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Abstract: The uncertainties in soil erosion (SE) are further intensified by various factors, such as
global warming, regional warming and humidification, and vegetation cover changes. Moreover,
quantitative evaluations of SE in major basins of Central Asia (CA) under changing environments
have rarely been conducted. This study conducted quantitative evaluation of SE in four major basins
(Syr Darya Basin (SDB), Amu Darya Basin (ADB), Ili River Basin (IRB) and Tarim River Basin (TRB)
using the Revised Universal Soil Loss Equation (RUSLE) and analyzed the main driving factors.
SE quantities in the basins presented relatively consistent upward fluctuating trends from 1982 to
2017. Vegetation cover variation fluctuated significantly from 1982 to 2017. Specifically, vegetation
cover decreased continuously in SDB, ADB, and IRB, but increased gradually in TRB. Pixels with
positive spatial variation of vegetation mainly occurred around lakes and oases near rivers. The
Normalized Difference Vegetation Index (NDVI) showed higher correlation with precipitation (80.5%)
than with temperature (48.3%). During the study period, the area of arable land (AL) exhibited the
largest change among all land use types in CA. Under long-term human activities, the proportion
of NDVI of other land types converting to AL was the highest. In the structural equation model
(SEM), precipitation, temperature, Shannon Diversity Index (SHDI), and NDVI strongly influenced
SE. Overall, the major basins in CA were jointly affected by climate, human activities, and vegetation.
Specifically, climatic factors exerted the strongest influence, followed by SHDI (human activities). SE
was found to be relatively serious in ADB, SDB, and IRB, with SE in SDB even approaching that in
the Loess Plateau. Under the background of global changes, appropriate water and land resource
management and optimization configurations should be implemented in CA with reference to TRB
in order to relieve local SE problems.

Keywords: soil erosion; climate change; RUSLE model; Central Asia; soil and water conservation

1. Introduction

The fifth climate change evaluation report of the Intergovernmental Panel on Cli-
mate Change (IPCC) pointed out that the global surface average temperature increased
by 0.89 ◦C from 1901 to 2012 and the rate of increase in the 20th century was the highest
during 1980–2010 [1]. Moreover, the rate of temperature increase has been increasing since
1980, with the highest rate in mid-latitude regions of the Northern Hemisphere [2,3]. Hence,
climatic changes dominated by global warming have become one of important environ-
mental problems in the world [4]. In global environmental change, vegetation, which is a
key component of land ecosystems, is extremely sensitive to climatic changes, and dynamic
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changes of vegetation are often used as an important biological indicator of climatic change
on Earth [5–7]. A previous study pointed out that the global greening of vegetated areas
increased by 5% from 2000 to 2017, 1/3 of which was attributed to China and India. The
growth of greening of vegetated areas in China accounted for 25% of global growth [8].
Although the greening of vegetated areas was increased significantly, vegetation areas in
China and India account for only 9% of the global total vegetation area [9]. The analysis
shows that afforestation and intensive agriculture contributed 42% and 32% respectively
to China’s greening. Intensive agriculture accounts for 82% of India’s greening [10]. Ac-
cording to a previous study, the increase in vegetation cover and extension of the growing
season in mid and high-latitude areas in the Northern Hemisphere was mainly attributed
to climatic warming [11]. Furthermore, some studies have found a positive correlation
between Normalized Difference Vegetation Index (NDVI) and temperature in high latitude
areas of the Northern Hemisphere in the growing season [12,13]. Piao et al. [14] concluded
that the increase in NDVI was attributable to temperature increase at the national scale,
while it was related to precipitation at the regional scale. The increasing frequency of human
activities since the industrial revolution has also introduced some ecological degradation
problems, such as forest reduction, biodiversity reduction, and soil erosion (SE) [15–17].
Specifically, SE is the most serious problem [18].

SE refers to damages and loss of water-land resources and productivity of lands caused
by various exogenic forces [19]. It not only causes land resource depletion, soil fertility
reduction, and ecological imbalance, but also influences production development activities
of various industries [20–22]. Climatic changes and human activities all influence the
development rate of SE, and these influences are mainly reflected by the promotion of SE
by global temperature rise [23,24]. As the near-surface temperature increases, the wind
speed increases, which also accelerates the melting of ice and snow, and increases the flow
of rivers, which in turn leads to increased SE [25]. Land-use and land-cover change (LUCC)
caused by human activities and climatic changes alter the original surface vegetation types
and coverage, runoff conditions, and physicochemical properties of soil, thus influencing
the dynamics and anti-erosion resistance system of SE [26]. Eybergen et al. [27] studied
the key process of climate sensitivity in 1989 and believed that SE was influenced by
climatic changes. Kirkby et al. [28] performed model predictions and found that an increase
in global temperature 2–3 ◦C will cause land vegetation changes at the local scale, thus
causing serious SE. Furthermore, vegetation, which is the hub for material circulation and
energy exchange of ecosystems, can control water and soil loss fundamentally. It is an
important factor for controlling SE and the most positive and effective measure for soil
and water conservation [29,30]. The 8th (2009–2013) national forest resource survey of
China reported that the national forest area reached 208 million hm2 and the forest cover
was 21.6%; the construction of key protection forest systems through the “Three North”
Shelter Forest Program and in Yangtze River Basin decreased the water and soil loss area
by 110,000 km2, and 40% of the water-land loss area in the engineering region could be
controlled effectively [31]. Since the implementation of the policy of returning arable land
(AL) into forest land (FL) and grass land (GL) in 1999, vegetation coverage in the Loess
Plateau increased by 28% and water and soil loss has been inhibited effectively [32].

Central Asia (CA) is located in Eurasia’s hinterland, and it belongs to a typical tem-
perate desert and temperate continental climate. In response to global warming, CA is
experiencing a significant temperature rise [33]. Chen et al. [34] studied the characteristics
of temperature change in arid regions of CA in the last 100 years (1901–2003) using empiri-
cal orthogonal functions and pointed out that the regional average rate of temperature rise
was 0.18 ◦C per decade, reaching 0.21 ◦C per decade in winter. This was far higher than
the global rate of temperature rise. The annual precipitation in CA has been increasing
since the 20th century, but with significant spatial differences [35]. Based on the Climatic
Research Unit (CRU) data, Chen et al. [36] pointed out that annual precipitation in arid
regions of CA has generally been increasing in the past 80 years (1930–2009). Nevertheless,
the arid regions of CA are different from other global arid regions because it features high
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mountain-basin structures with relatively abundant precipitation [37]. Zhang et al. [38]
discussed vegetation changes in CA from 1982–2012 and found that vegetation activities
were improving, with prominent improvements in mountainous areas [39]. In arid re-
gions, SE mainly occurred on basin geomorphic units according to mountain–oasis–lake
regions [40]. Influenced by climatic changes and human activities, some rivers in CA are
cut off at lower reaches and lakes at lower reaches dry up gradually [41], thus intensifying
local SE and exposing river basin ecosystems to more risks [42]. Although CA is generally
warm and humid, such trends still cannot change the degree of droughts [43]. Therefore,
SE continues to pose serious threats to CA [44]. However, water erosion by water in CA
under the background of rapid global changes has rarely been investigated [45,46].

To address these issues, this study investigated SE in four major basins of CA and
analyzed the major driving factors. The main objectives were to: (1) perform quantitative
assessment of spatial-temporal changes in water erosion by water in major basins of CA;
(2) explore environmental changes (global warming, global greening, regional warming,
humidification, and LUCC) in CA and their impacts on water erosion by water in major
river basins; (3) analyze the main controlling factors and regulation mechanism of water
erosion by water in major basins of CA.

2. Materials and Methods
2.1. Study Area

CA (46◦24′–97◦06′E, 33◦48′–55◦48′N) covers five countries (Kazakhstan, Uzbekistan,
Turkmenistan, Kyrgyzstan, and Tajikistan) and Xinjiang, China (Figure 1). It is located
in Eurasia’s hinterland and belongs to the typical temperate continental climate. CA is
an arid region with the largest transverse span in the Northern Hemisphere [47,48]. The
annual average precipitation in CA is 17–800 mm. Extremely arid regions are located in the
hinterland of Taklimakan Desert in the Tarim Basin, and regions with high precipitation
are distributed in the Tianshan Mountains and Ili River Valley [49,50]. The main source of
water in arid regions of CA is ice and snow melting in mountainous regions. The Tianshan
Mountains are the “water tower” of CA and they serve as the major water source of CA [51].
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Major river basins in CA include the Amu Darya Basin (ADB) (4.65 × 105 km2), Syr
Darya Basin (SDB) (2.19 × 105 km2), Ili River Basin (IRB) (4.16 × 105 km2), and Tarim
River Basin (TRB) (8.46 × 105 km2). Among them, TRB has the largest mobile desert in
the world, which is the Taklimakan Desert [52]. Amu Darya and Syr Darya both originate
from the Tianshan Mountains, and they are the two major rivers flowing into the Aral
Sea [53,54]. The Ili River is the major inflowing river of Balkhash Lake. Global warming
has accelerated ice and snow melting in mountainous areas [55]. Although this increases
river runoff to some extent, the inflow volume to Balkhash Lake in the lower reaches is
decreasing every year because of large-scale water diversion for irrigation in the upper
reaches [56,57]. As a result, lake, and water areas in the lower reaches of CA, including
the Aral Sea, Taitma Lake, and Balkhash Lake, are decreasing every year [58,59]. In arid
regions, river basins support most human and social economic activities [60]. Therefore,
problems such as the degradation of the ecological environment and water shortage in CA
require urgent attention.

2.2. Data Sources
2.2.1. Meteorological and Soil Data

CA has extremely few meteorological stations, which are mainly distributed in oases
and plains [61]. Moreover, most stations have been abandoned since the collapse of the So-
viet Union. Consequently, it is very difficult to obtain long-term continuous meteorological
data [62]. In this study, the CRU dataset of the University of East Anglia of East Anglia, UK
(http://www.cru.uea.ac.uk/data (accessed on 14 April 2021)) was used for meteorological
data. The CRU dataset has good adaptability over global areas and provides high accuracy
in the characterization of drought and moisture [63,64]. Therefore, the temperature and
precipitation data of CA from 1982 to 2017 were extracted from CRU TS v.4.04 (CRU Time
series version 4.04), with a resolution of 0.5 × 0.5◦. We resampled all data to a spatial
resolution of 1 km by a statistical downscaling method in order to ensure consistency across
data products.

Soil data used in this study were obtained from the world soil database (http://
www.fao.org/soils-portal/en/ (accessed on 4 January 2021)). The Harmonized World Soil
Database (HWSD) is the global soil database jointly developed by the Food and Agriculture
Organization of the United Nations (FAO) and the International Institute for Applied
Systems (IIASA). Based on the simplified American standards, HWSD divides soils into
four types according to grain size: clay particles (<0.002 mm), silt (0.002–0.05 mm), sand
(0.05–2 mm), and gravel (>2 mm). The spatial resolution of data is 1 km.

2.2.2. Vegetation and Land Use Data

As an important component of ecosystems, vegetation is the link between the atmo-
sphere and pedosphere [65]. With the continuous development of remote sensing technol-
ogy, many vegetation indexes have become available for determining surface vegetation
cover and its spatial heterogeneity, with support for global and regional studies [66,67].
NDVI, which is acquired by the AVHRR sensor of the National Oceanic and Atmospheric
Administration and MODIS satellite sensor developed by the National Aeronautics and
Space Administration (NASA), is characterized by wide coverage, long time series, and
better accuracy. Thus far, it has been extensively used to study dynamic changes of global or
regional vegetation [68,69]. In this study, two sets of global databases were applied, namely
GIMMS3g NDVI and MODIS NDVI. The spatial resolution, interval, and time range of
GIMMS3g NDVI (Global Inventory Modelling and Mapping Studies) data were 0.0833◦,
15 d and 1982–2015, respectively. The MODIS NDVI data were collected from the Land
Processes Distributed Active Archive Center (LP DAAC/NASA) of NASA MODIS. The
MODIS NDVI database used in this study was the MOD13A2 V6 product, provided by the
MODIS sensor onboard the Terra Satellite. The spatial resolution and time resolution were
1 km and 16 d, respectively. The data were collected during 2000–2017. The above databases
have been widely used to study long-term changes in vegetation coverage in many regions

http://www.cru.uea.ac.uk/data
http://www.fao.org/soils-portal/en/
http://www.fao.org/soils-portal/en/
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worldwide [70–72]. Hence, GIMMS 3g NDVI was calibrated with the variance matching
method using MODIS NDVI data as the benchmark, and the spatial resolution was unified
to 1 km. Finally, an NDVI dataset of the major basins in CA from 1982 to 2017 was obtained.

LUCC data were obtained from ESA CCI-LC (European Space Agency, Climate Change
Initiative, Land Cover, https://www.esa-landcover-cci.org (accessed on 18 June 2021)),
with a spatial resolution of 300 m. ESA CCI-LC has been extensively applied in studies on
CA [73,74]. In this study, ESA CCI-LC products in 1992 and 2017 were used as the basic
data and TM images of CA in 1982 were selected as the background maps. Artificial visual
interpretation was carried out with reference to ESA CCI-LC in 1992. According to the
interpretation results, CA was divided into 8 land use/cover types: arable land (AL), grass
land (GL), forest land (FL), potential desert land (PDL), desert land (DL), water body (WB),
construction land (CL), and others. High-resolution Google Earth images were used for
verification and the accuracy could reach more than 86% [75,76]. This indicates that the
land use/cover data after artificial visual interpretation has good applicability to CA. In
this study, we resample all raster data to 1-km.

2.3. Methods

The Revised Universal Soil Loss Equation (RUSLE) model is an improved SE analysis
model based on the USLE model of the Agricultural Research Service (ARS) of the United
States Department of Agriculture (USDA). With its strong practicability and comprehensive
abilities, the RUSLE model has been extensively used in Chinese and foreign studies [77,78].
Based on the geographic information system (GIS), SE in CA was quantified using remote
sensing images as the input data. The basic formula of the RUSLE model is:

SE = R× K× LS× C× P (1)

where SE is the annual average soil erosion quantity (t km2 a−1) (Figures 2 and 3). R
is the rainfall erosivity factor (MJ mm km−2 h−1 a−1). K is the soil erodibility factor
(h hm2 km−2 MJ−1 mm−1). LS is the slope length (L) and steepness (S) factor. C is the
surface vegetation cover factor and P is a dimensionless conservation practice factor.
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cover factor.

2.3.1. Rainfall Erosivity Factor (R)

Rainfall erosivity factor (R) is an important driving force of SE and it is an impor-
tant factor for predicting SE [79,80]. This study uses the empirical formula derived by
Wischmeier and Smith [81]. The formula, which fully considers the characteristics of rain-
fall, is one of the most scientific methods for calculating R and has been widely used in
different regions.

R = ∑12
i=121.375× 10[1.5×log10 (

Pi
2

P )−0.08188] (2)

where, i represents the month in a year; Pi is the rainfall in month i (mm); Pa represents
the annual rainfall (mm). R is the annual average rainfall erosivity (MJ mm/[ha·h·a]). We
compared the R-factor results for Central Asia with the published R-factor datasets for the
pan-third pole region (20 countries containing key regions, http://data.tpdc.ac.cn/zh-hans/
(accessed on 23 December 2021)), and the fitting results were good (R2 = 0.853) (Figure S2),
indicating that our results are accurate enough to be used in this study.

2.3.2. Soil Erodibility Factor (K)

Soil is the body on which SE occurs and soil erodibility significantly influences the
occurrence probability of SE [82]. In this study, the extensively used EPIC model proposed
by Williams et al. [83] was selected to calculate the soil erodibility factor (K value). The
formula of the EPIC model is as follows:

KEPIC =
{

0.2 + 0.3exp
[
−0.0256Sa

(
1− Si

100

)]}
×
(

Si
Cl+Si

)0.3

×
[
1− 0.25C

C+exp(3.72−2.95C)

]
×
[
1− 0.7Sn

Sn+exp(−5.51+22.9Sn)

] (3)

Sn = 1− Sa

100
(4)

where Sa is the sand content (2–0.05 mm), %. Si is the silt content (0.05–0.002 mm), %. Cl
is the clay content (<0.002), and %. C is the organic carbon content, %. For the K factor,
we compared it with the published K factor data of the pan-polar third pole 20 countries
(http://data.tpdc.ac.cn/zh-hans/ (accessed on 23 December 2021)), which was calculated
based on the soil attribute data of the International Soil Reference and Information Centre.
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The two fitted well (R2 = 0.768), indicating that the results of our K factor were more
accurate and could be applied to Central Asia (Figure S3).

2.3.3. Slope Length and Steepness Factor (LS)

The LS factor was derived based on DEM (digital elevation model, 30-m http://hydro.
iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM (accessed on 25 October 2021)). The LS factor
algorithm in this study was based on the studies of McCool et al. [84] as follows:

L =

(
λ

22.1

)m
(5)

S =

{
10.8sin(θ) + 0.03 θ ≤ 9

◦

16.8sin(θ)− 0.50 θ ≥ 10
◦ (6)

where λ is the horizontal projection slope length (m); m is the variable slope length index;
and θ is the steepness of slope (◦).

2.3.4. Cover Management (C)

Vegetation cover and management factor (C) reflects the influences of vegetation
cover and crop management measures on SE quantity [85]. As vegetation cover is highly
correlated with NDVI, C was calculated using the method proposed by Cai et al. [86]:

f =
(NDVI − NDVImin)

(NDVImax − NDVImin)
(7)

C =


1, f = 0

0.6508− 0.3436× log10 f , 0 ≤ f ≤ 78.3%
0, f > 78.3%

(8)

where f is the vegetation cover. NDVImax and NDVImin are maximum and minimum
NDVI, respectively.

2.3.5. Support Practice Factor (P)

Support practice factor (P) reflects the inhibition effect of water and soil conservation
measures on the occurrences of SE. It can be assigned according to the degree of water
and soil conservation, which is reflected by different land use types [87,88]. P values range
between 0 and 1. p = 1 indicates no conservation measure. Smaller p values indicate more
effective water and soil conservation measures for inhibiting SE [89,90]. The P-factors
in this study refer to the p-values of AL, GL, FL and PDL land use types in the relevant
literature [32,45,88] to generate the final P-factor maps for the four major basins in CA.
Finally, a diagram of P factor was generated (Figure 3).

2.4. Data Analysis
2.4.1. Trend Analysis

The unitary linear recursive analysis can simulate the variation trend of a single pixel.
It uses the least square method to fit the slope of vegetation cover changes during a certain
period [91]. The calculation formula is as follows:

θslope =
n×∑n

i=1(i× Ai)−∑n
i=1 i ∑n

i=1 Ai

n×∑n
i=1 i2 − (∑n

i=1 Ai)
2 (9)

where slope represents the slope of the variation trend; Ai is the numerical value of samples
(SE, NDVI) in year i; and n is the research time. When θslope > 0 or <0 or =0, the sample value
increases gradually or decreases continuously or remains constant, respectively, during
this period.

http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM
http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM
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2.4.2. Correlation Analysis

The correlation between vegetation cover and climatic factor was analyzed using the
spatial analysis method based on the single pixel approach. Similar to Jiang et al. [92],
the correlation coefficients of vegetation cover with temperature and precipitation were
calculated using the following formula:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(10)

where rxy is the correlation coefficient between vegetation cover and climatic factors; xi
refers to the temperature or precipitation value in year i; x is the annual average temperature
or precipitation; yi is vegetation coverage in year i; y is the annual average value of
vegetation cover; and i is the number of study years.

2.4.3. Landscape Pattern Analysis

The Shannon Diversity Index (SHDI) is a comprehensive index. It can reflect not
only the number of vegetation types, but also the evenness of the spatial distribution of
different vegetation types [93]. Based on the LUCC data in CA, the landscape diversity
index from 1982 to 2017 was calculated by using the Fragstats 4.2 software (University of
Massachusetts, Amherst, MA, USA). The calculation formula is as follows:

SHDI = −
n

∑
i=1

pi ln pi (11)

where Pi is the proportion of type i in the whole landscape and n refers to the total number
of plaque types in the landscape. SHDI represents the overall complexity degree of the
landscape. SHDI = 0 indicates that the whole landscape is only composed of one plaque.
With the increase in SHDI (SHDI ≥ 0), the plaque types increase or the distribution of
different plaque types in the landscape becomes increasingly more uniform. The variations
of SHDI in the study area from 1982 to 2017 are shown in Figure S1. In general, SHDI
gradually increased in CA (+0.0003/year).

2.5. Model Validation

In the process of global changes, increases in atmospheric CO2 concentration gradually
led to global warming [94]. SE can cause loss of soil organic carbon, thus altering global
carbon reserves and carbon cycles [95] and accelerating the global warming process [96].
Berhe et al. [97] discussed the role of SE in the biogeochemical cycles of essential elements
such as carbon, nitrogen, and phosphorus and found that the area of land with SE increases
with soil carbon density, and it was influenced significantly by the distribution of soil
carbon density. Therefore, SE has significant correlation with soil carbon accumulation.
On this basis, the soil carbon cumulative data in CA was downloaded from FAO (http://
faostat.fao.org/site/630/default.aspx (accessed on 26 September 2021)) for fitting with the
SE quantity of the major river basins in CA. The results showed good correlation (R2 = 0.79,
RMSE = 830.12, MAE = 830.11). To further verify the accuracy of the simulation results,
annual sediment delivery data from 2006 to 2008 were collected from three hydrometric
stations in TRB. The data of the water transmission is derived from the Annual Hydrological
Report, China. The annual sediment delivery data is calculated by accumulating the daily
sediment delivery data. A linear fitting analysis was carried out between the sediment
delivery data in TRB and annual erosion quantity at hydrometric stations, and the results
showed good degree of fitting (R2 = 0.82, RMSE = 189.39, MAE = 186.64). Although we
used two different data sources to validate the simulation results and obtained larger RMSE
values (Figure 4), we found that the RMSE values in our validation results differed less
from the MAE values. Therefore, our simulation accuracy is better for SE by water in the
main watersheds of CA by means of parameter localization and other means.

http://faostat.fao.org/site/630/default.aspx
http://faostat.fao.org/site/630/default.aspx
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3. Results
3.1. Spatial and Temporal Variation in Water Erosion by Water

As shown in Figure 5, there is a certain pattern in the spatial variation of the slope
of SE in each basin. The grids with positive SE changes were mainly distributed near the
rivers. According to the statistics of the area of pixels with slope of SE change greater than
0, the area of pixels with an increasing trend accounted for 59.3% of the total area of the four
basins, indicating an overall increasing trend of SE. Compared with the other three basins,
TRB has the smallest SE variation and fewer pixel points with high slope of SE variation
are distributed. SDB shows the most prominent increasing trend, with pixels showing an
increasing trend accounting for 64.2% of the total basin area. Among the four basins, SE
was the most severe in SDB, which had the highest SE increasing trend, followed by ADB
(60.2%), IRB (55.7%) and TRB (57.4%).
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From 1982 to 2017, the average SE quantity of all four basins presented relatively
consistent rising trend (Figure 6). Since 2000, the SE quantity in ADB, IRB, and SDB began
to increase quickly and peaked in around 2003, but it dropped sharply in the following
3–5 years. The SE quantity in TRB did not show sudden changes in the end of 2000 but
increased slowly. Moreover, the extremum did not occur within this period. According to
the linear fitting analysis of SE changes in the four basins from 1982 to 2017, SE quantity
changed the most rapidly in SDB and the change slope was 0.9, with the maximum reaching
as high as 2728.68 t km−2. The variation rate of SE quantity was the lowest (only 0.05) in
TRB and the maximum erosion quantity was 279.58 t km−2. The highest growth rate of SE
quantity was observed in SDB (0.9), followed by ADB (0.88), IRB (0.33), and TRB (0.05).
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3.2. Spatial and Temporal Variation of Vegetation

The spatial variation trend of NDVI was explored through unitary linear recursive
analysis and the features of vegetation variation were simulated pixel by pixel. The statistics
on the percentage of pixel area with NDVI growth in the total basin area were also obtained
(Figure 7). According to the results, NDVI in most areas declined gradually during this
period and the proportion of pixels with NDVI growth was extremely low. The proportion
of areas with NDVI growth was the highest in ADB (15.5%), but it was lower than 10.0% in
SDB, IRB, and TRB. As shown in Figure 7, the distribution of regions with NDVI growth
followed some spatial laws. Areas with increasing vegetation in ADB and SDB were
mainly around the Aral Sea and the Tianshan Mountains in the east. NDVI in IRB was
mainly distributed near Balkhash Lake. Areas with increasing NDVI in TRB were mainly
concentrated in oasis regions near the Tarim River. In general, pixels with decreasing NDVI
in CA were far higher than those with increasing NDVI from 1982 to 2017, indicating that
vegetation activities were generally weakening during this period.
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basin. (a) ADB, Amu Darya Basin; (b) SDB, Syr Darya Basin; (c) IRB, Ili River Basin and (d) TRB,
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Statistics on annual average values of NDVI in the four basins were obtained. Further-
more, the variation characteristics of vegetation over time were analyzed. As shown in
Figure 8, the interannual variation of NDVI was wide in all basins and NDVI fluctuated
within a broad range. Although the NDVI fluctuated widely, the trends of NDVI in ADB,
IRB, and SDB were relatively consistent, rising from 1982 to 2000 and then declining after
2000. The variation characteristics of NDVI in TRB were different from those in the other
three basins. Specifically, NDVI in TRB increased with continuous fluctuation from 1982 to
2017. To explore overall variation trends of NDVI in different basins, a linear fitting analysis
was performed on the average NDVI in different years. NDVI was found to increase in TRB
(+0.0002/year), but it generally declined continuously in the other three basins. Overall,
only vegetation activity in TRB was strengthened from 1982 to 2017. NDVI in generally
presented a declining trend, indicating that local vegetation growth was declining.
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4. Discussion
4.1. Effects of Climatic Factors on Vegetation Changes

Under the background of current climatic changes, the growth condition and spatial
distribution of vegetation around the world are changing significantly [98–100]. Vegetation
also exhibits significantly different responses to different climatic changes [101–103]. In
the response of vegetation growth to climate, temperature and precipitation are two key
factors [104,105]. Climatic warming driven by global temperature rise might change the
vegetation phenology and primary productivity of ecosystems, thus influencing ecosys-
tem services [106,107]. Meanwhile, global warming may increase the growth period of
vegetation in spring and autumn, thus extending the growing season [108] and increasing
vegetation cover [109]. As the main factor controlling changes in vegetation growth, precip-
itation can influence vegetation growth directly by changing soil water content [110,111].
In CA, NDVI exhibited significantly different responses to climate. With respect to cor-
relations of temperature and precipitation with NDVI, precipitation showed distinctly
higher sensitivity to climatic changes than temperature. In this study (Figure 9), areas
with positive correlation between NDVI and temperature accounted for 48.3% of total
area. Areas with positive correlation between NDVI and precipitation reached as high as
80.4%, indicating that precipitation is the major influencing factor of vegetation conditions
in CA. Yin et al. [112] investigated the correlation between spatial-temporal changes of
vegetation and climatic changes in CA from 1982 to 2012. They concluded that NDVI had
a weak negative correlation with annual temperature changes, but a positive correlation
with precipitation, which is consistent with the results of this study.

In terms of the spatial distribution of correlations between climate and NDVI, vege-
tation activities were affected more prominently by precipitation, especially in plains in
northwest regions of CA (Figure 9a). The influences of temperature on vegetation activities
were mainly observed in eastern regions with relatively high altitudes (Figure 9b). This
agrees with the research results of Zhang et al. [38] on the responses of vegetation changes
to climatic changes in CA from 1982 to 2012. At the basin level, correlations between NDVI
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and precipitation in ADB, SDB, and IRB all conformed to above characteristics, but the
correlation was opposite in TRB. In TRB, although temperature and precipitation showed
distinct correlations with NDVI, the area with correlation coefficients between NDVI and
temperature higher than zero (69.3%) was significantly larger than that of precipitation
(51.9%). Specifically, regions where NDVI showed good responses to precipitation were
mainly concentrated in mountainous areas of TRB and oases near the mainstream of the
Tarim River. Investigating vegetation dynamics in TRB and their responses to hydrologic
climatic factors, Wang et al. [113] concluded that vegetation changes generally presented
significantly positive correlations with annual average temperature and local precipitation
in most mountainous areas. This verified the spatial differences in the correlations of NDVI
with temperature and precipitation in TRB.
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4.2. Effects of Human Activities on Vegetation Changes

LUCC is not only an important content in studying global environmental changes, but
also a clear reflection of the close relationship between human activities and the natural
environment [114,115]. Analyzing the dynamic change process of land uses can reflect
the influences of human activities on vegetation cover directly or indirectly [116,117]. The
economics and policies of countries in CA have changed greatly since the collapse of the
Soviet Union, thus resulting in significant changes in land use [118,119]. The Aral Sea
problem has been the key concern of people [120,121]. During the existence of the Soviet
Union, irrigation systems and water conservancy facilities were well established in the Aral
Sea Basin [122]. Specifically, the Aral Sea Basin provided irrigation water to 6.60 × 106 km2

of farmland and cotton land in the 1960s, but the inflow volume and water level of Aral Sea
dropped dramatically due to construction of water conservancy facilities such as reservoirs
and canals [123,124]. After the collapse of the Soviet Union, edges of oases were reclaimed
on a large scale over trans-boundary river basins such as ADB and SDB due to the lack
of overall management at the country level as well as doubled populations [125,126].
Field irrigation intercepted inflow volume, thus continuously accelerating the shrinkage
of the Aral Sea and worsening vegetation growth around it [127,128]. Regional climatic
changes caused by global climatic changes are one of the causes of the Aral Sea crisis, but
human activities have had a stronger influence on the Aral Sea [129,130]. In arid regions of
China, large amounts of the water of the Tarim River have been used for irrigation due to
disordered reclamation into farmlands [131]. Moreover, new reservoirs were constructed
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in the upper reaches. Consequently, the lower reaches of the Tarim River were in a cutoff
state [132,133]. Taitma Lake is a terminal lake that has been associated with the large-scale
death of Populus euphratica and shrubs along riverbanks and serious degradation of the
ecological environment [134,135].

Human activities can change NDVI by altering the land use/cover mode [136,137]. An
unreasonable mode of land use can destroy the soil structure, leading to SE and ultimately
decreasing soil productivity and surface coverage [138–140]. In this study, LUCC data of
CA in 1982 and 2017 were chosen for comparative analysis (Figure 10). Results showed
that AL, GL, FL, DL, and WB underwent significant changes (>100 km2). Among them, the
largest changes were observed in AL, GL, and FL, followed by WB and DL. The total area
of GL, FL, and DL converting to AL amounted to 1195.74 km2 and the total area of GL and
DL converting to FL was 1298.46 km2, which are far greater than that of areas converting
to GL (867.32 km2) and DL (460.27 km2) (Table 1). Generally, AL experienced the largest
changes from 1982 to 2017, with an increase of 11.90%.
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Table 1. Land use transfer matrix from 1982 to 2017 (km2).

2017

Land-Use AL GL FL PDL CL DL WB Others

AL 8399.36 65.85 62.93 0.10 60.32 10.25 3.08 0
GL 268.03 17,410.85 598.23 1.51 21.87 103.58 5.83 0
FL 682.83 442.85 12,043.65 1.24 10.04 48.57 7.80 0

1982 PDL 0.02 1.61 3.27 4206.14 0.31 5.63 0.70 0
CL 0.03 0 0 0 38.6 0 0 0
DL 244.88 424.47 700.26 4.90 5.14 22,256.18 21.32 0
WB 6.12 30.04 19.91 25.43 0.13 356.69 1412.82 0

Others 0 0 0 0 0 0 0 527.73

Note: AL represents arable land, GL represents grassland, FL represents forestland, PDL represents potential
desert land, CL represents construction land, DL represents desert land, WB represents water body, and Others
represents other land types.
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In the process of land use and land cover changes, AL changes are the primary
influencing factor of regional NDVI [141,142]. An overlay analysis was performed between
regions with large land use changes and the spatial variation trends of NDVI, and the results
are shown in Figure 11. In the process of land use transfer, the regional area transforming
into AL accounted for the highest proportion of NDVI, whereas the area of other land
use types transforming into FL and GL accounted for significantly lower proportions.
Li et al. [143] reported that the greening of vegetation in the arid region of northwest China
from 1990 to 2010 due to anthropogenic activities such as tillage expansion has increased
the regional NDVI by 26.7%. The expansion of AL area became the main driver influencing
the increase in regional NDVI. This agrees with the research results of this study.
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4.3. Feedback Relationship between Changing Environment and Water Erosion by Water

This study performed a comprehensive analysis on climate, vegetation, and human
activity. The results (Figure 12b) showed that precipitation, temperature, Shannon diversity
index, and vegetation cover influenced SE significantly. Among them, precipitation showed
the most significant direct effect on SE (Figure 12a) and the path coefficient was 0.42.
Moreover, the influences of precipitation on NDVI were found to be the most prominent
with interactions among different factors, indicating that precipitation can influence SE
indirectly by influencing vegetation growth. This might be because vegetation can relieve
the spattering effect of raindrops on soils and the scouring effect of runoff on soils through
the canopy and root systems, thus enabling the prevention of SE [144,145]. Zhou et al. [146]
investigated SE in the lower reaches of the Minjiang River Basin and found that SE did not
significantly increase in regions with high SE risk and vegetation coverage lower than 40%
when vegetation recovered to 60%. If vegetation coverage was recovered to 78.3%, the C
factor would increase by at least 0.001 and SE risk would decrease by more than 50%. On
the whole, the correlation between precipitation and SE was mainly determined by land
use and vegetation cover. In a similar study in America, Nearing et al. [147] found that
given a fixed land cover, SE would increase by 25–55% in a year if precipitation increases by
10% during the erosion period. According to this study, temperature is the second primary
influencing factor of SE after precipitation. Its influences on SE are slightly higher than
those of SHDI and NDVI. The global temperature rise changed water circulation between
the oceans and land, thus making SE more uncertain [148,149]. Ma et al. [95] carried out a
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meta-analysis on global SE and found that SE was intensified by 2.1% from 1982 to 2019 due
to global warming. SE was the most intense in mid and high-altitude regions. Moreover,
global warming can also cause changes of soil moisture content by influencing regional
precipitation, which will directly influence the K factor in the RUSLE model [150,151]. In
general, SE in CA is jointly influenced by climate, human activities, and vegetation. Among
them, climatic factors are the primary influencing factors, followed by SHDI dominated by
human activities.
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The state of SE in the four basins was compared with that in the surrounding areas
(Table 2). SE in ADB was found to be similar to that in Xinjiang. Xinjiang is a region
with relatively serious drought, salinization, and desertification as well as water and soil
loss [152]. SE in IRB was close to that in the Taohe River Basin. The Taohe River is the
second tributary of the Yellow River and precipitation changes are the major cause of local
SE changes in the corresponding basin [153]. IRB generally receives more precipitation than
the other three basins in this study, which may explain the similarity in SE between IRB and
the Taohe River Basin. The Loess Plateau represents the area with the most prominent SE
problems in China [154], and SE in SDB was slightly lower than that in the Loess Plateau.
This might be the collaborative consequences of unreasonable use of water resources and
soil in SDB [155]. SE in TRB was very similar to that of the Houzhai River Basin in a karst
region in South China, which was only 273–297 t hm−2 a−1. This may be attributable to the
implementation of ecological water conveyance projects and artificial protection measures
in TRB since 2000, which improved the ecological environment and thereby relieved land
degradation in the basin [156,157]. In general, SE in the major basins of CA was relatively
serious and the ecological environment in the basins require significant improvements.

Table 2. Comparative analysis of SE with other surrounding areas.

Study Areas SE Ranges (t/km2·a) Periods References

Houzhai River Basin 104–223 1973–2013 Li et al. [158]
Loess Plateau 2399–2957 2000–2008 Fu et al. [159]

Xinjiang Province 1350–2084 1985–2011 Zhang et al. [160]
Three-River Headwaters Region 38–54 2005–2015 He et al. [161]

European Union 2220–2460 2010 Panagos et al. [162]
Taohe River Basin 1099–1424 2000–2018 Wang and Zhao [163]

ADB 1490–1525

1982–2017 This studySDB 2677–2729
IRB 1306–1321
TRB 273–297
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4.4. Limitations and Prospects

Although the GIMMS NDVI3g database used in this study has relatively long time
series, the spatial resolution is relatively low. Consequently, the quantitative study on vege-
tation cover changes based on remote sensing data might have some uncertainties [164,165].
This study mainly referred to parameters in previous studies for evaluating SE using the
RUSLE model and it is an experimental formula, soil erosion amount between the simu-
lation and the observation differs, which may introduce some errors in the measurement
of SE in different basins [45,166]. Regarding the influences of human activities on SE, al-
though the influences of LUCC-induced vegetation cover changes and spatial distribution
characteristic changes on SE were analyzed, several other human activities, such as over
grazing and agricultural management technology, that may influence vegetation cover
were excluded [167,168]. Although we used higher resolution remote sensing data, there
are large differences in the data products themselves (e.g., DEM), which can also cause
some uncertainty in the assessment results. This will also be reflected in the factor calcula-
tion of the RUSLE model. For example, the calculation of K factor and R factor involves
a variety of data parameters, and their results are correspondingly uncertain, while the
calculation process of other factors is relatively simple, and fewer parameters are involved
in the calculation, and their impact will be less than that of R factor and K factor [169,170].
In addition, the validation data used in this study are regional soil organic carbon and
sediment delivery data of rivers. Although it can reflect the SE condition well, there are
some errors. In the future study, we will conduct field tests of soil isotope tracing for this
area to verify our simulation results more accurately.

Vegetation coverage is closely related to soil loss, and it has extremely important
significance to the study of vegetation changes. The monitoring of vegetation changes is
a long-term dynamic process [171]. Therefore, it is necessary to study vegetation cover
changes in a longer time series. This study only discussed the relationship between vege-
tation cover in major basins of CA and regional climate factors preliminarily on a yearly
scale, but annual vegetation changes as well as the relationship between interannual vege-
tation changes and climate in different seasons were not taken into account. Future studies
should explore the responses of vegetation cover changes to temperature and precipitation
at different spatial-temporal scales, aiming to further deepen our understanding on the
relationship between vegetation and climate. As a preliminary study, this study reveals
the different collaborative effects of climatic changes and LUCC on SE. However, the influ-
encing mechanisms of climatic changes and LUCC on SE remain unclear. Therefore, the
mechanisms also need to be further analyzed in depth at the earliest.

5. Conclusions

This study performed a quantitative evaluation of SE in major basins in CA from 1982
to 2017 using the RUSLE model and analyzed the major driving factors of SE changes
in different basins under changing environments. Spatially, areas with increasing SE
accounted for 58.9% of the total area of the four basins and pixels with high variation rates
of SE were mainly concentrated in regions with high relief. Temporally, the SE quantity of
all four basins presented relatively consistent rising trend with fluctuations. Specifically,
the largest increase in SE quantity was observed in SDB (64.2%), followed by ADB (59.4%),
IRB (56.5%), and TRB (55.7%). Regarding vegetation changes, pixels with positive spatial
variation trends of NDVI were mainly around tail-end-lakes and rivers. In all four basins,
areas with decreasing NDVI accounted for more than 90.0%. Except for TRB, vegetation
cover exhibited a decreasing trend in all three basins. In terms of the correlation between
climate and vegetation, the correlation between NDVI and precipitation in CA (80.5%)
was significantly higher than that of temperature (48.3%) and precipitation was the major
climatic factor affecting vegetation growth. However, temperature had a stronger influence
on vegetation (69.3%) than precipitation (51.9%) in TRB. Among land use types in CA, AL
underwent the largest change from 1982 to 2017, increasing by 999.38 km2. In the process
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of human activities influencing vegetation in CA, the NDVI proportion of other land use
types converting to AL was the largest.

According to a comprehensive analysis of climate, vegetation, and human activities,
SE in major basins in CA is jointly influenced by climate, human activities, and vegetation.
Among them, climatic factors exert the strongest influence, followed by SHDI (human
activities). Comparing the results of this study and other studies on surrounding areas, we
found that SE is more serious in ADB, SDB, and IRB, with SE quantity in SDB even nearing
that in the Loess Plateau, China. Under the background of global changes, appropriate wa-
ter and soil resource management and optimization configuration should be implemented
in CA with references to that in TRB. In this manner, SE problems in CA may be overcome.
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//www.mdpi.com/article/10.3390/rs14215507/s1, Figure S1: Temporal variations in annual SHDI
from 1982 to 2017; Figure S2. Validation of rainfall erosivity factor. (a) Our simulated rainfall erosivity
factor. (b) Rainfall erosivity factor based on global site data released by Climate Prediction Center
(CPC), (c) Fitted scatter plot of two rainfall erosivity factors (a and b). (d) The point used to extract
validation data. Figure S3. Validation of soil erodibility factor. (a) Our simulated soil erodibility factor.
(b) Soil erodibility factor based on International Soil Reference and Information Centre (ISRIC). (c)
Fitted scatter plot of two soil erodibility factors (a and b). (d) The point used to extract validation data.
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