were generally larger than that of λc, particularly the cross-polarization
NRCS. The cross-polarization λc showed very small effects. It even showed slight side effects
for the GPR model. In addition, for the PolR model, the cross-polarization cvar also conveyed
no useful information. The small or side effects of cross-polarization λc and cvar possibly
resulted from the low signal-to-noise ratio of the cross-polarization SAR images.
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Table 4. Feature importance study for the dual-polarization mode of HH+HV.

Input
PolR GPR

Corr RMSE (m) Bias (m) SI(%) Corr RMSE (m) Bias (m) SI (%)

HH+HV 0.85 0.487 0.002 5.54 0.90 0.406 0.012 5.01
No σ0

HH 0.83 0.520 0.001 7.43 0.87 0.455 0.013 11.62
No σ0

HV 0.81 0.534 −0.001 12.21 0.87 0.460 0.011 12.60
No cvarHH 0.82 0.521 0.003 3.06 0.88 0.433 0.016 8.26
No cvarHV 0.83 0.520 −0.001 5.03 0.88 0.438 0.008 4.47
No λcHH/β 0.84 0.495 0.003 6.45 0.89 0.420 0.014 4.08
No λcHV/β 0.85 0.490 0.001 6.90 0.90 0.409 0.010 9.93

Table 5. Feature importance study for the dual-polarization mode of VV+VH.

Input
PolR GPR

Corr RMSE (m) Bias (m) SI(%) Corr RMSE (m) Bias (m) SI (%)

VV+VH 0.86 0.474 0.007 1.93 0.90 0.403 0.017 5.52
No σ0

VV 0.83 0.511 0.005 3.65 0.87 0.451 0.012 2.07
No σ0

VH 0.82 0.530 −0.001 9.92 0.87 0.459 0.010 9.18
No cvarVV 0.83 0.512 0.002 2.83 0.88 0.430 0.015 5.59
No cvarVH 0.84 0.493 0.006 4.00 0.88 0.440 0.015 6.05
No λcVV/β 0.85 0.480 0.010 3.79 0.89 0.415 0.015 4.59
No λcVH/β 0.86 0.476 0.007 0.37 0.90 0.409 0.016 9.53

Table 6. Feature importance study for the quad-polarization mode of HH+HV+VH+VV.

Input
PolR GPR

Corr RMSE (m) Bias (m) SI (%) Corr RMSE (m) Bias (m) SI (%)

Quad 0.87 0.449 0.015 9.77 0.92 0.365 0.018 5.64
No σ0

HH 0.87 0.454 0.014 11.51 0.92 0.370 0.019 9.36
No σ0

HV 0.87 0.457 0.012 9.54 0.92 0.371 0.002 6.82
No σ0

VH 0.86 0.472 0.011 11.92 0.91 0.374 0.016 4.49
No σ0

VV 0.87 0.452 0.013 7.98 0.92 0.371 0.018 4.16
No cvarHH 0.87 0.453 0.013 10.14 0.92 0.371 0.020 8.08
No cvarHV 0.87 0.449 0.015 5.73 0.92 0.372 0.019 3.52
No cvarVH 0.87 0.448 0.014 10.73 0.92 0.370 0.016 7.53
No cvarVV 0.87 0.461 0.010 8.62 0.92 0.370 0.016 4.36
No λcHH/β 0.87 0.453 0.015 2.48 0.92 0.369 0.017 2.87
No λcHV/β 0.87 0.450 0.014 10.67 0.92 0.363 0.017 3.66
No λcVH/β 0.87 0.451 0.014 10.01 0.92 0.365 0.017 9.38
No λcVV/β 0.87 0.450 0.013 4.97 0.92 0.369 0.020 5.36

4.2. Impact of Radiometric Calibration

As is known, high-precision SAR wind estimation depend highly on the good quality
of NRCS, mainly resulting from the accurate absolute radiometric calibration of the SAR
imagery. The fact that the radiometric calibration has a great impact on SAR wind retrieval
has been widely demonstrated [35]. For SAR SWH retrieval, the specific impact of radio-
metric calibration is still not well-understood, although previous studies have pointed out
that proper calibration of NRCS is necessary, in order to accurately estimate SWH from
SAR (e.g., [35]). Considering that Gaofen-3 SAR has problems in radiometric calibration,
its impact on Gaofen-3 SAR SWH retrieval is discussed here, based on the 4576 imagettes
that provide official calibration constants through comparing the performance of the PolR
and GPR models with inputs of different NRCS-related parameters—the recalibrated NRCS
(σ0

recal), the officially calibrated NRCS (σ0
o f f icial), the mean DN in dB (10 log10〈DN〉), or the

mean Is in dB (10 log10〈Is〉). The polarization modes of HH, HH+HV, and HH+HV+VH+VV
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were taken as examples for this discussion. The cvar and λc/β were included in the models,
while θ was not.

The performances of the PolR and GPR models with σ0
recal , σ0

o f f icial , 10 log10〈DN〉, or
10 log10〈Is〉 inputs at the polarization modes of HH, HH+HV, and HH+HV+VH+VV are
summarized in Tables 7–9. It should be mentioned that both the training data set used to
create the models and the validation data set used to validate the models remain the same
in the experiment, and thus, we expect the sampling to have no impact on the resulting
model functions. It can be seen that the radiometric calibration improved the performance
of Gaofen-3 SWH inversion for both PolR and GPR models under all the polarization
modes of HH, HH+HV, and HH+HV+VH+VV, with RMSE reducing by about 0.1 m, due
to the accurate radiometric calibration. This also implies that the impact of radiometric
calibration does not decrease with the increase of polarimetry information. Furthermore,
it is worth pointing out that, for both the PolR and GPR models, especially for the GPR
model, the introduction of qv (from 10 log10〈Is〉 to 10 log10〈DN〉) brings about significant
improvement. In addition, both the PolR and GPR models showed better performance
with K set to the recalibration value (Krecal) than to the official calibration value (Kofficial),
indicating that ocean recalibration is necessary for the accurate estimation of SWH from
Gaofen-3 wave mode data.

Table 7. Impact of radiometric calibration on Gaofen-3 SAR SWH estimation for the single polariza-
tion mode of HH.

NRCS-Related Input
(dB)

PolR GPR

Corr RMSE (m) Bias (m) SI (%) Corr RMSE (m) Bias (m) SI (%)

σ0
recal 0.76 0.469 −0.002 16.05 0.89 0.330 0.014 0.65

σ0
o f f icial 0.73 0.492 −0.008 15.01 0.87 0.354 0.015 0.69

10 log10〈DN〉 0.72 0.499 −0.008 14.29 0.87 0.353 0.015 0.72
10 log10〈Is〉 0.67 0.532 −0.013 19.67 0.79 0.443 −0.005 0.24

Table 8. Impact of radiometric calibration on Gaofen-3 SAR SWH estimation for the dual-polarization
mode of HH+HV.

NRCS-Related Input
(dB)

PolR GPR

Corr RMSE (m) Bias (m) SI (%) Corr RMSE (m) Bias (m) SI (%)

σ0
recal 0.83 0.386 0.006 14.78 0.91 0.283 0.004 0.18

σ0
o f f icial 0.79 0.428 0.017 13.53 0.90 0.297 0.010 0.49

10 log10〈DN〉 0.80 0.417 0.018 13.56 0.90 0.297 0.010 0.48
10 log10〈Is〉 0.72 0.486 0.008 14.83 0.86 0.358 0.011 0.53

Table 9. Impact of radiometric calibration on Gaofen-3 SAR SWH estimation for the quad-polarization
mode of HH+HV+VH+VV.

NRCS-Related Input
(dB)

PolR GPR

Corr RMSE (m) Bias (m) SI (%) Corr RMSE (m) Bias (m) SI (%)

σ0
recal 0.82 0.399 −0.013 15.21 0.92 0.265 −0.012 0.53

σ0
o f f icial 0.77 0.466 −0.015 14.26 0.92 0.268 −0.011 0.49

10 log10〈DN〉 0.75 0.483 −0.018 15.47 0.92 0.269 −0.010 0.47
10 log10〈Is〉 0.72 0.496 −0.026 21.04 0.85 0.367 −0.010 0.46

5. Conclusions

At first, the effects of the polarization and incidence angles on Gaofen-3 SAR SWH
inversion were systematically explored using the PolR and GPR models by comparing
their prediction accuracies under different input schemes, based on the collocated data set
of approximately 12,000 multi-incidence angle quad-polarization Gaofen-3 wave mode
imagettes matched with SWH from ERA5 reanalysis. The SAR polarimetry information
has great potential for accurately estimating SWH. For both the PolR and GPR models,
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the quad-polarization mode performed better than the dual-polarization modes, which
were better than the single-polarization modes, i.e., the more polarized content, the better
performance of SAR SWH estimation. Moreover, the hybrid polarizations that combined
the channels of co-polarization and cross-polarization had stronger performance than the
co-polarization or the cross-polarization alone, as they could work effectively over the
whole sea state. Incidence angle also had effects on the model performance. The lower
incidence angles were more favorable for SAR SWH inversion for the higher signal-to-noise
ratio and stronger tilt modulation. Additionally, compared to the models that include
incidence angle as an independent variable, the piecewise models from the incidence angle
bins performed slightly stronger, especially for the PolR model and at high sea states.

Then, the final PolR and GPR models with the superior input scheme that included
the quad-polarized features and introduced the incidence angle in a piecewise way were
independently assessed by comparing their predictions with SWH measurements from
Jason-3 altimeter and NDBC buoys. The final PolR model was slightly more accurate than
the previously published model of QPCWAVE_GF3, which used a similar formulation, but
only additionally introduced VH NRCS, besides the VV features. The final GPR model
almost achieved the accuracy of GF3WVResNet_QP, which was previously a state-of-the-
art, deep convolutional network-based, and more complex SAR SWH retrieval algorithm
in quad-polarization. In general, the GPR model outperformed the PolR model, possibly
owing to the fact that the added nonlinearity of GPR was able to model SWH more
accurately than PolR.

Finally, we discussed the importance of polarization features and the impact of radio-
metric calibration on the Gaofen-3 SAR SWH estimation using the PolR and GPR models.
For both dual-hybrid polarization modes, degradation in performance could be seen when
removing any one of the input features, suggesting that every feature contained additional
information that was relevant to predicting SWH, given the other inputs. For both PolR and
GPR, the degradation caused by NRCS and cvar was larger than that of λc. The radiometric
calibration improved the performance of Gaofen-3 SWH inversion. Notwithstanding our
results, they were based on a fairly limited range of SWH. The data available for collection
was concentrated below 8 m. There were no significant wave heights greater than 10 m,
which are associated with extreme weather. Thus, we intend to continue to investigate our
models for higher wind/wave conditions.
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Appendix A

Table A1. The values of the quad-polarization recalibration constants of the 24 Gaofen-3 radar beams.

Radar Beam ID HH HV VH VV

189 15.01408 12.2541 25.80991 20.05543
190 18.25585 14.88368 29.15318 20.59579
191 18.83953 16.64376 24.84276 19.13042
193 21.26735 17.98476 25.49417 20.49475
195 26.72555 22.70524 26.20774 20.39201
197 28.2592 23.84215 28.21244 22.28621
198 23.32183 19.98011 26.98858 22.41353
199 25.65079 21.67706 26.67518 21.47405
200 30.30135 25.63828 28.95669 22.93642
201 25.4069 21.24098 26.03701 20.61089
202 29.10564 23.96265 28.57081 22.89158
203 29.10564 23.96265 28.57081 22.89158
205 30.62352 25.31018 29.40096 23.89272
206 29.19057 23.55115 27.69605 22.62887
207 29.52643 23.61636 27.19983 21.79812
208 29.22087 23.15519 27.52491 22.39281
209 29.19051 23.29532 28.81778 23.13645
210 28.88105 22.1761 27.64764 22.71903
211 28.18358 22.06203 26.72792 21.29466
212 30.90046 25.10704 29.39566 24.53799
213 30.05091 24.13004 28.63036 24.10765
214 30.05091 24.13004 28.63036 24.10765
215 30.05091 24.13004 28.63036 24.10765
216 30.05091 24.13004 28.63036 24.10765
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