
Citation: Freitas, S.; Silva, H.; Silva, E.

Hyperspectral Imaging Zero-Shot

Learning for Remote Marine Litter

Detection and Classification. Remote

Sens. 2022, 14, 5516. https://

doi.org/10.3390/rs14215516

Academic Editors: Gemine Vivone

and Liang-Jian Deng

Received: 19 September 2022

Accepted: 29 October 2022

Published: 2 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Hyperspectral Imaging Zero-Shot Learning for Remote Marine
Litter Detection and Classification
Sara Freitas 1,*,† , Hugo Silva 1,† and Eduardo Silva 1,2,†

1 INESCTEC—Institute for Systems and Computer Engineering, Technology and Science, Rua Dr. Roberto
Frias, 4200-465 Porto, Portugal

2 ISEP—School of Engineering, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida 431,
4249-015 Porto, Portugal

* Correspondence: sara.c.freitas@inesctec.pt
† These authors contributed equally to this work.

Abstract: This paper addresses the development of a novel zero-shot learning method for remote
marine litter hyperspectral imaging data classification. The work consisted of using an airborne
acquired marine litter hyperspectral imaging dataset that contains data about different plastic targets
and other materials and assessing the viability of detecting and classifying plastic materials without
knowing their exact spectral response in an unsupervised manner. The classification of the marine
litter samples was divided into known and unknown classes, i.e., classes that were hidden from the
dataset during the training phase. The obtained results show a marine litter automated detection for
all the classes, including (in the worst case of an unknown class) a precision rate over 56% and an
overall accuracy of 98.71%.

Keywords: hyperspectral imaging; zero-shot learning; deep learning; marine litter; remote sensing

1. Introduction

Nowadays, marine litter is one of the biggest threats to marine ecosystems. The
characteristics of the marine litter found in the oceans have changed over the years, and
it is made up of human-based plastic waste that is a threat to marine life. To address
this problem, the research community is always looking for novel methods, tools and
systems to detect, classify and remove marine litter accumulation zones from the sea. For
accomplishing this objective, it is important to characterise marine litter, discover its point
of origin and help create mitigation strategies to decrease its presence in the oceans [1–4].

Our research work focuses on the use of hyperspectral imaging systems for remote
marine litter detection [5,6]. Despite being an expensive and complex technology, it is
robust and can cope better with exogenous situations such as solar reflections, which are
a major concern for RGB cameras due to its higher probability of returning a completely
saturated image. Hyperspectral imaging systems can collect information of hundreds of
wavelengths, from visible to the infrared spectrum range.

Currently most of the earth observation (EO) detection methods for marine litter are
based on satellite information [7–11]. Satellites are able to provide lots of information with
a good revisiting time over extended areas which makes them an ideal tool for marine
litter detection. However, current satellite on-board sensors such as multispectral imaging
sensors are not designed for marine litter detection and their spatial resolution and spectral
bands information is far from ideal to solve the problem due to the reduced number of
available wavelengths.

One way to overcome such limitations is by using airborne platforms equipped
with hyperspectral imaging systems, which can analyse the requirements at the spatial
and spectral data level for future sensors development and provide a remote conceptual
framework for marine litter detection as illustrated in Figure 1.
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Figure 1. Conceptual framework for a remote marine litter detection system.

However, even with all the information provided by hyperspectral imaging systems,
the problem of detection is still complex due to the number of different plastic materials
present in marine litter (multiple spectral analysis). Furthermore, dealing with hyperspec-
tral data is computationally expensive, and it is quite challenging to collect and manually
label data for all types of existing plastic marine litter. By resorting to new deep learning
methods, such as zero-shot learning (ZSL) approaches, it is possible to create a mixed
approach between supervised and unsupervised techniques. We can also fostering a re-
search path that in the future we can resort to in order to detect different plastic materials
without an exhaustive manual classification, where the airborne platform equipped with
the hyperspectral imaging system can detect and classify in near real time.

Zero-shot learning is a deep learning technique that detects and distinguishes un-
available classes during the training phase. By learning an intermediate semantic layer
using the relation between the known and unknown classes, it can apply this at the inference
time to predict a new class of data. This is usually completed by projecting the test data
to a new space (using regression or classification), and a similarity measure with each
unknown class is used for prediction. It has been used in different research areas, such
as face verification [12], object recognition [13], video understanding [14–17] and natural
language processing [18].

The taxonomy on ZSL copes with different configurations, namely inductive
ZSL [13,19–27] and transductive [28–33]). There are some variations such as few-shot
learning [34,35] (during training, some labelled samples from each unknown class are
used) and generalised zero-shot learning [36–38].

Up until now, most researched ZSL methods have been applied to visible image (RGB)
data. There are advances in ZSL for hyperspectral imaging but are mainly using a Few-Shot
learning (FSL) configuration. Examples of FSL methods are presented in [39–41]. The first
method [39] presents a novel algorithm that uses a transfer learning scheme to share intrin-
sic representations from the same type of objects in different domains. Other authors [40]
display the MDL4OW method, which can classify and reconstruct the data simultaneously.
Finally, [41] develops a heterogeneous few-shot learning (HFSL) for hyperspectral imag-
ing classification, resorting to a residual network to extract spectral information and a
convolution network to analyse the spatial information.

There are other FSL approaches to tackle specific problems with the data, as in [42],
where the authors developed a new method called deep cross-domain few-shot learning
(DCFSL) to mitigate the domain shift issue. They resorted to a conditional adversarial
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domain adaptation strategy and an FSL application strategy to discover transferable knowl-
edge between the classes. The authors of [43] developed the novel Attention-weighted
Graph Convolution (AwGCN), where the internal data relationships are explored for semi-
supervised label propagation. Meanwhile, the work of [44] shows a novel approach to
mitigate over-fitting by using an auxiliary set of unlabeled samples with soft pseudo-labels
to enhance the feature extractor training on a few labeled samples. A more recent work [45]
proposes a novel outlier calibration network (OCN) combined with a feature extraction
module integrated into the meta-training phase. This feature extraction module comprises a
novel residual 3D convolutional block attention network (R3CBAM) for improving spectral–
spatial feature learning. This novel approach focuses on the few-shot open-set recognition
problem and uses a Variational Autoencoder (VAE) to augment the query set.

In [46], a novel approach for signal recognition, SR2CNN, is developed based on a
generalised zero-shot learning approach. The method is divided into four components:
feature extractor, classifier, decoder, and discriminator. The algorithm can learn a represen-
tation of signal semantic feature space by combining cross-entropy loss, centre loss, and
reconstruction loss. This allows discriminating signals not seen during the training phase
and improves itself by creating new classes with unseen signals.

The work presented in this paper contributes to the ongoing research efforts to use new
unsupervised algorithms for marine litter detection and classification. Our work follows
the work developed in [46] but updates the method to cope with hyperspectral imaging
data (spectral) and introduces a novel attention layer mechanism to extract meaningful
information from the data.

Summarising, the main contributions of this work are:

• A ZSL approach for hyperspectral data, using purely spectral information, that is
able to classify pixel by pixel regardless of its shape, which is usually affected by sun
exposure and erosion caused by water and rocks;

• This ZSL approach is based on a generalised methodology, which means that it is
trained with the known classes, and the classification is performed in all classes,
known and unknown. The algorithm is adaptable, meaning that it can classify the
samples from unknown classes into different classes;

• The algorithm is tested and evaluated using a real hyperspectral imaging dataset,
holding marine litter data acquired during field experiments in Porto Pim bay, Faial
island, Azores.

This paper is organised as follows: Section 2 describes the hyperspectral generalised
zero-shot learning algorithm, and Section 3 describes the marine litter dataset and the
experimental setup. Section 4 presents the results, and Section 5 contains the discussion.
The final section draws some conclusions on the work carried out and describes future work.

2. Hyperspectral Zero-Shot Learning Method

Hyperspectral imaging systems can acquire data using different formats. Our data
were acquired resorting to pushbroom hyperspectral cameras, which acquire data simul-
taneously for each pixel line by line. By combining all the lines, it is possible to obtain a
hyperspectral cube represented by a 3D matrix of spectral pixels that can be represented by
XH×W×D, where L is the number of lines, P is the number of pixels and W is the number of
wavelengths. Each pixel will contain the spectra with the responses in each wavelength,
and each pixel will belong to a class assigned by visual inspection. Figure 2 shows a scheme
of the data acquired in a single frame using a pushbroom hyperspectral system.
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Figure 2. Acquisition scheme for pushbroom hyperspectral cameras: the left image shows the data
that are acquired in each frame, in the case of the hyperspectral system, this is denominated as a line,
and it is comprised by all the samples (pixels) and all the bands for each pixel in that line. The right
image displays the information that is possible to extract from the hyperspectral cube.

The data acquisition was completed in the radiance domain, from 400 to 2500 nm. The
pre-processing of the data is composed of two main steps: normalisation and dimensionality
reduction. The first allowed us to normalise the data to have zero mean. The second
was needed due to the amount of data and because not all bands contribute equally to
the detection of the marine litter samples. In this case, the method used was Principal
Component Analysis (PCA) [47], reducing the number of utilised bands from 524 to
64 PCA bands.

Generalised zero-shot learning (GZSL) solves the problem of classic ZSL approaches,
where the prediction step consists of using unknown samples. In this case, our training
dataset is composed of multiple spectra, each corresponding to one pixel of the pushbroom
hyperspectral data cube, all belonging to known classes. Then, the prediction will also
have the unknown classes of which the model has no information and has never seen. Let
SK denote the known classes, while SU represents the unknown class labels, in which X
and Y are the input and the output space, respectively. The input is composed of the SK,
while the output is composed of SK and SU . In the GZSL, S = SK ∪ SU , with Sk ∩ SU = ∅.
Given the training data, (x1, y1, . . . , (xn, yn)) where xn belongs to X and the label belongs
to SK, the goal is to extrapolate and recognise the spectra in Y. This algorithm can predict
the label from sample y ∈ Y, where Y contains both known and unknown classes. The
algorithm aims to extract semantic information about X, recognise K, and extrapolate to U,
by mapping the training space X into a semantic space Z, and then, this semantic encoding
is mapped to a class label.

This approach is an updated and enhanced version of the work presented in [46], and
it is composed of four different components:

• Feature Extractor (F)—Convolutional Neural Network (CNN), with channel attention
modules after each convolutional block [48];

• Classifier (C)—Fully Connected Neural Network;
• Decoder (D)—Autoencoder;
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• Discriminator (P).

The first three components, F, C, and D, are used to build a spectral semantic space.
Figure 3 shows a scheme for these blocks, while the following sections describe each one
in detail.

Figure 3. Schematic of the algorithm used: first, the PCA method is used to reduce the data dimen-
sionality for both the training and prediction phase. To train the algorithm, first, a feature extractor
with channel attention modules after each convolutional layer is used to create a semantic space
Z. Then, this semantic space is used for the classifier, a fully connected neural network, and by the
decoder to create a reconstructed spectrum. To perform the prediction, both the classifier and the
discriminator are used, giving a predicted label to each pixel.

2.1. Feature Extractor

The input signal consists of one row with 64 PCA bands. The Feature Extractor (F)
module comprises a CNN architecture with four convolutional layers and three fully
connected layers. After each convolutional block, a channel attention module improves
the CNN architecture. This channel attention module is one part of the well-known
Convolutional Block Attention Module (CBAM) [48], given that, in this case, there is no
improvement in using both components of CBAM. To minimise the intra-class variations
in space Z and, simultaneously, maintain the inter-classes semantic features separated, this
component resorts to centre loss [49]. Assuming that batch size is represented by B, and
that xi ∈ X, with label yi, so zi = F(xi) ∈ Z, the centre loss is given by Equation (1), where
syi corresponds to the semantic centre vector of the class yi in Z, and syi will be updated
according to the class yi semantic features changes.

Lcl =
1

2B

B

∑
i=1
||F(xi)− syi ||

2
2 (1)

Given the limitations with the amount of hyperspectral data, the training dataset will
be analysed in batches, which makes syi updated according to syi ← syi − α∆syi

, where α

denotes the learning rate and ∆syi
can be obtained with Equation (2), where δ()̇ is equal to

1 if the condition is true and 0 otherwise.
∆syi

= 0, i f ∑B
j=1 δ(yj = yi) = 0,

∆syi
=

∑B
j=1 δ(yj=yi)(syi−F(xi))

∑B
j=1 δ(yj=yi)

, otherwise
(2)
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2.2. Classifier

The classifier, C, discriminates between the sample labels based on semantic features
and comprises several fully connected layers. In this case, we used the cross-entropy loss
defined in Equation (3), where C(F(xi)) is the prediction for the sample xi.

Lcel = −
1
B

B

∑
i=1

yi log(C(F(xi))) (3)

2.3. Decoder

The decoder is composed of an autoencoder, using deconvolutions, unpolling, and
fully connected layers. This component allows the reconstruction of the signal from the
latent space Z, using the reconstruction loss to analyse the difference between the input and
reconstructed signals. The loss is obtained with Equation (4), where D(F(xi)) corresponds
to the input signal xi reconstructed.

Lrl =
1

2B

B

∑
i=1
||D(F(xi))− xi||22 (4)

The total loss function combining all the losses can be expressed as Equation (5).

Lt = Lcel + λcl Lcl + λrl Lrl (5)

2.4. Discriminator

Given the latent space Z, the discriminator can distinguish between known and
unknown classes by using Equation (6) with the feature extractor F for each known class k,
obtaining the semantic centre vector for each known class, where m represents the number
of training samples.

Hk =
∑m

j=1 δ(yj = k)F(xj)

∑m
j=1 δ(yj = k)

(6)

when a test spectrum Q is considered and F(Q) is obtained, the difference between F(Q)
and Hk is measured for each known class k. This distance is obtained by using the Maha-
lanobis distance with Equation (7), where Ak corresponds to the covariance matrix Σ of
semantic features of signals of class k, d(,̇)̇ transformation matrix associated to class k, and
A−1

k is the inverse matrix of Ak.

d(F(Q), Hk) =
√
(F(Q)− Hk)T A−1

k (F(Q)− Hk) (7)

Given this distance, d(F(Q), Hk), it is possible to distinguish between known and
unknown classes. This is performed by comparing the threshold θ1 with the minimal
distance d1 given by Equation (8), where H corresponds to the set of known semantic
centre vectors.

d1 = min
Hk∈S

d(F(Q), Hk) (8)

Considering that yQ represents the prediction of Q, if d1 < θ1, yQ ∈ K, otherwise
yQ ∈ U, where θ1 is given by Equation (9), where λ1 is the discrimination coefficient.

θ1 = λ1 × 3
√

t (9)

However, if Q is classified as unknown in the previous step, it is necessary to under-
stand if it will be part of a new class or must be combined with another class. If R refers to
the recorded unknown classes, and SR refers to the set of semantic centre vectors of R, if
R ⊆ ∅, a new class label R1 is added to R and F(Q) is set to be the semantic centre vector
HR1 . The unknown spectrum Q of an unknown class is saved in set GR1 and yQ = R1. If
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R * ∅, the threshold θ2 defined in Equation (11), which is based on the distance between
F(x) and Hk, is compared to the minimal distance d2 defined in Equation (10).

d2 = min
HRu∈HR

d(F(Q), Ru) (10)

θ2 =
d1 + λ2 × dmed

1 + λ2
(11)

Considering that nR corresponds to the number of record spectrum labels registered
in R, and if d2 > θ2, a new spectrum label RnR+1 is added to R and set yQ = nR + 1. Given
that nR has no restriction, the model never knows the number of unknown classes left to be
discriminated. If d2 6 θ2, then yQ = argmin

Ru

d(F(Q), HRu) and the spectrum Q is saved in

GyQ . The HyQ is updated using Equation (12), where #(GyQ) corresponds to the number of
spectra in the set GyQ .

HyI =
∑k∈GyI

F(k)

#(GyI )
(12)

Using this discriminator, the model can distinguish test samples into n + nR classes,
where nR is the number of unknown classes distinguished by the model.

3. Marine Litter Dataset Acquisition and Experimental Setup

The remote sensing of marine litter with hyperspectral systems from visible to the
SWIR range is scarce, a series of issues related to the price of the systems and airborne
campaign make it difficult to find available open-source data, and most of the datasets
available are from satellite data. Therefore, we resort to a hyperspectral imaging system
setup composed of two pushbroom cameras: a Specim FX10e (1024 spatial pixels, spectral
range from 400 to 1000 nm) and a HySpex Mjolnir S-620 (620 spatial pixels, spectral
range from 970 to 2500 nm). The second camera was inserted into an off-the-shelf system,
including a CPU unit, GPS, and an inertial system. Both cameras were synchronised by the
HySpex system, controlled by the GPS/INS unit (Applanix APX-15 UAV). Regarding the
data acquisition, both cameras acquire data in a raw format that is afterwards calibrated
and converted to radiance by the camera manufacturers software, removing the effects of
the sensor during the acquisition. The connections between the multiple components of
these system are shown in Figure 4, and it is possible to find a detailed description about
each module in [5,6].

Figure 4. Hyperspectral imaging system hardware connections.
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The hyperspectral imaging system was then installed in a Cessna aircraft, F-BUMA,
as shown in Figure 5, where it is possible to see the airplane, and the payload is already
mounted on the airplane landing gear. For the dataset acquisition, the flight altitude was
around 600 m above sea level.

Figure 5. On the left-hand side image, the F-BUMA aircraft, and on the right side of the image, the
hyperspectral imaging payload installation on aircraft landing gear.

One of the goals of this campaign was also to assess Sentinel-2 (S2) satellite capability
to detect marine litter and compare the results using satellite and airborne data. Due to
the S2 spatial resolution, there was the need of having 10 × 10 metre artificial targets to be
visible by the satellite. For this purpose, we used three different artificial targets, which
were composed of distinct types of plastic: low-density polyethylene orange plastic (used
oyster spat collectors), white plastic film, and ropes. Figure 6 shows the targets already
in the water. In addition to the flybys over the targets, the dataset also holds information
about other materials and objects present in the data, namely: water, concrete pier, trees,
and boats. These data will also be used in our algorithm to train the ZSL method.

Figure 6. Image acquired from the aircraft during a flight with the artificial targets placed in the water.

Due to the type of hyperspectral image acquisition system (pushbroom), the dataset
was collected during a single flight and contains information about other artefacts that
are difficult to manually label such as streets with moving cars and houses. Therefore,
the solution used was to divide the dataset into flybys over the classes that can be man-
ually labelled, such as water, orange target, white target, rope target, concrete pier, trees,
and boats.

Table 1 shows the description of all the data present in the dataset and provides an
example of each class.
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Table 1. Classes used for the ZSL algorithm, and main characteristics, e.g., description, known and
unknown information, image and number of pixels.

ID Description Example Number of Pixels

Class 0
(Blue)

Known class

Water 1,279,132

Class 1
(Red)

Unknown class

Orange target
(low density polyethylene)

8118

Class 2
(Green)

Known class

White target
(White plastic film)

7913

Class 3
(Magenta)

Unknown class

Rope target 8375

Class 4
( White )

Known class

Concrete pier 16,999

Class 5
(Grey)

Known class

Trees 972,160

Class 6
(Yellow)

Known class

Boats 5023

Having defined the classes for the ZSL implementation, one needs to divide them
into the set of known and unknown classes. Since our objective was to detect marine litter
(plastic), we choose two of the artificial plastic targets as unknown classes: class 1—orange
plastic target and class 3—ropes target.

We then started the training procedure, where adjustments had to be performed to
overcome the limitations of the training data, namely:

• Class imbalance: As shown in Table 1, the number of pixels for each class is different.
To minimise the probability of overfitting during training, we use the lower number
of pixels as a reference to randomly select samples from the other classes;

• Feature normalisation: The hyperspectral data acquisition is affected by the variability
of atmospheric conditions, mainly direct sunlight. To minimise this effect, there is
the need to perform the data normalisation in order to normalise the feature data to
unit variance.

In addition to the aforementioned pre-processing techniques, we also had to take into
account some items concerning each of the known and unknown classes, such as:

• Due to the flight altitude, some of the classes will have small (resolution) in the
datasets. In addition to this, there are classes with artefacts in the middle due to their
physical characteristics and construction. This happens in class 1, orange target, and
class 3, rope target. The first, given the physical design of the multiple components
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(used oyster spat collectors) and their orientation, can accumulate more water, while
the second (rope target) has more gaps in the middle of the target. Additionally, this
target also uses two different rope targets with variable flutuability.

• The water contains points with high exposure due to the wave effects and the camera
adjustment.

• The concrete pier also contains rocks.
• It is necessary to take into account that in class 6, boats have different hulls, and

there are artefacts inside the boat that also have different materials. However, the
flight altitude combined with the cameras spatial resolution does not allow a better
distinction to facilitate the manual labelling process.

Another influential aspect is the camera exposure time. During the data collection, the
exposure time was set to acquire the plastic targets in the best manner possible. Therefore, it
can lead to overexposed zones that hold other classes and negatively influences the results.

4. Results

In this section, we will display the ZSL results for marine litter detection and classifica-
tion. In this experiment, the algorithm was trained using seven classes in total: class 0, 2, 4,
5, and 6 are the known classes, while the unknown classes (two of the plastic targets) were
classes 1 and 3. Since one the main objectives is to understand if the method can detect
new plastic types that are not yet determined (unknown), we prefer to train with only one
known plastic type. However, this will negatively influence the results due to the intrinsic
physical characteristics of the plastic materials.

After performing the selection, we divided the dataset into training, validation, and
test data. To promote the balance between the data, the number of points for each class used
for training was 5023, and the number of pixels present in the class with fewer samples,
class 6—boats, was selected randomly. The data were then divided using 70% to train, 10%
for validation, and all the remaining data to test, including data outside the first division.

Figure 7 shows the reconstructed image of the dataset for both SPECIM FX10E
(400–1000 nm) and HySpex Mjolnir S-620 (970–2500 nm) systems, respectively, where
it is possible to observe that there are multiple flybys over all the targets.

Figure 8 shows the manually annotated ground truth image on the left-hand side,
while the right-hand side of the figure contains the ZSL results. Both images follow the
same colour scheme to identify the different classes. There are some pixel outliers that
represent four more classes, which are represented in orange, light pink, light grey and
dark green. The colour scheme for each class is identified in the first column of Table 1.
Figure 9 shows a zoom-enhanced version of one of the artificial target detections. It is
possible to observe the two unknown classes (class 1—orange target, red colour, and class
3—rope target, pink colour) and some of the outliers around the edges.

Concerning the experimental setup, the tests were performed in a workstation with
an Intel Core i7-8700k @ 3.70 GHz CPU, 32 GB RAM memory and one GeForce RTX 2080
Super 8 GB. The training stage took approximately 1052.71 s, while the prediction took
approximately 243.44 s to finish.

To perform a comparison between the novel ZSL approach and already established
state-of-the-art approaches, we compared the results (for the unknown samples) obtained
by the ZSL with our previous work Random Forest (RF) and Support Vector Machines
(SVM) implementation [5], and CNN-3D [6] for the same experimental data setup. We
expect the ZSL performance metrics to be below that of the other methods, as in the ZSL
RGB approaches, since the other methods are based on supervised approaches with all
known samples. However, it is important to understand the order of magnitude the ZSL
can perform and if it is viable to use this semi-supervised or even unsupervised approaches
in remote airborne hyperspectral imaging systems for marine litter detection.
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Figure 7. Reconstructed image for each hyperspectral camera used. Left image shows the Specim
FX-10e data, while right image shows the HySpex Mjolnir S-620 data.

Figure 8. Left image holds the ground truth while the right image shows the zero-shot learning
results.



Remote Sens. 2022, 14, 5516 12 of 18

Zero-Shot Learning output
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Class 0

Water

Class 1

Orange target

Class 2

White target

Class 3

Rope target

Class 4

Concrete pier

Class 5

Trees

Class 6

Boats

Figure 9. Zero-shot learning results zooming on one of the artificial target’s detections (including
the two unknown classes (class 1, identified with the colour red, and class 3, identified with the
colour pink).

Table 2 shows the zero-shot learning results, while Table 3 shows a comparison
between these and the previous results, obtained and presented in [5,6].

Table 2. Zero-Shot Learning Results.

Class 0
Water

Known
Class

Class 1
Orange
Target

Unknown
Class

Class 2
White
Target

Known
Class

Class 3
Rope
Target

Unknown
Class

Class 4
Concrete

Pier
Known
Class

Class 5
Trees

Known
Class

Class 6
Boats

Known
Class

Precision 0.9853 0.6659 0.7508 0.5632 0.9784 0.9927 0.5874

Recall 0.9872 0.6946 0.9960 0.5766 0.9885 0.9927 0.9962

F1-Score 0.9862 0.6800 0.8562 0.5698 0.9834 0.9927 0.7390

OA 98.71%
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Table 3. Results comparison using RF, SVM, CNN and ZSL methods.

F-BUMA Flight—Flyby Over the Artificial Targets

Flyby 5

Random Forest (RF) Support Vector Machine (SVM)

Class Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

0
Water/Land

0.99 1 0.99

98.09%

0.99 0.99 0.99

97.06 %

1
Orange target

0.71 0.25 0.37 0.77 0.46 0.58

2
White target

0.74 0.62 0.67 0.57 0.59 0.58

3
Rope target

0.38 0.56 0.45 0.21 0.47 0.29

F-BUMA Flight—Zero-Shot Learning

Class 0
Water

Known Class

Class 1
Orange
Target

Unknown
Class

Class 2
White
Target

Known Class

Class 3
Rope
Target

Unknown
Class

Class 4
Concrete

Pier
Known Class

Class 5
Trees

Known Class

Class 6
Boats

Known Class
Accuracy

Precision 0.9853 0.6659 0.7508 0.5632 0.9784 0.9927 0.5874

98.71 %Recall 0.9872 0.6946 0.9960 0.5766 0.9885 0.9927 0.9962

F1-Score 0.9862 0.6800 0.8562 0.5698 0.9834 0.9927 0.7390

Drone Flight—CNN3D

Flyby 4

Class Precision Recall F1-Score Accuracy

0—Water 0.98 0.93 0.95

91.67 %
1—Orange target 0.75 0.78 0.77

2—White target 0.94 0.95 0.94

3—Rope target 0.69 0.96 0.80

Flyby 5

Class Precision Recall F1-Score Accuracy

0—Water 0.83 0.97 0.90

84.84 %1—Orange target 0.62 0.50 0.55

2—White target 0.98 0.84 0.91

3—Rope target 0.88 0.54 0.67

5. Discussion

In this section, we will discuss the results obtained by the ZSL method, particularly
focusing on the ability to detect the unknown classes. We also compare and discuss the
results obtained with our previous implementations (RF, SVM and CNN3D). Table 2 depicts
each class’s precision, recall, f1-score, the accuracy of each class, and overall accuracy (OA).
One can observe that unknown classes 1 and 3 both have recall values over 57%, which
means that the true positive pixels were higher than 57% of the total samples in both cases.
In terms of precision, class 1 has more than 66% while class 3 has more than 56%.

Given the average flight altitude, 600 m, is it difficult to manually annotate the pixels
as being purely belonging to a single class. This makes it difficult to assure that each pixel
in the targets belonging to classes 1, 2, and 3 is not contaminated by water. In addition, the
targets’ morphology and their constituents also make this task difficult. The targets had
10 × 10 m, composed of four squares, each one with 2.5 × 2.5 m, each target filled with the
corresponding material. However, for example, in the case of class 3—ropes, the filling is
not uniform due to the water effects, creating areas where the target is submerged, which is
a phenomena that also occurs with class 1—orange target.
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Regarding class 6—boats, precision is over 58%, and the recall is over 99%, which
indicates a high number of true positives (over 99% of the pixels are correctly identified
as class 6). However, it also shows some false positives. In this case, the false positives
are present in the water, which raises the issue of the ground truth annotation: due to the
resolution, it is impossible to understand what is inside the boats. These were not placed
in the water, especially for dataset purposes, so we do not have any control over what is
inside them.

Figure 9 shows a zoom for one of the artificial target’s ZSL results. As observed,
the class 3—rope target, represented by the pink points, exhibits some points marked as
class 6—boats (yellow). This shows that some of the boats can probably have ropes inside
them. However, the spatial resolution makes it impossible to understand what is inside
the boat. The pixel may not be pure (representing only one type of material) and instead
be a combination of different materials inside the boat. It is also possible to observe some
points marked as class 6—boats (yellow) in the limits of the artificial targets, which is
probably due to the water bottles used to help them float. Another issue is the camera
configuration and the set of the camera gain that is configured to acquire the artificial target
data. Effects such as sun reflections can result in over-exposure pixels, mainly on pixels that
do not represent the classes that the cameras were configured to acquire. This is especially
noticeable in the waves of the water, which have several over-exposure pixels.

Analysing the left image in Figure 8, it is possible to observe the presence of different
classes that do not belong to the ones identified by the ground truth near the concrete pier
(class 5, color grey). These are located in the rocks of the pier, which is most likely due to
the foam created with the ocean motion due to oil residues, among others. However, it is
impossible to identify this on the ground truth due to the camera’s spatial resolution. This
is also visible in Figure 9, in the contour of the orange and white artificial targets, and it can
also be due to the foam that forms next to these targets due to the water ripple. This is not
so visible in the rope target due to its characteristics: the ropes absorb much more water
and offers less resistance to the water passage due to their shape.

Despite being a challenging dataset, due to the impossibility of controlling what is in
the data that do not belong to the artificial targets, the ZSL algorithm acquired knowledge
about the known classes and was able to detect and classify the unknown classes to a
reasonable extent.

Although this approach presents interesting results, using other algorithms to extract
more meaningful information from the spectra can be an interesting solution. One approach
that could extract more information about the characteristics of the plastics is the band
selection algorithm, which will not project the data to another space, such as the method
used for dimensionality reduction in this work (PCA algorithm).

Using spatial information combined with spectral one can be an interesting solution.
However, this dataset was built from multiple flybys over points of interest (over the
different classes: artificial targets, water, trees and boats), since the full dataset contained
several areas whose ground truth was impossible to perform (roads with cars and people
moving, for example), so there was a need to discard these data. Given this, the spatial
information was compromised by this dataset construction and could negatively influence
the algorithm to learn some spatial representation that is not true. In addition to this,
there is the fact that the artificial targets used for proof-of-concept are a perfectly square
shape, which will not happen in a real scenario. The deformations suffered by the marine
litter during their life are mainly due to sun exposure and water erosion and hitting other
artefacts such as more marine litter and rocks, among others. These deformations will
change the marine litter shape but without affecting the spectral information.

In Table 3, it is possible to compare our state-of-the art results and the zero-shot
learning approach. Some remarks should be addressed before analysing this table:

• Random Forest (RF), Support Vector Machine (SVM) and the Convolutional Neural
Network 3D (CNN3D) were all implemented using only four classes:
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– Class 0: For the RF and SVM algorithm, it represents the water and land (houses,
trees, streets, cars and other materials) to train the algorithms to learn the charac-
teristics of the non-marine litter pixels. In the case of the CNN3D algorithm, it
represents the water;

– Class 1: orange target;
– Class 2: white target;
– Class 3: rope target.

• RF, SVM, and ZSL approaches use the F-BUMA data, while the CNN3D resorts to
the drone data, using the same artificial targets and in the same test site. Due to the
lack of resolution of the F-BUMA data, the results of the CNN3D were unsatisfactory
due to the lack of distinct spatial features. Although the drone data have much more
spatial information, as can be observed in [6], it does not contain data from any other
class besides the artificial targets and the water, which was not enough for the ZSL
algorithm. It would be possible to use RF and SVM with drone data. However, the
algorithms will not benefit from the spatial information, and therefore, no novelty will
be added to the results obtained with the F-BUMA data;

• The datasets used for RF, SVM and CNN3D algorithms were organised by flyby over
the artificial targets, giving each flyby its results. In the case of the SVM and RF, Table 3
only presents the results for a single flybys (there were six flybys in total), while in the
case of the CNN3D, all the results are presented.

Due to the difference in the number of classes, it is impossible to compare the accuracy
directly. However, it is possible to analyse the precision, recall and F1-score for the artificial
targets classes (classes 1, 2 and 3). However, given that F1-score is a combination of
the precision and recall values, the analysis will focus on the precision and recall results.
Observing the results for class 1, orange target, in terms of precision, the values are similar.
In the case of the ZSL approach, this algorithm was not trained with data from this class
and can still obtain comparable results in terms of precision compared to the other three
algorithms. When comparing the recall values, it is possible to observe that both the
RF and SVM results are lower than the ZSL approach, and when comparing ZSL and
CNN3D, the results are similar. Class 2, white target, a known class for the ZSL algorithm,
i.e., the model was trained with data from this class, also presents similar results for all
the approaches. SVM shows lower performance, while CNN3D display better results.
However, ZSL performs better than the RF algorithm in terms of precision and recall. The
last comparable class is the number 3, rope target, which is the most challenging for all
the methods due to their characteristics. This is evident in the results presented for all the
algorithms, with CNN3D performing slightly better. ZSL overcomes both RF and SVM
approaches, even considering that this was an unknown class whose data were hidden
during the training phase of the ZSL model.

Overall, the ZSL algorithm shows potential to detect unknown marine litter, i.e., plastic
samples using a hyperspectral imaging system installed in an aircraft at approximately
600 m altitude, with precision values over 56% for all the classes, including the two
unknown classes, which are not used to train the model. This is in line with the results
obtained by ZSL methods using only visible images and therefore shows that ZSL methods
can also have potential applications in hyperspectral imaging data.

6. Conclusions

Novel research aims to provide solutions to detect and analyse marine litter, to un-
derstand its origin and the best way to decrease its presence in our oceans. Hyperspectral
imaging is one possible solutions due to the amount of relevant information collected from
a scene. However, most detection algorithms are based on supervised machine learning
techniques, which implies using labelled data for all classes. This is a difficult task in the
marine litter field due to the massive amount of different artefacts and the changes they
suffer from erosion and sunlight.
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Our work focuses on the development of a zero-shot learning method for remote
hyperspectral imaging data on detecting and classifying marine litter. This novel algorithm
detects unknown classes, i.e., classes not seen by the model during the training stage, which
is useful to decrease the number of samples needed to train the model and allows the
classification of samples without previous information.

We used an approach divided into four different components: feature extractor, clas-
sifier, decoder, and discriminator, where the first three components are used to build a
semantic space for the spectra. We were able to train a model with only five known classes
capable of recognising two new types of plastic. All metrics for both unknown classes are
over 56%, which proves the algorithm’s capability to detect and classify new classes that
were never seen during training. The overall accuracy for all classes is over 98%, showing
promising results for this type of classification. All the results were evaluated using a
previously acquired dataset [5].

Zero-shot learning approaches show an advantage of classifying samples for which the
model was not trained and did not have access during the training stage. Although these
methods do not achieve the same results as the state-of-the-art classification algorithms for
hyperspectral imaging, they reduce the training data, and it can detect and classify classes
that were never seen by the algorithm.

In future work, we would like to focus on applying this ZSL algorithm in real time, to
perform regular flights and identify marine litter concentrations near coastal areas, offshore
aquaculture farms, and remote locations that are not covered by satellites. The application
of this algorithm to satellite data would also be interesting. Another question we would
like to focus our attention is on is the application of band selection methods to extract more
meaningful information about the plastics that allow a more robust classification even of
the unknown classes.
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