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Abstract: Wind speed reconciliation across different wind sources is critically needed for extending
available satellite wind records in Tropical Cyclones. The deviations between wind references of
extremes, such as the moored buoy data and dropsonde wind estimates for guidance on geophysical
model function development, are one of the main causes of wind speed differences for wind products,
for instance, the overestimation of Synthetic Aperture Radars (SARs) relative to ASCAT winds. The
study proposes a new wind speed adjustment to achieve mutual adjustment between ASCAT CMOD7
winds and simultaneous SAR wind speeds. The so-called CMOD7D-v2 adjustment is constructed
based on the statistical analysis of SAR and ASCAT Tropical Cyclone acquisitions between 2016
and 2021, showing a satisfactory performance in wind speed reconciliation for winds with speeds
higher than 14 m/s. Furthermore, the error characteristics of the CMOD7D-v2 adjustment for Tropical
Cyclone winds are analyzed using the Triple Collocation analysis technique. The analysis results show
that the proposed wind adjustment can reduce ASCAT wind errors by around 16.0% when adjusting
ASCAT winds to SAR wind speeds. In particular, when downscaling SAR winds, the improvement
in ASCAT wind errors can be up to 42.3%, effectively alleviating wind speed differences across wind
sources. Furthermore, to avoid the impacts of large footprints by ASCAT sensors, wind speeds
retrieved from SAR VV signals (acting as a substitute for ASCAT winds) are adjusted accordingly
and compared against SAR dual-polarized winds and collocated Stepped Frequency Microwave
Radiometer (SFMR) observations. We find that the bias values of adjusted winds are lower than
products from other adjustment schemes by around 5 m/s at the most extreme values. These
promising results verify the plausibility of the CMOD7D-v2 adjustment, which is conducive to SAR
and ASCAT wind speed comparisons and extreme wind analysis in Tropical Cyclone cases.

Keywords: Tropical Cyclone; wind speeds; Synthetic Aperture Radar; ASCAT; wind adjustment

1. Introduction

Tropical Cyclones (TCs) are among the most destructive natural disasters, making
coastal economies vulnerable to extreme wind force, heavy rain, and dramatic storm surges.
Space-borne remote sensing plays an essential role in global TC monitoring. Microwave
sensors, such as scatterometers and Synthetic Aperture Radars (SARs), have the unique
capability of cloud penetration and can provide all-weather ocean surface roughness
(Normalized Radar Cross Section, NRCS) measurements. A series of Geophysical Model
Functions (GMFs), mapping wind vectors to NRCS values measured by satellite sensors,
have been developed during recent decades [1–4] to achieve accurate estimates of ocean
surface winds. In particular, the CMOD7 [5] and MS1AHW [6] are the two most state-of-art
GMFs for scatterometer and SAR wind vector retrieval, respectively. These wind retrieval
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algorithms are usually trained with different in situ wind reference bases, mainly moored
buoy or dropsonde wind measurements.

However, the concern of wind reference qualities is often ignored, which is one of
the causes of wind measurement inconsistency between different wind sources. The
moored buoy data are generally used as the absolute reference for scatterometer GMF
calibration [7,8]. To date, many operational scatterometers and the European Centre for
Medium-Range Weather Forecasts (ECMWF) follow the moored buoy scale due to their
perceived accuracy. However, there is a controversy on the quality of buoy measurements
in rough seas, where buoys have been thought to be impacted by sheltering caused by
large waves and elevation changes, thus leading to negative biases. These concerns refer
back to the research by [9,10]. However, the recent C-band High and Extreme-Force
Speeds (CHEFS) project [7] (funded by the European Organization for the Exploitation
of Meteorological Satellites, EUMETSAT) made a thorough investigation of the integrity
of buoy winds and found that the impacts can be well-calibrated [11], addressing the
concerns about the moored buoy capability for high-wind calibration and validation. As
such, moored buoy data can be considered of good quality, though largely absent for the
most extreme winds. The credibility of moored buoy data has been verified for extreme
winds up to 25 m/s, and above 25 m/s, only sporadic data exist [7,12]. On the other hand,
Stepped Frequency Microwave Radiometer (SFMR) observations, calibrated by dropsonde
wind profiles [13], are the current sole available spatial wind observations for satellite-
based sensors, with TC wind sensitivity up to about 75 m/s and dispersion of 5 m/s
[8,13]. Nevertheless, several quality issues remain for dropsonde winds at 10 m height,
as well as for the representativeness of dropsondes for SFMR winds [14]. The accuracy of
the position, speed, and deceleration processing of the sonde near the surface [7,11] has
not been investigated, which can result in systematic biases and hence contaminate the
10 m winds obtained. Such errors are speed-dependent, highlighting the importance of an
improved assessment of the sonde processing near the surface, where the deceleration is
maximum [7,15]. In addition, SFMR winds show increased variance in high winds and an
evident wind speed overestimation compared to scatterometer wind estimates at extreme
winds [16]. The deviations between these two wind references highlight the importance of
building a more reliable and general wind reference for high and extreme winds, which
will contribute to extending available satellite wind records of TCs.

In service of this goal, satellite instrument intercalibration of extremes is necessary [17],
and thus calls for relevant investigations. However, it is a dilemma which kind of in situ
measurements researchers should put more confidence in [11] and how to best calibrate
winds to achieve wind consistency. Calibration and validation of wind estimates from mul-
tiple platforms are popular in present research, while commonly against one wind speed
reference of choice. For example, several studies have attempted to calibrate satellite winds
(e.g., scatterometers, altimeters, and radiometers) against moored buoy measurements for
operational and longer-term climatological applications [18–20], given their proven high
accuracy. Furthermore, the calibration of reanalysis data [21,22] by satellite winds is often
required for large marine areas and particularly under cyclonic conditions. However, wind
estimates from SAR, SFMR, and dropsonde are often excluded. On the other hand, SFMR
measurements are widely used for SAR wind calibration and GMF developments [3,4,6,23]
for new satellite sensors. Note that a direct comparison between dropsonde and buoy
wind measurements in actual circumstances is nearly impossible because encounters are
rare. As a result, the comparison is generally operated across satellite winds retrieved with
different wind reference bases. Chou et al. [24] investigated the Advanced Scatterometer
(ASCAT) winds (following the moored buoy wind speed scale) versus global dropsonde
observations, showing a systematic negative bias at high and extreme winds. However,
the bias can be effectively mitigated by a quadratic regression fit (noted as Chou-2013).
Tamizi et al. [25] made an assessment for the Chou-2013 adjustment by comparing adjusted
winds to TC winds approximated by the Holland model [26], exhibiting a slight under-
estimation for most scatterometers. On the other hand, the recent analysis by Polverari
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et al. [16] shows a similar result, which is that there exists a high correlation between ASCAT
CMOD7 winds and SFMR measurements at extremes; hence, the wind speed differences
can be removed by an appropriate correction scheme (noted as Polverari-2021 or CMOD7D
adjustment). The finding is further verified by the independent investigation by Ribal
et al. [27], who developed polynomial relationships between different scatterometers and
SFMR measurements.

Nevertheless, considering high wind variability in dropsonde estimates and the grow-
ing number of TC observations by SARs (generally calibrated by SFMR measurements,
and hence indirectly by dropsonde estimates), a specific wind adjustment scheme for wind
speed reconciliation between ASCAT and SAR winds is required before comparison. As
such, in this study, a new wind speed adjustment method (named CMOD7D-v2 adjustment
in the paper to be distinct from the one by Polverari et al.) taking advantage of historical
SAR and ASCAT CMOD7 TC wind fields is tested. The experimental results suggest that
the proposed CMOD7D-v2 adjustment can achieve a good consistency between ASCAT
and SAR winds.

The experimental results illustrate that the high wind speed discrepancy between
dropsonde-based SAR and buoy-based ASCAT winds at extremes can be efficiently re-
moved using a suitable wind adjustment scheme. It contributes to building a more credible
wind reference in the future and hence improves the training of GMFs. In addition, the
adjusted SAR wind speeds are correlated linearly with ASCAT and ECMWF winds, which
implies the potential of uncertainty and error evaluation for these three wind systems in
TC conditions, taking advantage of the Triple Collocation analysis technique [28]. The
obtained error variances of observation (SAR and scatterometer winds) and background
(ECMWF model forecasts) will benefit the usage of 2-Dimensional variational ambigu-
ity removal (2DVAR) for wind ambiguity removal [29–31] in TC conditions, and subse-
quently conducive to the observation assimilation for improving TC track and intensity
forecasting [32–34]. Moreover, the adjusted SAR TC winds can act as auxiliary information
and play a role in future ASCAT TC winds’ spatial resolution enhancement.

2. Materials
2.1. RadarSat-2 and Sentinel-1 SAR Images

Since 2016, European Space Agency (ESA) has set up specific SAR acquisition cam-
paigns (Satellite Hurricane Observations Campaign, SHOC) to maximize SAR acquisitions
in TCs. SHOC helps to collect SAR acquisitions for both RadarSat-2 (RS-2) [35] and
Sentinel-1 (S1) [36] missions and thus feeds research and development activities. RS is one
of the first satellites onboarding a cross-polarized mode that is more sensitive to extreme
wind speeds. It is generally considered one of the most advanced Earth observation radar
image sources and has been widely used in TC research [23,37–39]. The S1 mission was a
constellation of two satellites (S1-A and -1B), which orbited Earth 180◦ apart and offered a
revisit time of around six days. End 2021 S1-B stopped functioning and will be replaced
by S1-C. The high spatial resolution of SAR enables it to capture refined TC characteristics
and thus provide independent measurements of TC metrics [40]. In this study, two kinds
of GMFs are used to retrieve SAR winds: the MS1AHW GMF for SAR dual-polarized
(VV+VH) signals and the CMOD7 GMF for SAR co-polarized (VV) signals.

2.2. ASCAT Data

ASCAT is one available scatterometer type used routinely for near-real-time TC ob-
servation, weather warnings, and forecasting. In this study, the ASCAT-A and ASCAT-B
winds are processed by the ASCAT wind data processor (AWDP) [41] on a swath grid of
12.5 km. The CMOD7 GMF is used in the inversion step of the wind retrieval. The wind
ambiguities are removed using the 2DVAR scheme, in which ECMWF operational forecasts
are used as background winds. The observation and background error variances are left at
their default 2DVAR values. Note that ECMWF surface winds need to be spatially shifted
first to match the TC centres in ASCAT data. A further description of ECMWF forecast
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winds is presented in Section 2.3. For the collocation between ASCAT and ECMWF winds,
we refer to [41]. AWDP generally collects three ECMWF forecasts around the ASCAT
acquisition time and then performs spatial and time interpolations successively (refer to
[42] for interpolation details) to interpolate forecasts to ASCAT Wind Vector Cell (WVC)
positions. However, TC structures move quickly and exhibit vigorous convection, resulting
in artefacts and TC smearing after spatial–time interpolations. As such, only the forecast
step closest to ASCAT acquisition time is used to interpolate to ASCAT WVC positions,
and the time interpolation is not adopted.

2.3. ECMWF Forecasts

The ECMWF winds used in this study are short-range forecasts of 10 m stress-
equivalent winds [7] generated by the ECMWF Integrated Forecasting System (IFS) model.
The IFS model, which is currently operational, combines state-of-the-art meteorological
and atmospheric composition modelling [43], capable of providing deterministic hourly
predictions in a grid spacing of around 9 km. The research by Li et al. [44] found that the
size of TC eyes generally ranges from hundreds to thousands of square kilometres. Thus,
the datasets used in this study under TC conditions appear justified. A high wind speed
consistency between ASCAT and ECMWF winds has been demonstrated in the CHEFS
report [7].

2.4. SFMR Observations

SFMR observations are spatial wind observations directly calibrated against dropson-
des in TCs. The quality of SFMR measurements has been greatly improved during recent
decades [13,45,46]. Until now, SFMR measurements have become the critical data source
for TC research and are widely used for model training and product validation purposes
[47–49]. The SFMR datasets used in this study are provided by the NOAA Ocean Surface
Winds Team (OSWT) and the U.S. Air Force Reserve Command (AFRC) for operational
surface wind measurements. Though noisy, they have been calibrated using the WL150
algorithm [13]. Note that low-quality SFMR data are filtered out based on the quality flag
included. The data collocation between SFMR observations and SAR images is performed
following the criterion of maximizing the correlation coefficients between SFMR wind
speeds and SAR VH measurements in each SFMR flight leg in order to match the TC centres
in SFMR and SAR, cf. [37].

3. Methods

Aiming to explore the exact wind speed retrieval differences between ASCAT and SAR
wind products at extremes, RS-2 and S1 SAR images under TCs between 2016 and 2021
were collected and later collocated with simultaneous ASCAT winds, with a maximum
separation time less than 3.5 h. Note that the corresponding closest-in-time ECMWF IFS
model forecasts have been added to the ASCAT WVC positions and are thus contained
in the ASCAT data. As a result, one can obtain a triple collocation data set of SAR-
ASCAT-ECMWF (SAE). Figure 1a shows the global distribution of SAR images used in this
study: there are 47 Radarsat-2 images, 68 Sentinel-1A images, and 33 Sentinel-1B images.
Statistically, there are 169 SAR-ASCAT pairs available (some SAR data can match multiple
ASCAT images) for imaging TCs, of which TC categories range from tropical storm category
to Category 5. TC categories are defined based on the Saffir–Simpson Scale. A collocation
between S1 and RS-2 TC images was performed, and a statistical comparison of wind
speeds is displayed in Figure 1b. For TC information, refer to Table 1. The statistical results
suggest a high consistency between these two SAR wind sources. As such, we can consider
that S1 and RS-2 provide similar winds, and hence the intercalibration of NRCS signals can
be assumed negligible when the same GMF is used. The statistical results are consistent
with the analysis by Zhang et al. (see Figure 3 in [50]), in which comparable wind speeds can
be retrieved from these two different SAR missions when using the same GMFs. Furthermore,
a series of investigations [6,7,51,52] have demonstrated significant similarities between S1 and
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RS-2 NRCS (after calibration) distributions versus wind speeds. The great consistency implies
the potential to combine different instrument measurements (e.g., S1 and RS-2 winds used in
the study) in service of increasing temporal sampling of TCs.

Figure 1. (a) The geographic locations of SAR TC images used in this study. Note that simultaneous
ASCAT acquisitions with a time departure less than 3.5 h can be found. The red, black, and blue
squares denote RS-2, S1-A, and S1-B, respectively. (b) Scatter plot of S1 SAR winds versus RS-2
wind speeds, which suggests a high consistency between these two SAR wind sources. Thus, the
differences between S1 and RS-2 winds can be assumed negligible when the same GMF is used.

Table 1. SAR Imagery Information of TC cases, wherein both RS-2 and S1 observations are available.
Cyclone locations are Eastern Pacific (EPA), Western Pacific (WPA), Atlantic (ATL), and Indian Ocean (IND).

No. TC
Name Acquisition Time Cyclone

Location TC Centre Category

1 KARL 2016-09-23 ATL (65.2◦W, 31.1◦N) 1
2 DUMAZILE 2018-03-08 IND (57.6◦E, 29.4◦S) TS
3 JONGDARI 2018-07-24 WPA (137.2◦E, 21.1◦N) 1
4 HECTOR 2018-08-07 EPA (147.9◦W, 16.1◦N) 4
5 SOULIK 2018-08-18 WPA (140.1◦E, 24.8◦N) 2
6 MIRIAM 2018-08-29 EPA (139.2◦W, 14.0◦N) 1
7 BELNA 2019-12-07 IND (47.7◦E, 9.3◦S) 1
8 MINDULLE 2021-09-25 WPA (137.0◦E, 18.6◦N) 4
9 MALOU 2021-10-26 WPA (139.1◦E, 20.7◦N) 2

After that, a statistical comparison between SAR- and ASCAT-retrieved wind speeds
was carried out and is shown in Figure 2a. Here, the SAR wind speeds are retrieved from
dual-polarized signals using the MS1AHW GMF. Three error metrics are adopted: bias,
Root Mean Square Difference (RMSD), and Pearson’s correlation coefficient (CC). They are
expressed in the form of Equations (1)–(3), where x indicates ASCAT wind speed estimates
and y indicates the SAR acquisitions. The overbar stands for the mean values.

bias =
1
n

n

∑
i=1

(yi − xi) (1)

RMSD =

√
1
n

n

∑
i=1

(yi − xi)2 (2)

CC =
∑n

i=1(yi − y)(xi − x)√
∑n

i=1(yi − y)2 ∑n
i=1(xi − x)2

(3)

Figure 2b presents the wind speed probability distribution functions (PDFs) of three
wind systems (SAR, ASCAT, and ECMWF winds), revealing an apparent discrepancy
between SAR and ASCAT/ECMWF wind estimates. Figure 2c plots the bias (blue curves)
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and standard deviation of difference (SDD) values of individual wind systems with mean
winds (the best truth when errors are similar [53], as indicated by the close SDD values at
moderate winds) at an interval of 5 m/s. The relatively large SDD differences across three
wind systems at high winds are considered to be due to the high sampling uncertainties,

SDD√
N−1

, where N is the count of sampling points. The uncertainty can surge to around 0.5
m/s at extremes (no results shown). For a motivation to use triple collocation and mean
values in the computation of SDD, we refer to Appendix A. It can be observed that these
three wind systems have similar wind speed estimates for the low-to-moderate wind speed
regime (≤14 m/s), wherein the bias values are all close to zero. However, when wind speeds
exceed 14 m/s, SAR wind speeds appear overestimated compared to the other two wind
sources (which is in line with the recent studies [54,55]) and are the most inconsistent as the
SDD values are the largest, though ECMWF is close. As spatial representativeness errors
appear low (see Section 4), the enhanced SAR resolution appears not dominant here. Besides
spatial variability, random differences contributing to the SDD may emerge from variable
calibration, processing, and numerical artefacts. In particular, the poor calibration (∼0.5 dB)
of SAR data [56] is perhaps a major element for its high SDD values. The ASCAT winds
appear the most consistent. The reported signal saturation phenomenon for VV signals
should reduce ASCAT sensitivity and therefore increase its random error. However, as the
SDD remains relatively small, this effect appears small as well, cf. [7]. It is also noteworthy
here that there exists a high CC value of 0.901, indicating that with an appropriate high-
wind-scaling, the ASCAT winds and SAR winds can be made consistent.

Following the wind speed reference de facto used in operational TC advisories, the
dropsonde-based SAR winds, on the one hand, and ASCAT and ECMWF winds based on
moored buoys, on the other, will be mutually biased at the extremes. The effect of bias
correction is investigated. SAR winds are used as the reference to adjust ASCAT CMOD7
and ECMWF winds to align with SAR wind speeds. The behaviour of the dependence
between ASCAT (VASCAT) and SAR winds (VSAR) shown in Figure 2a suggests a parametric
model of the form

VSAR = a ∗Vb
ASCAT − c (4)

This parametric model is fit to SAR-ASCAT wind speed collocations using the Least
Square approach, with a, b and c as constant real numbers. As a result, the adjustment from
ASCAT to SAR winds can be approximated as follows and vice versa:

VCMOD7D = 0.88 ∗V1.18
CMOD7 − 5.81 (5)

where VCMOD7 and VCMOD7D indicate the buoy-based wind speed provided to the CMOD7
GMF and the obtained dropsonde-scale wind speeds (since dropsondes are used as the
fundamental calibration reference for SAR winds). Notably, the adjustment is only applied
to winds with wind speeds higher than 14 m/s.
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Figure 2. (Left panels—a,d,g): Scatter plots of ASCAT winds versus SAR MS1AHW wind speeds.
(Middle panels—b,e,h): Wind-speed PDFs of original/adjusted satellite winds as a function of wind
speeds. (Right panels—c,f,i): Bias (blue curves) and SDD values (red curves) of three wind sources
as a function of mean wind speeds. The mean wind speed is considered the best truth when errors are
similar; see the close SDD values. The upper panels present the statistical comparison between SAR-
and ASCAT-retrieved wind speeds, showing an apparent discrepancy at extremes. The second row
of panels presents statistical results with respect to SAR wind speeds when upscaling ASCAT and
ECMWF winds to the CMOD7D wind speed scale. The lower panels show the corresponding results
when downscaling SAR winds to the CMOD7 wind speed scale. As can be found, the proposed
CMOD7D-v2 adjustment can efficiently eliminate the wind speed differences between SAR and
ASCAT/ECMWF winds, generating similar wind-speed PDF curves.

4. Results

The study first upscales ASCAT and ECMWF winds to the CMOD7D scale.
Figure 2d presents the scatter plot of adjusted ASCAT winds versus SAR winds. No-
tably, the adjustment reduces the bias from 0.916 m/s to −0.308 m/s and RMSD from
3.556 m/s to 3.028 m/s. Furthermore, a higher CC (0.915) can be obtained. Figure 2e
presents wind speed PDFs of SAR, adjusted ASCAT and adjusted ECMWF winds, showing
a much higher consistency than the unadjusted ones (Figure 2b). In addition, the mutual
biases of these three wind systems (the blue curves in Figure 2f) are significantly reduced,
while SDD values remain relatively unchanged. It is notable that after CMOD7D-v2 adjust-
ment, ECMWF forecasts have the highest SDD values, but the values are very close to SDDs
of SAR winds due to small-scale variations. Generally, the spatial variability in ECMWF
forecasts is reduced by spatial smoothing as ECMWF employs a diffusion operator [57] with
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a width beyond the spatial dimension of a TC to control small-scale numerical differentia-
tion error. One would therefore expect both SAR and ASCAT to contain similar small-scale
information, while ECMWF winds appear more smooth and thus explode ECMWF SDD
values. Indeed, both SAR and ASCAT show structures related to moist convection inflow,
while often at different stages of development, due to the time difference of acquisition
and fast time scale of moist convection. In addition, SAR winds suffer calibration features
and poorer wind vector resolution. The latter causes smooth wind directions in the SAR
products used here and hence the correlation between speed and direction retrieval errors.
These factors appear to imply a poor correlation between ASCAT and SAR on the smaller
ASCAT scales, relatively large SAR errors, and a relatively smooth mean wind field. The
smoother ECMWF wind speeds therefore do not deviate too much from the mean in SDD,
showing close SDD values to SAR SDDs. The comparison has also been satisfactorily
made by downscaling SAR winds to the CMOD7 scale, as illustrated in the third row in
Figure 2: the adjustment improves CC with ASCAT by about 2.0% and RMSD by about
40.3%. Notably, the obtained SDD values of SAR winds are smaller with respect to the
results shown in Figure 2f, demonstrating that the high random errors of SAR winds at
extremes can be significantly reduced by downscaling SAR winds to the CMOD7 scale.
Nevertheless, these experimental results illustrate that both moored buoy and dropsonde
wind references can be used without biasing to one of them. In addition, ECMWF IFS
forecasts show higher wind speeds compared to ASCAT or adjusted SAR winds when
mean wind speeds are higher than about 20 m/s; see the positive bias value of ECMWF
forecasts in Figure 2i. A similar phenomenon can also be observed in Figure 2f for winds
with mean wind speeds higher than 30 m/s. This implies that the development imposed in
ECMWF’s newly upgraded IFS model [58], despite being beneficial in achieving higher TC
maximum surface wind speeds, may cause wind speed overestimation in intense TCs.

It is worth mentioning that the previous adjustment schemes by Polverari et al. (2021)
and Chou et al. (2013) have also been tested by adjusting ASCAT and ECMWF winds to
the CMOD7D scale, as shown in Figure 3a,b. These two wind-speed adjustment schemes,
though both capable of achieving overall wind-speed consistency, show some differences:
Chou’s adjustment fails to compensate for the wind speed underestimation of ASCAT when
wind speeds are higher than around 20 m/s. The blue curve in Figure 3c indicates the wind
speed bias of Chou’s results by mean winds, which have negative values at extremes. On
the other hand, the wind speeds of adjusted ASCAT winds by Polverari-2021 are higher
than collocated SAR winds (see the red curve in Figure 3c). Consequently, the proposed
CMOD7D-v2 adjustment scheme shows a better performance in SAR and ASCAT wind
speed reconciliation, with bias values closer to zero. Polverari-2021 uses SFMR as the
reference and does not consider SAR observations. For research involving SAR, ASCAT, and
ECMWF winds, the experimental results above suggest that the proposed adjustment can
achieve better wind speed consistency across SAR, ASCAT, and ECMWF forecast winds.

Figure 4 presents TCs (the upper for TC Larry, acquired on 7 September 2021; the
lower for TC Blas, acquired on 8 July 2016) imaged by adjusted ASCAT and SAR MS1AHW
winds. Both these two wind maps show similar band structures. The right panels present
wind speed variations along the transects (the black transects in Figure 4) through the TC
centres. As can be observed, compared to the original ASCAT CMOD7 winds, the adjusted
ASCAT winds are more consistent with SAR estimates, especially for the eyewall area with
high gradients.
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Figure 3. (a) Scatter plot of adjusted ASCAT CMOD7 winds (by Polverari-2021) versus SAR MS1AHW
winds. (b) Scatter plot of adjusted ASCAT CMOD7 winds (by Chou-2013) versus SAR MS1AHW
winds. (c) Wind speed bias values of three kinds of adjusted ASCAT winds as a function of mean
wind speeds. It can be observed that the ASCAT winds adjusted by CMOD7D-v2 have the lowest
wind speed bias values.

Figure 4. (Left panels–a,d): TC wind fields imaged by adjusted ASCAT CMOD7 wind speeds.
(Middle panels–b,e): TC wind field imaged by SAR MS1AHW winds. (Right panels–c,f): The blue
and red solid curves indicate the wind speed variations provided by original SAR and ASCAT winds
along the transect through the TC centres, showing a large discrepancy, especially around the eyewall
with deep gradients. Note that the CMOD7D-v2 adjustment performs well in bridging the gap: the
adjusted ASCAT winds (red dashed curves) are close to the SAR ones.

The encouraging consistency among SAR, ASCAT, and ECMWF winds after CMOD7D-
v2 adjustment makes it possible to adopt the triple collocation technique [28] to estimate
uncertainties and errors of these wind systems. The triple collocation technique can
simultaneously calculate the error variance estimates of each source and relative calibration
coefficients, given a set of triplets of the variable of interest (e.g., the wind speed triplet of
SAE is used here) and assuming linear calibration. Suppose three wind measurements, wi,
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i = 1,2,3, providing collocated measurements of the same quantity t; then, the measurements
and measurement errors can be approximated as

wi = ai(t + εi) + bi (6)

where t indicates the common part of the measurements; ai and bi represent the calibration
scaling and bias, respectively; and εi stands for the random measurement error in each
system, assumed unbiased and uncorrelated to each other. Note that the error variances
are assumed to be constant over the range of measured values, and thus:

< εi
2 >= σi

2, i = 1, 2, 3 (7)

Reference [59] has illustrated that error variances can be calculated as:

σ1
2 = C11 −

C13(C12 − a2r2)

C23
, σ2

2 = C22 −
C23(C12 − a2r2)

C13
, σ3

2 = C33 −
C23C13

C12 − a2r2 (8)

where r2 indicates representativeness errors. Covariance Cαβ is defined combining first
moment Mα, Mβ, and mixed second moment Mαβ as:

Cαβ = Mαβ −Mα Mβ, α, β = 1, 2, 3 (9)

For the derivation of error variances, we refer to [59]. For this analysis, the SAR (w1),
ASCAT (w2), and ECMWF forecast (w3) winds are used, where w1 is the reference system
with respect to which systems w2 and w3 are to be calibrated. The triple collocation analysis
for wind triplets SAE is performed at different wind speed regimes: (1) ≤ 14 m/s; (2)
> 14 m/s; (3) the whole wind speed regime. A 4-sigma test is performed during the triple
collocation iterative process, and about 2.5% of collocations are filtered out. As discussed
in [60,61], accurate spatial representativeness errors (r2) are useful when evaluating the
individual uncertainties and errors of each collocated data set using triple collocation
analysis. Such an error originates from the resolution differences between the various
observing systems, representing the short-scale details resolved by SAR and ASCAT but
unresolved by ECMWF winds. The r2 is determined following the ideas in [62,63] by
searching for r2 value where the spread in the error standard deviations (SDs) of three
systems reach the minimum. The obtained error SDs of wind-speed triplets (wherein
ASCAT and ECMWF winds have been upscaled accordingly) regarding varying r2 values
are shown in Figure 5. The gray dashed lines indicate the optimal r2 values, where three
wind systems are the most consistent. The obtained r2 values are listed in the last column
in Table 2.

Figure 5. Error SDs of SAR, adjusted ASCAT, and adjusted ECMWF winds under different represen-
tativeness errors (r2). (a) for ≤ 14 m/s; (b) for > 14 m/s, and (c) for the whole wind speed regime.
The optimal representativeness error is determined when the spread in observation error SDs reach
the minimum—see the gray dashed lines.
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Table 2. Triple collocation error SDs (m/s) for wind speed (w). The values in parentheses indicate the
error improvements after CMOD7D-v2 adjustment.

Wind Speed
Regime Operation SAR ASCAT ECMWF Representativeness

Error (r2)

≤14 m/s Not Adjusted 1 1.43 0.76 1.45 0.36

>14 m/s
Upscale 2 2.52 (−0.29) 1.47 (−0.28) 2.53 (−0.30) 0.24 (+0.02)

Downscale 3 1.63 (−1.18) 1.01 (−0.74) 1.65 (−1.18) 0.05 (−0.17)
Not Adjusted 2.81 1.75 2.83 0.22

Overall Dataset
Upscale 1.83 (−0.16) 1.06 (−0.12) 1.83 (−0.17) 0.36 (−0.24)

Downscale 1.49 (−0.50) 0.85 (−0.33) 1.51 (−0.49) 0.24 (−0.36)
Not Adjusted 1.99 1.18 2.00 0.60

1 Original SAR, ASCAT and ECMWF wind speeds; 2 ASCAT and ECMWF wind speeds are upscaled to the
CMOD7D scale; 3 SAR wind speeds are converted to the CMOD7 scale.

Table 2 lists the obtained error SDs of wind speeds (εw). The “Upscale Operation” in
the second column indicates that ASCAT and ECMWF wind speeds are upscaled to the
CMOD7D scale, while the "Downscale Operation" means the SAR winds are downscaled
accordingly. Finally, “Not Adjusted” means all three wind systems remain at their original
wind speeds. The r2 value of 0.36 m2/s2 at the moderate wind speed regime (≤14 m/s)
is close to the values for lateral and transverse (u, v) wind components reported in [16]
and [62], in which the triple collocation analyses are mainly operated at mild wind condi-
tions. It is worth mentioning that the proposed CMOD7D-v2 adjustment can effectively
decrease the r2 values and the subsequent error SDs of the three wind systems in either
conversion direction (see the negative values in parentheses in Table 2). Taking the high
wind speed regime (>14 m/s) as an example, converting ASCAT and ECMWF winds to
the CMOD7D scale can bring in 16.0% and 10.6% improvement in error SDs of ASCAT
and ECMWF winds, respectively. The minor increase in r2 value (+0.02 m2/s2) is due to
the amplification of random errors. Comparably, when downscaling SAR winds to the
CMOD7 scale, the proposed CMOD7D-v2 adjustment can reduce r2 by 0.17 m2/s2 and
decrease the error SDs of ASCAT from 1.75 m/s to 1.01 m/s, i.e., an improvement of 42.3%.
These improvements suggest that the proposed wind-speed adjustment can help alleviate
the wind speed differences across these three wind systems and thus achieve wind speed
reconciliation.

Although wind-speed results are reported above, we note a problem in SAR wind
direction retrieval: the wind directions in MS1AHW GMF are not determined based on the
wind streaks contained in the image but closely associated with collocated ECMWF winds.
As a result, the SAR and ECMWF wind directions are both smooth, while ASCAT winds
contain more true wind-direction variance. It results in poor statistical results for ASCAT
(u, v) wind components in triple collocation analysis: ASCAT winds often have the highest
εu and εv values but the smallest εw values (no results shown). It is possible to improve the
current SAR wind direction fields using the 2DVAR scheme and further analyze the (u, v)
wind components with triple collocation. However, it is beyond the scope of this paper
and will be the subject of future research.

5. Discussion

The experimental results in Section 4 show the consistency of the CMOD7D-v2 adjust-
ment between ASCAT CMOD7 winds and dropsonde-based SAR wind speeds, despite
the fact that the ASCAT wind speed information is smoothed by its 25-km true spatial
resolution of ASCAT [64], reducing the extremes. Objectively, this suggests that the pro-
posed statistical CMOD7D-v2 adjustment matches km-scale SAR winds with 25 km scale
ASCAT winds and with ECMWF winds, assigning specific spatial resolution (SAR) or
the lack thereof (ECMWF) as noise contributions. This section aims to further validate
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the consistency of the CMOD7D-v2 adjustment, excluding the impacts of blurring effects
on adjustment results. As the wind speed reconciliations in CMOD7 (i.e., the “Down-
scale” operation in Table 2) and CMOD7D scales (the “Upscale” operation) display similar
improvements, the study here only presents the results when scaling CMOD7 winds to
CMOD7D. In addition, a comprehensive discussion on the merits and limitations of the
new adjustment is included in this section.

5.1. Tests between SAR VV- and Dual-Polarized Wind Speeds

The dual-polarization mode of SARs enables it to make a direct comparison between
VV wind and dual-polarized wind estimates and thus assist the evaluation of the CMOD7D-
v2 adjustment for high spatial resolution images. Note that the existing studies [65,66]
have shown that the GMFs developed from C-band scatterometer observations can be
directly applied to SAR data. As such, this study first retrieved the wind speeds from
SAR VV signals using CMOD7 GMF (acting as a substitute for ASCAT winds but with
grid size of around 1 km) and then adjusted them with Equation (5) accordingly (named
CMOD7D winds here). The scatter plots of SAR CMOD7/CMOD7D winds versus SAR
MS1AHW winds (retrieved from dual-polarized signals) are shown in Figure 6a,b. For
SAR CMOD7D winds, a higher CC (0.946) and lower bias (0.708 m/s), along with a lower
RMSD (2.113 m/s), can be obtained with regard to original SAR CMOD7 winds shown in
Figure 6a, wherein CC is 0.942, bias is 1.357 m/s, and RMSD is 2.587 m/s.

Figure 6. (a) SAR VV wind speeds (retrieved with CMOD7 GMF) versus SAR MS1AHW estimates
(calculated from dual-polarized signals). (b) Adjusted SAR VV wind speeds versus SAR MS1AHW
estimates. (c) The bias values of CMOD7D wind speeds (by three wind-adjustment schemes) as a
function of mean wind speed. The black, red, and blue curves indicate the corresponding results of
the proposed CMOD7D-v2, Polverari-2021 and Chou-2013, respectively. As can be observed, the
CMOD7D-v2 adjustment has smaller bias values over the whole wind-speed regime.

The other two adjustment schemes (Polverari-2021 and Chou-2013) for SAR CMOD7
wind speed adjustments were also employed to calculate the speed bias at an interval
of 5 m/s of mean wind speeds (estimated by SAR MS1AHW winds and obtained SAR
CMOD7D winds by three adjustment schemes), as shown in Figure 6c. Figure 6c shows
that the CMOD7D-v2 adjustment has a lower bias error (by around 5 m/s) for the high
wind speed regime, while Polverari-2021 and Chou-2013 may overestimate/underestimate
winds. This suggests that the effect of spatial resolution differences between SAR and
ASCAT on earlier results (Figure 3) is small. This may be explained by the earlier assertion
that the “mean” truth effectively used in this manuscript does not contain the smallest
scales. These are rather represented in the SAR SDDs. As the ASCAT SDDs are smaller
and relatively insensitive to the spatial representativeness error, one might deduce that
the triple collocation results are most applicable to the scatterometer-resolved spatial
scales. From this section, it may subsequently be concluded that changes to the GMF
obtained at scatterometer scales are applicable at SAR-observed scales. In other words,
the geophysical relationships (GMF) are not strongly spatial-scale dependent, but rather,
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the higher resolution sensors will observe more detail and hence higher NRCS and more
extreme wind speeds in TCs. Therefore, scatterometer-based GMFs are applied successfully
for SAR-retrieved winds.

5.2. Tests between SAR VV Winds and SFMR Observations

The relevant verification and analysis are further extended by comparing the obtained
SAR CMOD7 winds to simultaneous SFMR measurements. For this purpose, historical
SAR images are collocated with SFMR tracks. There are 156 SFMR tracks available in total.
The collocated SFMR tracks between 2014 and 2021 for individual SAR sensors (S1-A, S1-B
and RS-2) are listed in Table 3. The scatter plots of SAR CMOD7/CMOD7D winds versus
collocated SFMR wind measurements averaged over a distance of 1 km along the tracks
are shown in Figure 7a/Figure 7b. Note that only the collocations with time departures ∆t
less than 3 h are selected.

Figure 7. (a) SAR VV wind speeds (retrieved with CMOD7 GMF) versus SFMR measurements.
(b) Adjusted SAR VV wind speeds versus SFMR measurements. (c) The bias values of CMOD7D
wind speeds (by three wind-adjustment schemes) as a function of mean wind speed. The black, red,
and blue curves indicate the corresponding results of the proposed CMOD7D-v2, Polverari-2021 and
Chou-2013, respectively. As can be observed, the CMOD7D-v2 adjustment has smaller bias values
over the whole wind-speed regime.

Table 3. The number of SFMR tracks collocated with Sentinel-1 A (S1-A), Sentinel-1B (S1-B), and
Radarsat-2 (RS-2) TC images between 2014 and 2021.

Year S1-A S1-B RS-2 Sum of Tracks

2014 2 0 8 10
2015 0 0 12 12
2016 10 2 5 17
2017 9 5 9 23
2018 8 9 10 27
2019 23 5 2 30
2020 13 13 17 43
2021 0 1 2 3

The known deviation between SFMR and CMOD7 winds is evident. As before, when
adjusting SAR CMOD7 estimates to obtain CMOD7D winds, the correspondence improves.
The obtained SAR CMOD7D winds can obtain values up to 50 m/s at good quality, reducing
bias from 4.055 m/s to 2.095 m/s and RMSD from 7.086 m/s to 5.8 m/s. In addition, the
adjustment can improve CC by about 2.0%. It is worth noting that the scatter plot of SAR
winds versus SFMR observations shows a higher spread compared to that in the scatter
plot of SAR winds versus ASCAT (Figure 2d) and that in the scatter plot of SAR CMOD7
winds versus SAR MS1AHW winds (Figure 6a), especially at the low-to-moderate wind
speed regime (<14 m/s). It hinders convergence in triple collocation analysis and thus



Remote Sens. 2022, 14, 5535 14 of 18

makes it difficult to achieve an accurate estimation of wind speed errors. One cause of the
severe spread across SAR and SFMR winds is supposed to be the noise and high variations
contained in SFMR observations. This agrees with current discussions on the quality issues
of SFMR observations, as introduced in the Introduction.

Furthermore, the bias values of obtained CMOD7D winds and counterparts by the
other two adjustment schemes are calculated as a function of mean wind speed at an
interval of 5 m/s, as shown in Figure 7c. The horizontal coordinate indicates the average
wind speed of SAR MS1AHW, CMOD7D winds, and SFMR estimates. Similar to the results
presented in Section 5.1, the proposed CMOD7D-v2 adjustment shows a lower bias value
compared to other two adjustments (by up to 5 m/s) at the most extreme values.

5.3. Limitations and Future Research

The experiments above demonstrate the capability of the proposed wind-adjustment
scheme in achieving wind-speed consistency across different wind sources. Moreover,
compared to the existing two wind-adjustment schemes, the proposed one has lower
bias values over the whole wind-speed regime. Nevertheless, it should be noted that all
these wind adjustments are constructed based on the differences between different GMF
retrievals, which intrinsically originate from the deviations between wind reference bases
selected (e.g., moored buoy and dropsonde introduced in the study). In real conditions,
the wind speed retrieval differences between various satellite instruments can be related to
other factors, such as the impacts of processing. Taking Figure 6 as an example, although the
obtained CMOD7D winds have a similar distribution trend with regard to SAR MS1AHW
winds, a large spread across the observations can be observed at the high wind-speed
regime (e.g., > 20 m/s), which illustrates the impacts of these other factors. As such, the
proposed CMOD7D-v2 adjustment scheme, as well as the other two wind adjustments, are
capable of achieving an overall statistical wind speed reconciliation but may not capture
the full extreme variability conditions. Therefore, a more subtle wind adjustment scheme is
expected to be constructed in future research with more factors taken into account in terms
of physics, processing, and representation.

6. Conclusions

Since the birth of space-borne active microwave sensors, a series of GMFs have been
developed to detect ocean surface winds with increasing accuracy. However, the reliability
of wind references bases deserves doubt and satellite wind mutual adjustment at extremes
is necessary to improve the usefulness of available satellite records. Therefore, exploring
the relationship between different GMF retrievals can be conducive to the long-term goal of
building a more consolidated wind reference for the whole wind speed regime in the future.
The study builds a new CMOD7D-v2 adjustment based on the wind speed differences
between ASCAT CMOD7 and SAR MS1AHW winds. The experimental results confirm
that the adjustment is effective and can achieve a good wind speed reconciliation across
different wind sources. In particular, the triple collocation analysis results suggest that the
errors of ASCAT winds can be reduced by around 16.0% (42.3%) when scaling ASCAT and
ECMWF winds (SAR winds) to the CMOD7D (CMOD7) scale following the adjustment,
efficiently alleviating the wind speed differences across wind sources. Furthermore, the
proposed scheme has lower bias values (by around 5 m/s) at the most extreme values than
the existing wind-adjustment schemes.

More TC cases will be added in future research to provide further and more accurate
results. In addition, the feasibility of CMOD7D-v2 adjustment implies that the triple
collocation analysis for wind triplets of SAE (i.e., wind triplet of SAR-ASCAT-ECMWF
introduced in Section 3) is credible and thus can provide more reasonable background (e.g.,
ECMWF forecasts) and observation (e.g., SAR and ASCAT observations) error SDs. It will
benefit the data assimilation of ASCAT data in TC cases. However, more factors need to be
considered, such as the observation density and quality issues. As such, a stricter quality
control scheme is required for subsequent research. Finally, consolidated SAR, ASCAT and
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ECMWF wind speeds will be helpful for 2DVAR studies into ASCAT TC winds resolution
enhancement.
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Appendix A. The Bias Values and Standard Deviation of Difference with Regard to
Mean Values

Here, we discuss the estimation of random errors of triple collocations of observation
systems, xi, with i the observation system index, i = 1, 2, 3. Assuming there are no
remaining biases, we can define the measurements of wind observation system xi as:

x1 = t + ε1 (A1)

x2 = t + ε2 (A2)

x3 = t + ε3 (A3)

m = t + (ε1 + ε2 + ε3)/3 (A4)

where t indicates the common part of the signal (sometimes referred to as the “truth”) and
εi is the random error in each measurement with variance σi

2. It is also assumed that εi
values are uncorrelated with each other,

〈
εiε j
〉
= 0, i 6= j, nor with the common signal t,

〈tεi〉 = 0. m indicates the mean value.
Hence, for observation system of x1, the differences with m can be expressed as:

x1 −m = ε1 −
(ε1 + ε2 + ε3)

3
(A5)

Bias =
∑N

j=1 (xj
1 −mj)

N
(A6)

where j is the collocation index, j = 1, . . . , N. Subsequently, when bias is ignored, the
standard deviation of difference (SDD) of observation system x1 (SDD1) can be obtained in
the form of:

SDD1 =
1
N

√
∑N

j=1(x1 −m)2 =
2
3

√
σ1 +

σ2

4
+

σ3

4
(A7)

https://cyclobs.ifremer.fr/app/tropical
https://cyclobs.ifremer.fr/app/tropical
https://www.aoml.noaa.gov/hrd/data_sub/hurr.html
https://www.eumetsat.int/eumetsat-data-centre 
https://www.eumetsat.int/eumetsat-data-centre 
https://podaac.jpl.nasa.gov/datasetlist?values=ASCAT&view=list&ids=Instruments
https://scatterometer.knmi.nl/cmod7/
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The lowest SDD value implies the lowest random error and hence the largest con-
sistency with t. The SDD values for x2 and x3 can be calculated in the same way. For
comparison, assuming double collocations of observation systems, x1 and x2, in which x2
is used as the reference data, one can obtain the SDD of x1 as:

SDD1 =
1
2
√

σ1 + σ2 (A8)

As can be inferred, σ1 can only be properly calculated with knowledge of the error
characteristics of reference data, σ2. However, prior knowledge of complete error properties
is seldom available in practice. As such, the SDD calculation with respect to the mean
m from, at least, triple collocatioins is a more reasonable estimate of the random error of
observation system xi.
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