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Abstract: At present, there are many aerial-view datasets that contain motion data from vehicles in a
variety of traffic scenarios. However, there are few datasets that have been collected under different
weather conditions in an urban mixed-traffic scenario. In this study, we propose a framework
for extracting vehicle motion data from UAV videos captured under various weather conditions.
With this framework, we improve YOLOv5 (you only look once) with image-adaptive enhancement
for detecting vehicles in different environments. In addition, a new vehicle-tracking algorithm
called SORT++ is proposed to extract high-precision vehicle motion data from the detection results.
Moreover, we present a new dataset that includes 7133 traffic images (1311 under sunny conditions,
961 under night, 3366 under rainy, and 1495 under snowy) of 106,995 vehicles. The images were
captured by a UAV to evaluate the proposed method for vehicle orientation detection. In order to
evaluate the accuracy of the extracted traffic data, we also present a new dataset of four UAV videos,
each having 30,000+ frames, of approximately 3K vehicle trajectories collected under sunny, night,
rainy, and snowy conditions, respectively. The experimental results show the high accuracy and
stability of the proposed methods.

Keywords: vehicle orientation detection; vehicle tracking; deep learning; vehicle motion data;
unmanned aerial vehicles

1. Introduction

In the last few years, the use of unmanned aerial vehicles (UAVs) has been increasing,
especially for traffic data collection. UAVs that have high-resolution cameras onboard can
record traffic from a so-called bird’s-eye perspective effectively and flexibly. Furthermore,
UAVs can be easily deployed and operated with a low cost of acquisition.

In a traffic scenario, a UAV is usually used to capture traffic video from a bird’s eye
view. The vehicle motion data extracted from these UAV videos can be used for traffic flow
analysis, vehicle motion prediction, behavior analysis and modeling, and driving scenario
generation, as well as autonomous driving decision making, algorithm development, and
verification [1]. Table 1 lists aerial-view vehicle motion datasets that contain motion data
from vehicles in a variety of traffic scenarios. These datasets were collected using different
vehicle detection and tracking methods.

In summary, although various aerial-view vehicle motion datasets have been collected
using different vehicle detection and tracking algorithms, a few problems remain:

• These datasets were all collected in clear-weather conditions to maximize recording
quality and are not focused on weather factors. At present, there are no datasets that
contain vehicle motion data collected from UAV video captured under various weather
conditions in an urban mixed-traffic scene. The weather and the ambient illumination
conditions change constantly in a real traffic scenario, and this can greatly affect
the quality of the images. The accuracy and robustness of the vehicle detection and
tracking methods significantly decrease under various inclement weather conditions
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such as rain, fog, and snow, and at nighttime because of darkness, blurring, and
partial occlusion.

• Another major issue with the aforementioned datasets is that the vehicle detection
and tracking methods used for these datasets do not obtain highly accurate and
stable vehicle motion data, because vehicle detection and tracking in UAV images and
videos is challenging for the following reasons: random disturbance of the camera,
obstruction from buildings and trees, the existence of many objects against intricate
background, and perspective distortion. Raw data extracted from the UAV video need
to be smoothed and refined based on other data collected by additional sensors, and
they may contain erroneous coordinate, speed, and acceleration information.

Table 1. Different aerial view vehicle motion datasets.

Database Motion Parameters Scenarios Road User
Types Weather Trajectories

and FPS Locations

NGSIM [2] Trajectory, speed,
acceleration

Freeway,
arterial corridor Car, truck Sunny 9206; 10 Hz 4

Stanford Drone [3] Trajectory Campus
Pedestrian,

bicycle,
car, cart, bus

Sunny 10,300; 25 Hz 8

highD [4] Trajectory, speed,
acceleration Highway Car, truck Sunny 110,500; 25 Hz 4

DUT [5] Trajectory, speed,
yaw angle Campus Pedestrian,

vehicles Sunny 1862; 23.98 Hz 2

INTERACTION
[1]

Trajectory, velocity,
yaw angle Intersection Car, pedestrian,

bicycle Sunny 18,642; 10 Hz 4

inD [6]
Trajectory, speed,
acceleration,
yaw angle

Intersection
Pedestrian,

bicycle,
car, truck, bus

Sunny 13,599; 25 Hz 4

roundD [7]
Trajectory, speed,
acceleration,
yaw angle

Roundabout
Pedestrian,

bicycle,
car, truck, bus

Sunny 13,746; 25 Hz 3

exiD [8]
Trajectory, speed,
acceleration,
yaw angle

Highway Car, van, truck Sunny 69,172; 25 Hz 7

CitySim [9] Trajectory, speed,
yaw angle

Highway,
roundabout,
intersection

Vehicles Sunny 10,000+; 30 Hz 12

To solve these problems, some methods have been proposed to detect vehicles under
various weather conditions, which can be summarized as follows:

Some methods based on image preprocessing can improve image quality and remove
noise to transform images captured under adverse conditions into normal images. A vehicle
detection model based on weather conditions is then selected to detect vehicles in the
processed image. The common algorithms for image processing are histogram equalization
(HE) [10] and median fil1tering [11], which can improve the contrast of images captured
under low illumination conditions. However, some detailed texture information is lost
during image preprocessing, and there is no generic solution that works for all adverse
weather conditions. Furthermore, supervised learning methods such as the convolutional
neural network (CNN) [12] and generative adversarial network (GAN) [13] can be used
for UAV image enhancement and denoising but may reduce the real-time performance of
vehicle detection.

Although many deep learning-based models have been proposed for detecting ve-
hicles in UAV videos, adverse weather conditions are seldom tested by these models. In
order to adapt to different weather conditions, three aspects of these models should be
improved [14]. First, some models are divided into two parts: the first part is used to
judge the weather type of the input data, and the second part selects the corresponding
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model for vehicle detection [15]. Second, some models combine different deep learning
networks, such as DSNet [16], RCNN [17], faster RCNN [18], SSD [19], and YOLO [20–22],
with image processing methods to directly train on datasets collected under different
weather conditions [23,24]. Third, some features of vehicles may disappear in adverse
weather conditions. In order to improve accuracy and robustness, vehicle detection models
can be combined with multiple feature extraction channels to extract different features
from images [25]. The extracted vehicle features include appearance features, local binary
patterns (LBPs), Haar-like features, histograms of oriented gradient (HOGs), and speeded
up robust features (SURF). Then, classifiers such as support vector machine (SVM) and
Bayesian theory are used to train the feature matrix to obtain the vehicle [26].

Although many existing methods are not designed for vehicle detection in adverse
weather conditions, they can adapt to different weather conditions through retraining and
learning vehicle features from a dataset collected under corresponding weather conditions.
Domain adaptation is a representative method of transfer learning [27]. Domain-adapted
detectors were trained on a dataset collected under normal weather conditions and then
used in a network such as the regional proposal network (RPN) [28], prior estimation
network [29], and CycleGAN [30] to transfer the style of the original dataset to generate a
new training dataset under different weather conditions. The new training dataset is used to
train vehicle detection methods such as faster RCNN so they perform well on cross-domain
datasets. However, methods trained on rendered synthetic images generated by adaptive
detectors do not perform as well as methods trained on real images. In addition, many
large UAV datasets have been collected for training and testing deep learning algorithms,
such as the DOTA [31], UA-DETRAC [32], UAVDT [33], and VisDrone [34]. However,
these datasets contain few manually labeled ground truth images captured in adverse
weather conditions.

To sum up, few driving scenes in multi-weather conditions have been included in
published aerial-view vehicle motion datasets, and the existing vehicle detection and
tracking methods that can be applied to special scenarios have shown limited performance.
Therefore, we propose a new framework for extracting high-precision vehicle motion data
from UAV video captured under various weather conditions.

We used a camera-equipped drone to record real-world traffic UAV videos under
different weather conditions to create new datasets to test the proposed framework. To
summarize, the main contributions of this paper are as follows:

• To the best of our knowledge, this study is the first work that extracts high-precision
vehicle motion data, including vehicle trajectory, vehicle speed, and vehicle yaw angle,
from UAV video captured under various weather conditions.

• Two new aerial-view datasets, named the Multi-Weather Vehicle Detection (MWVD)
and Multi-Weather UAV (MWUAV) datasets, are collected and manually labeled
for vehicle detection and vehicle motion data estimation, respectively. The MWVD
dataset includes 7133 traffic images (1311 taken under sunny conditions, 961 under
night conditions, 3366 under rainy conditions, and 1495 under snowy conditions) of
106,995 vehicles. The data were captured by a camera-equipped drone and will be
used to evaluate the proposed vehicle orientation detection method. The MWUAV
dataset for data estimation contains four UAV videos having over 30,000 frames of
approximately 3000 vehicle trajectories. The speed and yaw angle were collected
under sunny, night, rainy, and snowy conditions. This is the first and the largest
vehicle motion dataset collected from UAV videos captured at an urban intersection
under multi-weather conditions.

• We propose a new vehicle orientation detection method based on YOLOv5 with
image-adaptive enhancement to improve vehicle detection performance under various
weather conditions. Our method significantly outperforms state-of-the-art methods
on the collected MWVD dataset.

• A new vehicle tracking method called SORT++ is proposed to extract high-precision
and reliable vehicle motion data from the vehicle orientation detection results. Our
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tracking method also achieves state-of-the-art performance on the collected MWUAV
dataset.

2. Methodology
2.1. Overall Framework

As shown in Figure 1, our framework contains four steps: video stabilization, vehicle
detection, vehicle tracking, and data extraction. Firstly, any random disturbance in the
UAV videos is eliminated using a homography matrix obtained by a scale-invariant feature
transform (SIFT) operator [35] and K-nearest neighbor (KNN) algorithm. Then, a dual-
weight vehicle detection algorithm, namely You Only Look Once version 5 Oriented
Bounding Box (YOLOv5-OBB) [36], with a contrast-limited adaptive histogram equalization
(CLAHE) method is applied for vehicle orientation detection as the foundation for trajectory
construction. After that, the SORT++ algorithm is proposed to track vehicles and obtain
motion data from the detection results over time. Finally, vehicle trajectory, vehicle speed,
and vehicle yaw angle are extracted from the tracking results based on the vehicle steering
model. The details of each step are introduced as follows.

Figure 1. Framework flowchart for extracting vehicle motion data from UAV video.
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2.2. Image Stabilization

The camera may shake when a UAV is used to record traffic video because of the
effects of airflow, motor vibration, human manipulation, and other factors. The unavoidable
movement of the UAV may result in rotation, scaling, and jitter in the video frame, which
could then interfere with the movement of the objects in the video and affect the accuracy
of the traffic data that are extracted.

In order to solve these problems, the video should be stabilized. First, the start and
end frame of the video are extracted, and the roadside area with the buildings and trees
is masked. The SIFT operator is then used to find feature points of the first frame and
the last frame, respectively. After that, the KNN algorithm is used to match these feature
points and obtain good key-point pairs of background in the same geographical location.
The feature template is an affine transformation matrix searched for all good key-point
pairs according to the minimum sum of errors. Finally, we choose the first frame as the
reference frame, and all video frames are affine-transformed using the feature template and
quickly aligned to the reference frame. We can obtain a stabilized video by connecting each
transformed frame.

2.3. Structure of the Vehicle Orientation Detection Method

YOLO is the name of a popular object detection algorithm, and the most common
version at present is YOLOv5, which obtains high accuracy and is able to detect objects in
real time [37]. However, it uses the horizontal bounding boxes (HBB) detector, which is
not suitable for vehicle orientation detection in a UAV video. Therefore, we improved the
YOLOv5 algorithm by using the OBB detectors, which we called YOLOv5-OBB. Moreover,
in order to improve the accuracy of vehicle detection in different environments, we pro-
posed a novel dual-weight method consisting of CLAHE-based image enhancement and
the YOLOv5-OBB algorithm. As shown in Figure 2, we first use the original UAV dataset
and the UAV dataset enhanced by CLAHE to train the YOLOv5-OBB algorithm and obtain
the basic weight and enhanced weight files as the training results, respectively. We then
select a region of interest (ROI) in the UAV video. We use the original ROI and the same
ROI enhanced by CLAHE as the input data for the YOLOv5-OBB algorithm with basic
weight and enhanced weight files. In the end, we perform basic and enhanced vehicle
detection. We merge these two types of detections, and we obtain the final vehicle detection
results after non-maximum suppression (NMS).

Figure 2. Structure of the dual-weight YOLOv5-OBB algorithm with CLAHE.

2.3.1. CLAHE

The UAV images captured under different weather conditions have different light
intensities. As shown in Figure 3, we can clearly see that the gray level with the peak
frequency in the gray-level histogram of the UAV image under sunny conditions is within
the range (100, 150), the gray level with the peak frequency in the gray-level histogram of
the UAV image under foggy conditions is within the range (150, 255), the gray level with
the peak frequency in the gray-level histogram of the UAV image under night conditions
with strong light is within the range (50, 100), and the gray level with the peak frequency in
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the gray-level histogram of the UAV image under weak light conditions at night is within
the range (0, 50). Therefore, we can use the gray-level histogram to divide the UAV images
into four categories: bright, foggy, weak light at night, and strong light at night.

Figure 3. First row shows the UAV images under different illumination conditions: from (a–d) are
bright, foggy, weak light at night, and strong light at night; the second row shows the corresponding
gray-level histograms: the red line represents the gray level at peak frequency and the blue line
shows the range of gray levels having a frequency greater than 0.

According to the range of gray levels having frequencies greater than 0 in the gray-
level histograms of the UAV images, we can see that UAV images in the categories of foggy
and weak light at night have poor contrast, and the vehicles in the image are difficult to
distinguish from the background. In order to improve detection performance, the contrast
in the UAV image should be enhanced by distributing the gray levels over as many ranges
as possible to minimize the effects of weather and illumination.

The CLAHE is a local HE method to enhance the contrast in the image, and it is usually
combined with an object detection algorithm [38]. CLAHE can solve the problems of the
classical HE algorithm, such as excessive contrast enhancement, increased background
noise, and the loss of image details.

The implementation process of the CLAHE algorithm can be divided into four steps [39]:
(1) separate the image into MxN local tiles; (2) compute the gray-level histogram of each tile
separately, and each histogram is redistributed in such a way that its height does not exceed
the threshold; (3) traverse each tile and calculate the transformed value of each pixel to
compute the linear difference between tiles, and then redistribute the tile pixels; (4) merge
all tiles and eliminate the artifacts between tiles by using the bilinear interpolation.

As shown in Figure 4, the four categories of UAV images are enhanced by the CLAHE
algorithm. By observing the RGB image, we can see that the contrast in the UAV image is
enhanced, and the vehicles in the enhanced images have become more obvious. In contrast,
the gray level distribution range in the histogram that is enhanced by the CLAHE algorithm
is expanded, and the frequency of the gray levels is homogenized.

2.3.2. YOLOv5-OBB Algorithm

As shown in Figure 2, the YOLOv5-OBB algorithm consists of four parts: data loader,
backbone, neck, and prediction. The data loader is the input terminal, which enhances the
training images by performing data augmentation. Subsequently, the preprocessed data are
sent to the backbone network to extract the general features. The backbone network is made
up of several different modules. The cross-stage partial bottleneck (BottleneckCSP) [40]
serves as the backbone for obtaining bounding boxes and extracting deep features, and
the spatial pyramid pooling technique (SPP) pools the input feature maps to fuse multiple
receptive fields and enhance the performance for small target detection. Then, multi-scale
characteristics are extracted via a neck network consisting of feature pyramid network
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(FPN) and path aggregation network (PANet). The FPN transmits strong semantic features
from top to bottom, while the PANet transmits reliable positioning features from bottom
to top. The parameters of various detection layers are aggregated from various backbone
layers, and they further enhance the capacity of the model for feature extraction. Finally,
the category, anchor confidence, yaw angle, and anchor box of the detected objects are
predicted by three YOLOHeads in the prediction network.

Figure 4. Original image (left) and result of contrast enhancement by CLAHE (right) for four
categories of images with their histograms below: (a) bright, (b) foggy, (c) weak light at night,
(d) strong light at night.

During the training phase, the YOLOHeads calculate the multi-task losses and feed-
back for the network. The classification loss of categories Lcls, regression loss of bounding
boxes Lreg, and confidence loss of object Lconf make up the majority of the loss function
for object detection. To obtain the rotation angle of objects, we add angular classification
layers to the YOLOv5 prediction head and the classification loss of angle Langle for the
YOLOv5-OBB vehicle detection method. The multi-task loss function is given as (1):

LAll = α1Lreg + α2Lcls + α3Lconf + α4Langle (1)

where hyperparameters α1, α2, α3 and α4 are used to control these losses, and the four
losses are defined as follows. Generally, the confidence loss α3 is the maximum weight,
which is followed by the weight of classification loss of categories α2 and angle α4, and the
regression loss of bounding boxes α1 is the minimum weight. In our experiments, α1 = 0.05,
α2 = 0.3, α3 = 0.7, and α4 = 0.3. The four losses are defined as follows.

In order to obtain accurate orientation and scale information of the detected objects,
we use five parameters (xc, yc, l, s, θ) to describe the oriented bounding box, where (xc, yc)
represent the center point of the oriented bounding box and θ is defined as the acute angle
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between long side l and x-axis, and the other short side of the box was defined as short side
s. The regression loss of the bounding boxes Lreg is calculated by CIoU Loss [41] as follows:

LCIoU = 1−
(

IOU −
ρ2(b, bgt)

c2 − v
(1− IOU) + v

)
, v =

4
π2

(
arctan

sgt

lgt − arctan
s
l

)2

(2)

where IOU is defined as the ratio of overlap area and union area between two bounding
boxes, which can be estimated according to the percent of interior pixels. c represents the
diagonal length of the smallest enclosing box covering the two boxes. ρ(·) is the Euclidean
distance between the center points b and bgt of two bounding boxes, and v measures the
consistency of the aspect ratio, where the longer side of bounding box is defined as l and
the short side is defined as s.

Additionally, we used the idea of classification to regard θ as the category of the
detected object and divide θ into 180 classes according to the angular range, and we used
the circular smooth label (CSL) in [42] to code the angle ground truth before calculating the
angle classification loss, which has a high error tolerance for adjacent angles and alleviates
the problem of angle–class imbalance. The binary cross-entropy (BCE) logit loss was used
as the classification loss of angle, the confidence loss of the object and the classification loss
of categories, and these losses are defined as follows:

LBCEWithLogits=−
N

∑
n=1

[yi · log σ(xi)+(1−yi) · log(1−σ(xi))] (3)

CSL(x) =

{
exp

(
− (x−θ)2

2r2

)
, θ − r < x < θ + r

0, otherwise
(4)

Lcls =
N

∑
i

LBCEWithLogits(Pcls, Tcls) (5)

Lconf =
N

∑
i

LBCEWithLogits

(
Pobj, Tobj

)
(6)

Langle =
N

∑
i

LBCEWithLogits

(
Pangle, CSL(θ)

)
(7)

where N denotes the total number of input samples, while xi and yi represent the vector
of predicted and ground truth, respectively. θ represents the true angle of the bounding
box, and r represents the window radius. The window radius controls the error tolerance
between the adjacent angles. Pcls and Tcls are the predicted probability distribution and
corresponding truth probability distribution for all object classes, respectively. Tobj is the
IoU between the predicted and the ground-truth bounding box and Pobj represents the
predicted confidence of the bounding box. Pangle and CSL(θ) indicate the prediction of
angle and angle labels encoded by CSL, respectively.

After the YOLOv5-OBB algorithm is trained on the original dataset and the correspond-
ing enhanced dataset, we obtain the basic and enhanced weight files. In the testing phase,
we obtain vehicle detections from the UAV video by using these weight files. The prediction
network can generate the most trusted detection predictions of objects through NMS.

2.4. The Structure of the Tracking Method

The vehicle tracking task is processed after vehicle detection. The simple online
and real-time tracking (SORT) [43] algorithm is generally used with a Kalman filter and
Hungarian algorithm. However, SORT is not suitable for vehicle tracking in complicated
traffic scenarios and leads to ineffective tracking and inaccurate data. To obtain high-
precision vehicle motion data such as the vehicle trajectory, vehicle speed, and vehicle
yaw angle, we improve the SORT algorithm based on the detection results to extract high-
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precision vehicle motion data from the UAV video. We call our algorithm SORT++. The
overall flow of this algorithm is shown in Figure 5.

First, the SORT++ algorithm uses the boxes filter (BF) to calculate the rotated in-
tersection over union (RIoU) of oriented detection bounding boxes obtained from the
YOLOv5-OBB algorithm. These boxes are divided into high score detection boxes, low
score detection boxes, and overlapped detection boxes according to the anchor confidence
and RIoU values. Afterward, the second RIoU matching is used to match the high score
detection boxes over the current frame with the predicted tracks from the Kalman filter.
Subsequently, the unmatched tracks are matched with low score detection boxes by the
third RIoU matching, and unmatched detection boxes after the second and third RIoU
matching are sent to the appearance feature extractor (AFE) to determine whether they
are bounding boxes of vehicles. Then, all the unmatched tracks, matched tracks, and new
unconfirmed tracks are classified as vehicle tracks or other tracks by the motion feature
extractor (MFE). Finally, the parameters of the vehicle tracks are updated and divided into
confirmed vehicle tracks and unconfirmed vehicle tracks by the Kalman filter. We can
obtain vehicle data such as ID, image coordinates, speed, vehicle size, and yaw angle from
the confirmed vehicle tracks.

Figure 5. Vehicle tracking process using the SORT++ algorithm.

2.4.1. RIoU Matching

In order to determine whether two detected objects are overlapped and to match the
detected objects with tracks, we use RIoU matching [44]. As shown in Figure 6, RIoU is
the ratio of the overlap to the union of the two OBBs. RIoU represents the accuracy of the
prediction model, and the RIoU value of the same vehicle is approximately 1, which shows
the least prediction error. A threshold is set for RIoU matching. If the RIoU values exceed
the threshold, the Kalman predicted track and unmatched detections of the current frame
have been successfully associated.

Figure 6. Calculation of RIoU.

2.4.2. Appearance Feature Extractor (AFE)

The output of the vehicle detection algorithm usually contains the false object detection
results, such as the shadows and highlights of objects in the scene, non-vehicle objects
that are vehicle-like in appearance, and some non-motor vehicles. In order to eliminate
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these false detections effectively, we propose the appearance feature extractor based on the
Canny edge detector [45].

As shown in Figure 7, we first calculate the length–width ratio and area of the detection
boxes. We remove the boxes having a length–width ratio larger than the maximum length–
width ratio Rmax of vehicles and an area smaller than the value of the heavy vehicle Amax,
because the detection boxes of vehicles are generally rectangular. Then, we calculate the
gray value of the image blocks clipped by the detection boxes and remove the detection
boxes with a gray value smaller than the minimum gray value of vehicles Gmin. After
that, we use the Canny edge detector to find vehicle contours in the image blocks clipped
by the detection boxes. The boxes having an area of detected contours that is larger than
the minimum contour area of vehicle Amin are true vehicle detection boxes. All of these
parameters are set according to the input data and vehicle parameters shown in Table 2.

Figure 7. Flowchart for using the appearance feature extractor.

2.4.3. Motion Feature Extractor (MFE)

Vehicle motion is constrained by fixed parameters, as shown in Table 2. Lateral motion
and velocity cannot change abruptly. Therefore, the motion feature of vehicle tracks should
satisfy the following constraints:

di =
√

d2
x,i + d2

y,i < dmax = vmax · tframe (8)

dx,i = |xi − xi−1| < dx,max = dmax · cos ϕ (9)

dy,i = |yi − yi−1| < dy,max = dmax · sin ϕ (10)

where ϕ represents the acute angle between the x-axis and the velocity of the vehicle. xi
and yi represent the center coordinates of the vehicle at time i, while dx,i and dy,i represent
the displacement of the vehicle along the x-axis and y-axis, which should smaller than the
maximum displacement dx,max and dy,max along the x-axis and y-axis, respectively. The
total displacement di is also smaller than the maximum displacement of the vehicle, dmax,
and dmax is the product of the maximum vehicle speed vmax and frame time tframe.

∆θi = |θi − θi−1| < θmax = FPS · arctan
(

l
Rmin

)
(11)
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When the vehicle is turning, the change in yaw angle ∆θi of the vehicle between time
i and time i− 1 should be smaller than the maximum change in vehicle yaw angle θmax.
l is the wheelbase of the vehicle, and Rmin represents the minimum turning radius of
the vehicle. Frame time is the inverse of frame per second (FPS), which is 1/30 s in our
experiment.

∆Ai = 1−
∣∣∣∣ Areai
Areai−1

∣∣∣∣ = 1−
∣∣∣∣ li · si
li−1 · si−1

∣∣∣∣ < 0.1 (12)

Vehicle body dimensions are fixed. The area Areai of the OBB at time i should be
approximately equal to the area Areai−1at previous time i− 1, so the change range ∆A is
smaller than 10%.

Table 2. Main parameters of vehicles.

Parameters Mini Car Truck Bus

Vehicle length (mm) <4000 <5200 <12,000 <18,000
Vehicle width (mm) <1600 <2000 <2500 <2500

Vehicle length–width ratio <2.5 <3 <6 <6
Minimum turning radius (mm) 3.5∼5.0 4.5∼7.5 4.0∼10.5 4.0∼11.0

Speed limit (km/h) <50 <70 <60 <60

2.4.4. Kalman Filtering

Kalman filtering is one of the core algorithms in the SORT++ algorithm, and it is used
to predict and update the tracking target parameters based on the target’s motion state [46].
The target model refers to the motion model that transfers the identity information of the
target to the next frame. The Kalman filtering algorithm uses a linear isokinetic model
that approximates the displacement of each object from the current to the next frame,
independently of other targets.

A nine-dimensional space vector
(
xc, yc, a, l, θ, ẋc, ẏc, ȧ, l̇

)
is used to represent the state

quantity x of the target at a particular instant, where (xc, yc) and a represent the center
coordinates and the area of the predicted OBB, respectively. l denotes the length of the
predicted target frame of a vehicle. θ indicates the yaw angle between l and the x-axis.
(xc, yc, a, l, θ) is the observed quantity z, and

(
ẋc, ẏc, ȧ, l̇

)
represent the velocity information

of (xc, yc, a, l) relative to the image coordinates.
The standard Kalman filter for the SORT algorithm is based on the linear motion

hypothesis. At each step t, the time update equation of the Kalman filter algorithm is
as follows:

x̂t|t−1=Ft x̂t−1|t−1 + γt, F=

 I5×5

[
dt · I4×4

O1×4

]
O4×5 I4×4

 (13)

zt = Htxt, H =
[

I5×5 O5×4
]

(14)

Pt|t−1 = FtPt−1|t−1FT
t + Qt (15)

The state transition equation predicts the prior estimate of state x. The observation
equation obtains the observation matrix z, P is the covariance state matrix, F is the state
transition model, H is the measurement matrix, γt is the random error of process at time
k, and γk ∼ N (0, Q) is subject to zero-mean Gaussian distribution. Q represents the
covariance of process excitation noise.

If an observation zt is provided on step t, the Kalman filter algorithm calculates the
posteriors with the following state update equation:

Kt = Pt|t−1HT
t

(
HtPt|t−1HT

t + Rt

)−1
(16)

x̂t|t = x̂t|t−1 + Kt

(
zt −Ht x̂t|t−1

)
(17)
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Pt|t = (I−KtHt)Pt|t−1 (18)

where R represents the covariance of measurement error; to improve the accuracy of track-
ing when the vehicle detection method has high accuracy, we set the value of measurement
error R close to zero in the experiment.

2.4.5. Traffic Data Calculation

As shown in Figure 8, we extract traffic data from the OBBs of the matched detected
objects having the same ID. The parameters of the OBB are (xc, yc, a, l, θ, ẋc, ẏc). We consider
the center of the bounding box (xc, yc) as the center of gravity of the vehicle, and by
connecting the centers of gravity of all identified vehicles having the same ID, the vehicle
trajectories can be obtained. l, s, and θ represented the length, width, and yaw angle of the
vehicle, respectively.

Figure 8. Vehicle steering model and OBB.

To extract the instantaneous speed of a vehicle, we use the velocity information (ẋc, ẏc)
of the OBB as the vehicle speed components

(
vx, vy

)
along the x- and y-axes. Considering

the correlation between the extracted data points, we use linear regression to eliminate
the detection error and improve the accuracy of the data. The instantaneous speed of the
vehicle is calculated by the following formula:

vx,i =
∑i+C

k=i−C(xk − x̄) · (tk − t̄)

∑i+C
k=i−C(tk − t̄)2 (19)

vy,i =
∑i+C

k=i−C(yk − ȳ) · (tk − t̄)

∑i+C
k=i−C(tk − t̄)2 (20)

vi =

√
v2

x,i + v2
y,i

ppm
(21)

where vx,i and vy,i are the vehicle speed components along the x-axis and y-axis at time ti.
vi is the vehicle’s instantaneous speed at time ti. C is the fixed time interval, and ppm is
the number of pixels per meter.

3. Experiments and Analysis
3.1. MWVD and MWUAV Datasets

At present, there are many aerial-view datasets that have been manually collected for
training and evaluating deep learning-based methods in vehicle detection and tracking,
such as CARPK [47], COWC [48], CyCAR [49], DOTA [31], EAGLE [50], UA-DETRAC [32],
UAV123 [51], UAVDT [33], UAVid [52], VEDAI [53], VisDrone [34], and DLR 3K [54].
However, these datasets have few manually labeled ground truth images captured under
different weather conditions in an urban mixed-traffic scene. Therefore, we used a camera-
equipped drone to record real-world traffic under different weather conditions to test
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the proposed framework. The entire process of the data collection is shown in Figure 9.
The UAV videos were collected at urban intersections in China under different weather
conditions. An experiment vehicle installed with the high-precision differential positioning
sensor WTRTK-M using the real-time kinematic difference global positioning system (RTK-
GPS) was selected to collect high-precision vehicle GPS differential positioning data.

Figure 9. Process of collecting UAV video at urban intersections under different weather conditions.

During the data collection, the research team captured UAV videos for testing using
a high-definition camera mounted on a UAV (DJI Mavic 2 Professional Zoom). To obtain
accurate plane coordinates, the UAV hovered 125 m overhead and the camera angle
was set perpendicular to the ground. The related parameters of the UAV are shown in
Table 3. The test videos were captured at 30 frames per second (fps) and with a resolution
of 3840 × 2160 pixels under different weather conditions. In the actual experiment of
collecting UAV videos, we found that the rainwater and snowflake affect the video image
and motors of the UAV, so the UAV videos are collected when rain or snow stops.

Table 3. Parameters of DJI MAVIC 2 Pro Zoom.

Parameter Value

Weight 430 g
Maximum endurance mileage 10 km

Maximum hover time 20 min
Maximum take-off altitude 5000 m

Maximum wind speed 10 m/s
Operative temperature From 0 ◦C to 40 ◦C

Camera resolution 3840 × 2160, 24/25/30 fps
Equivalent focal length 24 mm

In order to evaluate the proposed vehicle orientation detection method, we selected
7133 frames from the UAV videos collected under different weather conditions to build a
dataset. This dataset was named the Multi-Weather Vehicle Detection (MWVD) dataset. All
vehicles in the dataset were manually labeled for training and testing the vehicle detection
of the deep learning-based algorithm. The MWVD dataset includes 7133 traffic images
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(1311 under sunny conditions, 961 under night conditions, 3366 under rainy conditions, and
1495 under snowy conditions) of 106,995 vehicles (3399 of mini cars, 94,610 of cars, 4205 of
trucks, 4781 of buses), captured by a UAV in five traffic scenes, including four intersections
and one roundabout. The details of the MWVD dataset used in the experiment are shown
in Table 4.

Table 4. Details of the MWVD dataset used in the experiment.

Video Data Vehicle Number Image Number Date Image Size

Sunny 28,773 1311 7:30 01/12/2021 1920 × 1080
Night 35,905 961 17:30 01/12/2021 1920 × 1080
Rainy 19,501 3366 13:00 10/01/2022 1920 × 1080
Snowy 22,816 1495 13:30 22/01/2022 1920 × 1080

Another new dataset for vehicle motion data estimation was collected from the UAV
videos captured at three intersections under different weather conditions, and it is denoted
as the Multi-Weather UAV (MWUAV) dataset in this paper. As shown in Table 5, four
30,000+ frame UAV videos of approximately 3K vehicle trajectories were collected under
sunny, night, rainy, and snowy conditions, respectively. For the ground-truth vehicle
trajectory, we have used an experiment car with RTK GPS to compare trajectories. As
shown in Figure 9, a test vehicle installed with the high-precision global positioning system
(GPS) differential positioning sensor WTRTK-M was selected to collect high-precision
vehicle GPS differential positioning data, including the longitude and latitude. For the
ground-truth vehicle yaw angle and speed, the change in yaw angle and moving distance
of each vehicle on the road were manually labeled over a time interval of five consecutive
frame pairs [55]. The time interval was 0.167 s in the collected UAV videos, so the vehicle
yaw angle and speed of each vehicle could be considered as a constant in this instant period.

Table 5. Details of four UAV videos from the MWUAV dataset that were used in the experiment.

Video Data Vehicle Number Frame Number Date Time Length Video Size Frame Rate

Sunny 893 30,303 7:30 01/12/2021 16 min 51 s 1920 × 1080 29.97 fps
Night 1021 36,010 18:00 01/12/2021 20 min 1 s 1920 × 1080 29.97 fps
Rainy 709 34,585 13:30 10/01/2022 19 min 13 s 1920 × 1080 29.97 fps
Snowy 470 36,026 13:00 22/01/2022 20 min 2 s 1920 × 1080 29.97 fps

In order to test the performance of the proposed vehicle tracking algorithm, we also
select four test video clips from the MWUAV dataset. The details of these videos are shown
in Table 6.

Table 6. Details of the four test video clips in the collected MWUAV dataset.

Video Data Vehicle Number Frame Number Date Time Length Video Size Frame Rate

TEST0 (Sunny) 57 1311 7:30 01/12/2021 43 s 1920 × 1080 29.97 fps
TEST1 (Night) 61 961 17:30 01/12/2021 32 s 1920 × 1080 29.97 fps
TEST2 (Rainy) 37 3366 13:00 10/01/2022 112 s 1920 × 1080 29.97 fps
TEST3 (Snowy) 33 1495 13:30 22/01/2022 49 s 1920 × 1080 29.97 fps

3.2. Detection Algorithm Evaluation Metrics

Precision, recall, and Mean Average Precision (mAP) are metrics to evaluate the
performance of object detection algorithms, and they can be calculated as follows:

Precision =
TP

TP + FP
(22)
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Recall =
TP

TP + FN
(23)

mAP =
1
n

n

∑
m=0

∫ 1

0
Pm(Rm)dRm (24)

where TP (True Positive), FP (False Positive), and FN (False Negative) represent the total
number of correct detections of vehicles, incorrect detections of non-vehicle objects, and
non-detections of vehicles for each frame in the UAV video, respectively. The mAP was
calculated using the precision and recall metrics of each detection classification, and n is
the number of classes used for object detection.

3.3. Metrics for Multiple Object Tracking (MOT)

For single-camera MOT, we use the same evaluation metric as the MTT challenge [56].
The multiple object tracking accuracy (MOTA) is a common metric for evaluating vehicle
tracking accuracy, which focuses on detection performance and is calculated as follows:

MOTA = 1− ∑T
t=1(FPt + FNt + IDSWt)

∑T
t=1 GTt

(25)

where T is the total number of video frames, GTt, FPt, FNt and IDSWt are the number of
real vehicles, non-vehicles, missed vehicles, and the number of identity switches in frame t,
respectively.

The Identification F-Score (IDF1) is another commonly used metric for examining
the continuity of tracking and the accuracy of recognition, and it focuses on the length of
time that the tracking algorithm tracks a target. After the vehicle track is established and
assigned an ID, we calculate the number of correct tracks for vehicles: IDTP (True Positive
IDs); missed tracks for vehicles: IDFN (False Negative IDs); and wrong tracks for vehicles:
IDFP (False Positive IDs). Based on these parameters, we calculate Identification Precision
(IDP) as:

IDP =
IDTP

IDTP + IDFP
(26)

and Identification Recall (IDR) as:

IDR =
IDTP

IDTP + IDFN
(27)

IDF1 is the harmonic mean of IDP and IDR:

IDF1 =
2

1
IDP + 1

IDR
=

2 · IDTP
2 · IDTP + IDFP + IDFN

(28)

Furthermore, in order to evaluate the percentage of the ground-truth vehicle trajectory
that is recovered by the proposed vehicle tracking algorithm, we use mostly tracked (MT)
to count the number of mostly tracked (more than 80% of the frames) trajectories for
the vehicles.

3.4. Results of Vehicle Detection

To obtain a better training model, we combined our MWVD dataset with the Dron-
eVehicle dataset. The DroneVehicle dataset is made up of 56,878 RGB and infrared images
that were collected by the drone in various traffic scenes, including highways, parking lots,
intersections, and other places. In addition, the size of each image is 840 × 712. There are
five categories of vehicles in this dataset, including car, van, truck, bus, and freight car [57].
We selected 9830 aerial-view UAV images from the combined DroneVehicle and MWVD
dataset to build a mixed dataset.

We compared our proposed vehicle detection method with state-of-the-art methods,
including RetinaNet by [58], Faster R-CNN by [59], Mask R-CNN by [60], and RoITrans-
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former by [61], on the mixed dataset under the same settings. We implemented these
methods on a server with one GeForce RTX 2070s and 16 GB total memory. The results are
shown in Table 7. Compared with other methods, our dual-weight YOLOv5-OBB method
achieves superior performance with the highest mAP and accuracy for each category, and
the mAP of the YOLOv5-OBB method using our basic weight file and enhanced weight file
is also higher than other methods. To summarize, the proposed dual-weight YOLOv5-OBB
method obtained higher vehicle detection performance than the above methods in UAV
images captured under various weather conditions.

Table 7. Evaluation on mixed dataset (MWVD and DroneVehicle datasets).

Method Car AP Truck AP Bus AP mAP

RetinaNet (OBB) 64.27 30.53 61.02 51.94
Faster R-CNN (OBB) 67.09 42.98 66.72 58.93
Mask R-CNN (OBB) 68.50 44.31 66.91 59.91

RoITransformer (OBB) 71.28 49.02 71.15 63.82
YOLOv5-OBB with basic weight 82.20 62.21 81.52 75.31

YOLOv5-OBB with enhanced weight 85.12 69.07 84.10 80.43
Dual weight YOLOv5-OBB (Ours) 89.10 72.07 87.55 82.91

The visualized detection results of the YOLOv5-OBB algorithm with basic weight
and enhanced weight on the MWVD dataset are shown in Figure 10. The area selected
by the red dashed box in Figure 10a,b represents the white-colored vehicle on a snowy
day, and some black-colored vehicles in a dark region are missed with basic weight but
detected with enhanced weight. One reason for this may be that some vehicles are visually
similar to the background road in low-contrast UAV images, which makes it difficult
for the vehicle detection algorithm to distinguish them. In Figure 10d, the area selected
by the blue dashed box in the figure represents missed detection with enhanced weight
because the illumination conditions in different areas are also different and some bright
areas are excessively enhanced by CLAHE, which blurs the vehicle outline. Therefore, we
use the proposed dual-weight YOLOv5-OBB to merge these detections and reduce false
negative errors.

Figure 10. Detection results of the YOLOv5-OBB algorithm with basic weight and enhanced weight
on MWVD dataset. (a,c) show the detection results of the YOLOv5-OBB with basic weight in UAV
images captured on a snowy day and at night, respectively. (b,d) show the detection results of the
YOLOv5-OBB with enhanced weight in the enhanced same images.
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3.5. Results of Vehicle Tracking

To evaluate the tracking accuracy, we manually marked the position and category of
vehicles in the four test videos as test sets, and we calculated MOT metrics. We compared
the proposed vehicle tracking method SORT++ with other popular object tracking methods,
including SORT by [43], DeepSORT by [62], ByteTrack by [63], and OC-SORT by [64] on
the four test sets Test0 to Test4 in the MWUAV dataset. To evaluate the contributions of
the box filter (BF), appearance feature extractor (AFE), and motion feature extractor (MFE)
in SORT++, we apply them to other methods and test them using the four test sets. The
results are shown in Tables 8–11, respectively. We select SORT as our baseline method
because all these methods adopt the Kalman filter to predict object motion, and SORT uses
the simplest construct. Our proposed SORT++ method achieved superior performance
with the highest MOTA and IDF1 metric on all test videos, and it reduced FP and IDSW
to 0, which indicated that the proposed vehicle tracking method was stable and accurate
under different weather conditions. Furthermore, we can see that BF significantly decreases
the FP and IDSW of SORT and ByteTrack, and MFE further decreases the FP and IDSW.
AFE in SORT++ can decrease the FP and IDSW to nearly 0.

Table 8. Comparison of the state-of-the-art methods on the Test0 (Sunny) set.

Method MOTA↑ IDF1↑ FP↓ FN↓ IDSW↓ MT↑

SORT 85.62 91.87 2620 1,494 24 48
DeepSORT 85.16 80.30 783 3302 186 43
ByteTrack 84.12 91.97 4471 80 19 56
OC-SORT 88.36 93.25 1815 1509 25 48

OC-SORT+ByteTrack 80.33 95.39 5527 112 20 55
SORT+BF 94.16 96.65 232 1445 3 48

ByteTrack+BF 99.13 99.16 248 0 1 57
SORT+MFE+BF 94.95 97.04 2 1448 3 48

ByteTrack+MFE+BF 100.00 99.59 0 0 1 57
SORT++ (Ours) 100.00 (+14.38) 99.59 (+7.72) 0 0 0 57

Table 9. Comparison of the state-of-the-art methods on the Test1 (Night) set.

Method MOTA↑ IDF1↑ FP↓ FN↓ IDSW↓ MT↑

SORT 86.20 92.46 4231 698 26 58
DeepSORT 87.96 92.94 2577 1704 42 55
ByteTrack 79.54 89.18 7249 56 43 61
OC-SORT 87.12 93.27 3891 713 22 58

OC-SORT+ByteTrack 84.08 91.41 5621 61 35 61
SORT+BF 96.87 98.23 205 917 3 57

ByteTrack+BF 98.99 99.27 352 0 1 61
SORT+MFE+BF 97.32 98.46 30 932 1 57

ByteTrack+MFE+BF 99.82 99.91 60 4 0 61
SORT++ (Ours) 99.99 (+13.79) 99.99 (+7.54) 0 4 0 61

Moreover, we tested the proposed SORT++ method on the MWUAV dataset and
calculated the MOT metrics. The visual results are shown in Figure 11, and the MOT
metrics are shown in Table 12. The MOTA and IDF1 of our proposed SORT++ method were
higher than 99.6%, and the MT was basically equal to GT, which indicates that our proposed
vehicle-tracking method can track vehicles accurately and robustly in UAV videos captured
under various weather conditions.



Remote Sens. 2022, 14, 5513 18 of 24

Table 10. Comparison of the state-of-the-art methods on the Test2 (Rainy) set.

Method MOTA↑ IDF1↑ FP↓ FN↓ IDSW↓ MT↑

SORT 90.22 94.98 1392 498 17 35
DeepSORT 81.51 68.20 750 2693 163 26
ByteTrack 83.36 91.81 3108 109 29 37
OC-SORT 91.30 95.48 1174 508 15 35

OC-SORT+ByteTrack 85.51 92.74 2689 109 29 37
SORT+BF 95.92 97.95 273 522 0 35

ByteTrack+BF 94.84 97.48 1007 0 0 37
SORT+MFE+BF 96.57 98.27 139 530 0 35

ByteTrack+MFE+BF 95.65 97.87 849 0 0 37
SORT++ (Ours) 99.97 (+9.75) 99.98 (+5.01) 0 6 0 37

Table 11. Comparison of the state-of-the-art methods on the Test3 (Snowy) set.

Method MOTA↑ IDF1↑ FP↓ FN↓ IDSW↓ MT↑

SORT 91.93 96.06 1473 369 0 30
DeepSORT 80.59 87.85 821 3600 8 26
ByteTrack 89.44 94.72 2355 45 9 33
OC-SORT 93.55 96.83 1100 372 0 30

OC-SORT+ByteTrack 93.02 96.33 1535 50 8 33
SORT+BF 95.97 97.96 213 706 0 29

ByteTrack+BF 98.22 99.12 407 0 0 33
SORT+MFE+BF 96.84 98.39 9 713 0 29

ByteTrack+MFE+BF 99.36 99.68 136 11 0 33
SORT++ (Ours) 99.99 (+8.06) 99.99 (+3.93) 0 3 0 33

Figure 11. Tracking results of SORT++ on the MWUAV dataset. (a) Sunny Data. (b) Night Data. (c)
Rainy Data. (d) Snowy Data.
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Table 12. MOT Results of SORT++ on the MWUAV dataset.

Data Type MOTA IDF1 FP FN IDSW MT GT FPS

Sunny Data 100.00 99.94 5 11 4 893 893 8.57
Night Data 99.97 99.61 139 128 5 1021 1021 9.21
Rainy Data 99.99 99.86 14 25 0 708 709 9.73
Snowy Data 99.95 99.89 1 211 2 469 470 10.02

3.6. Results of Vehicle Motion Data Estimation

The precision and continuity of these extracted vehicle motion data are primarily
dependent on the performance of the vehicle detection and tracking method. Based on
the results of the aforementioned vehicle detection and tracking method discussed in
Sections 3.4 and 3.5, we extracted the vehicle motion data, such as vehicle trajectories,
vehicle speed, and vehicle yaw angle, by using the proposed framework. The precision of
these extracted vehicle motion data was calculated using MATLAB 2020b.

To evaluate the precision of the extracted data, we calculated absolute errors between
the test value xi and true value yi using Root Mean Square Error (RMSE) [65], and the
formula for RMSE is as follows:

RMSE =

√
1
m

m

∑
i=1

(xi − yi)
2 (29)

In addition, the margin of relative error between the average test value xi and true
value yi is measured using Mean Absolute Percentage Error (MAPE), and the formula for
its calculation is as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − xi
yi

∣∣∣∣× 100% (30)

We calculated the RMSE and MAPE of the extracted vehicle motion data, including
vehicle trajectory, speed, and yaw angle from the UAV videos in the collected and labeled
MWUAV dataset.

As shown in Figure 12, due to the high accuracy of the proposed vehicle detection
and tracking methods, the RMSE and MAPE of the extracted vehicles trajectories are less
than 0.13 m and 0.98%, respectively, and the mean values of the RMSE and MAPE are
less than 0.025 m and 0.142%, which indicates that the framework had high precision and
strong robustness.

Figure 12. RMSE (first row) and MAPE (second row) histograms of extracted vehicle trajectories
under four different weather conditions in the labeled MWUAV dataset.
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As shown in Figure 13, we compared the extracted vehicle speed by the proposed
method with the manual ground truth. The RMSE and MAPE of the extracted vehicle
speed data under four different weather conditions are less than 0.12 km/h and 1.53%,
respectively, and the mean values of RMSE and MAPE are less than 0.023 km/h and 0.312%,
which indicates the high reliability of the proposed framework.

As shown in Figure 14, we compare the yaw angle of vehicles extracted using the
proposed method with the manual ground truth. The RMSE and MAPE of the extracted
vehicle yaw angle data are less than ±0.19 degrees and 1.70%, respectively, and the mean
value of RMSE and MAPE are less than 0.021 degrees and 0.301%, which indicates the high
stability of the framework.

Figure 13. RMSE (first row) and MAPE (second row) histograms of extracted vehicle speed under
different weather conditions in the labeled MWUAV dataset.

Figure 14. RMSE (first row) and MAPE (second row) histograms of extracted vehicle yaw angle
under different weather conditions in the labeled MWUAV dataset.

According to the result of the aforementioned extracted vehicle motion data esti-
mation, our proposed framework can extract high-precision vehicle motion data from
UAV video captured under various weather conditions such as sunny, night, rainy, and
snowy conditions.
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4. Conclusions

In this study, we proposed a new framework for extracting high-precision vehicle
motion data from UAV video captured under various weather conditions. For the input
data, the traffic video captured by the camera-equipped UAV under different weather
conditions such as rainy, sunny, snowy, and night condition was stabled. Then, the dual-
weight YOLOv5-OBB object detection algorithm was used to detect vehicles from the input
data. The detection results were processed using the object tracking algorithm SORT++ to
obtain traffic data as the output. Finally, two new collected and manually labeled datasets
were used to evaluate the accuracy of the extracted vehicle motion data. This study offers
the following findings:

1. In our experiments on the two UAV datasets collected under various weather
condition, the proposed vehicle detection and tracking method significantly outperforms
the state-of-the-art methods on collected datasets.

2. According to the results of the data estimation, the proposed framework can extract
accurate and reliable vehicle motion data such as vehicle trajectory, vehicle speed, and
vehicle yaw angle from UAV videos captured under different weather conditions.

For future work, the UAV image or video could be enhanced using a more advanced
image enhancement method to reduce the influence of different weather conditions. In
addition, more advanced vehicle detection and vehicle tracking methods could be used
for the proposed framework to further improve the accuracy of the extracted vehicle
motion data.
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