An Extensive Field-Scale Dataset of Topsoil Organic Carbon Content Aimed to Assess Remote Sensed Datasets and Data-Derived Products from Modeling Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Specifications and Description
2.2. Experimental Design, Sample Collection and Analysis
2.3. Topographic Derivatives Generation
3. Results
3.1. Summary Statistics of the Topsoil SOC Measurements
3.2. SOC Mapping
4. Discussion of Potential Applications of the Created Database
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villarino, S.H.; Studdert, G.A.; Laterra, P. How does soil organic carbon mediate trade-offs between ecosystem services and agricultural production? Ecol. Indic. 2019, 103, 280–288. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Laamrani, A.; Voroney, P.R.; Gillespie, A.W.; Chehbouni, A. Development of a Land Use Carbon Inventory for Agricultural Soils in the Canadian Province of Ontario. Land 2021, 10, 765. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Chabrillat, S.; Demattê, J.A.M.; Ben-Dor, E.; Gholizadeh, A.; Zalidis, G.; van Wesemael, B. Earth Observation Data-Driven Cropland Soil Monitoring: A Review. Remote Sens. 2021, 13, 4439. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.Z.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.; Soong, J.L.; et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022, 13, 3797. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital Mapping of GlobalSoilMap Soil Properties at a Broad Scale: A Review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Laamrani, A.; Voroney, P.R.; Berg, A.A.; Gillespie, A.W.; March, M.; Deen, B.; Martin, R.C. Temporal Change of Soil Carbon on a Long-Term Experimental Site with Variable Crop Rotations and Tillage Systems. Agronomy 2020, 10, 840. [Google Scholar] [CrossRef]
- Antil, R.S.; Narwal, R.P.; Singh, B.R. Raising Soil Organic Matter to Improve Productivity and Nutritional Quality of Food Crops in India. In Soil Organic Matter and Feeding the Future: Environmental and Agronomic Impacts, 1st ed.; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Kempen, B.; Brus, D.; Stoorvogel, J. Three-dimensional mapping of soil organic matter content using soil type–specific depth functions. Geoderma 2011, 162, 107–123. [Google Scholar] [CrossRef] [Green Version]
- McBratney, A.B.; Stockmann, U.; Angers, D.A.; Minasny, B.; Field, D.J. Challenges for Soil Organic Carbon Research. In Soil Carbon; Springer: Cham, Switzerland, 2014; pp. 3–16. [Google Scholar]
- Fathizad, H.; Taghizadeh-Mehrjardi, R.; Hakimzadeh Ardakani, M.A.; Zeraatpisheh, M.; Heung, B.; Scholten, T. Spatiotemporal Assessment of Soil Organic Carbon Change Using Machine-Learning in Arid Regions. Agronomy 2022, 12, 628. [Google Scholar] [CrossRef]
- Piccini, C.; Marchetti, A.; Francaviglia, R. Estimation of Soil Organic Matter by Geostatistical Methods: Use of Auxiliary Information in Agriculturaland Environmental Assessment. Ecol. Ind. 2014, 36, 301–314. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef] [Green Version]
- Laamrani, A.; Voroney, P.; Saurette, D.D.; Berg, A.; Blackburn, L.; Gillespie, A.; Martin, R.C. Large dataset of soil organic carbon and topographic derivatives [Data set]. Zenodo 2022. [Google Scholar] [CrossRef]
- Statistics Canada. Census of Agriculture. 2016. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/170510/dq170510a-eng.htm (accessed on 22 August 2022).
- Hoffman, D.W.; Matthews, B.C.; Wicklund, R.E. Soil Associations of Southern Ontario; Report No. 30 of the Ontario Soil Survey; Canada Department of Agriculture: Ottawa, ON, Canada, 1964. Available online: https://sis.agr.gc.ca/cansis/publications/surveys/on/on30/on30_report.pdf (accessed on 22 August 2022).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Environment Canada. Canadian Climate Normals 1981–2010: Fergus Shand Dam Weather Station. 2011. Available online: http://climate.weather.gc.ca/climate_normals/index_e.html (accessed on 22 August 2022).
- Laamrani, A.; Berg, A.A.; Voroney, P.; Feilhauer, H.; Blackburn, L.; March, M.; Dao, P.D.; He, Y.; Martin, R.C. Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario, Canada. Remote Sens. 2019, 11, 1298. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Anderson, D.W. Direct measurement of organic carbon content in soils by the Leco CR-12 carbon analyzer. Commun. Soil Sci Plan. 1998, 29, 15–21. [Google Scholar] [CrossRef]
- Ontario Ministry of Agriculture, Food and Rural Affairs. Ontario Classified Point Cloud (Lidar-Derived). 2019. Available online: https://geohub.lio.gov.on.ca/datasets/mnrf::ontario-classified-point-cloud-lidar-derived (accessed on 22 August 2022).
- Ontario Ministry of Natural Resources and Forestry. Ontario Elevation Mapping Program. 2019. Available online: https://geohub.lio.gov.on.ca/pages/ontario-elevation-mapping-program (accessed on 22 August 2022).
- Saurette, D.; Berg, A.; Laamrani, A.; Heck, R.J.; Gillespie, A.W.; Voroney, P. Effects of sample size and covariate resolution on field-scale predictive digital mapping of soil carbon. Geoderma 2022, 425, 116054. [Google Scholar] [CrossRef]
- Lindsay, J.B. Whitebox GAT: A case study in geomorphometric analysis. Comput. Geosci. 2016, 95, 75–84. [Google Scholar] [CrossRef]
- Newman, D.R.; Lindsay, J.B.; Cockburn, J.M.H. Evaluating metrics of local topographic position for multiscale geomorphometric analysis. Geomorphology 2018, 312, 40–50. [Google Scholar] [CrossRef]
- Wu, Q. Whitebox: “WhiteboxTools” R Frontend. 2019. Available online: https://R-Forge.R-project.org/projects/whitebox (accessed on 22 August 2022).
- Team, R. Core. R: A Language and Environment for Statistical Computing; R foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Lindsay, J. WhiteboxTools User Manual. User Manual, University of Guelph. 2018. Available online: https://www.uoguelph.ca/~hydrogeo/WhiteboxTools/index.html (accessed on 22 August 2022).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. Discuss. 2015, 8, 2271–2312. [Google Scholar] [CrossRef]
- Brenning, A.; Bangs, D.; Becker, M. RSAGA: SAGA geoprocessing and terrain analysis. R package version 1.3.0. 2018. Available online: https://CRAN.R-project.org/package=RSAGA (accessed on 22 August 2022).
- Esri—ArcGIS Pro 2.9. How Kriging works? Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-kriging-works.htm#GUID-08AA4C59-A05E-4F9F-A18D-E30B36C7523A (accessed on 22 August 2022).
- Oliver, M.A. Kriging: A Method of Interpolation for Geographical Information Systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Eyre, R.; Lindsay, J.; Laamrani, A.; Berg, A. Within-Field Yield Prediction in Cereal Crops Using LiDAR-Derived Topographic Attributes with Geographically Weighted Regression Models. Remote Sens. 2021, 13, 4152. [Google Scholar] [CrossRef]
- Mandal, A.; Majumder, A.; Dhaliwal, S.S.; Toor, A.S.; Mani, P.K.; Naresh, R.K.; Gupta, R.K.; Mitran, T. Impact of Agricultural Management Practices on Soil Carbon Sequestration and Its Monitoring through Simulation Models and Remote Sensing Techniques: A Review. Crit. Rev. Environ. Sci. Technol. 2020, 52, 1–49. [Google Scholar] [CrossRef]
- Laamrani, A.; Joosse, P.; McNairn, H.; Berg, A.A.; Hagerman, J.; Powell, K.; Berry, M. Assessing Soil Cover Levels during the Non-Growing Season Using Multitemporal Satellite Imagery and Spectral Unmixing Techniques. Remote Sens. 2020, 12, 1397. [Google Scholar] [CrossRef]
- Mzid, N.; Castaldi, F.; Tolomio, M.; Pascucci, S.; Casa, R.; Pignatti, S. Evaluation of Agricultural Bare Soil Properties Retrieval from Landsat 8, Sentinel-2 and PRISMA Satellite Data. Remote Sens. 2022, 14, 714. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Somarathna, P.; Minasny, B.; Malone, B.P. More data or a better model? Figuring out what matters most for the spatial prediction of soil carbon. Soil Sci. Soc. Am. J. 2017, 81, 1413–1426. [Google Scholar] [CrossRef]
- Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2019, 81, 401–418. [Google Scholar] [CrossRef]
- Vaudour, E.; Gholizadeh, A.; Castaldi, F.; Saberioon, M.; Borůvka, L.; Urbina-Salazar, D.; Fouad, Y.; Arrouays, D.; Richer-de-Forges, A.C.; Biney, J.; et al. Satellite Imagery to Map Topsoil Organic Carbon Content over Cultivated Areas: An Overview. Remote Sens. 2022, 14, 2917. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sens. 2021, 13, 3778. [Google Scholar] [CrossRef]
- Yu, L.; Gong, P. Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives. Int. J. Remote Sens. 2012, 33, 3966–3986. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.W.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite–1 Syposium; Freden, S.C., Mercanti, E.P., Becker, M., Eds.; Technical Presentations, NASA SP-351; NASA: Washington, DC, USA, 1974; Volume I, pp. 309–317.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laamrani, A.; Voroney, P.R.; Saurette, D.D.; Berg, A.A.; Blackburn, L.; Gillespie, A.W.; Martin, R.C. An Extensive Field-Scale Dataset of Topsoil Organic Carbon Content Aimed to Assess Remote Sensed Datasets and Data-Derived Products from Modeling Approaches. Remote Sens. 2022, 14, 5519. https://doi.org/10.3390/rs14215519
Laamrani A, Voroney PR, Saurette DD, Berg AA, Blackburn L, Gillespie AW, Martin RC. An Extensive Field-Scale Dataset of Topsoil Organic Carbon Content Aimed to Assess Remote Sensed Datasets and Data-Derived Products from Modeling Approaches. Remote Sensing. 2022; 14(21):5519. https://doi.org/10.3390/rs14215519
Chicago/Turabian StyleLaamrani, Ahmed, Paul R. Voroney, Daniel D. Saurette, Aaron A. Berg, Line Blackburn, Adam W. Gillespie, and Ralph C. Martin. 2022. "An Extensive Field-Scale Dataset of Topsoil Organic Carbon Content Aimed to Assess Remote Sensed Datasets and Data-Derived Products from Modeling Approaches" Remote Sensing 14, no. 21: 5519. https://doi.org/10.3390/rs14215519
APA StyleLaamrani, A., Voroney, P. R., Saurette, D. D., Berg, A. A., Blackburn, L., Gillespie, A. W., & Martin, R. C. (2022). An Extensive Field-Scale Dataset of Topsoil Organic Carbon Content Aimed to Assess Remote Sensed Datasets and Data-Derived Products from Modeling Approaches. Remote Sensing, 14(21), 5519. https://doi.org/10.3390/rs14215519