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Abstract: Multi-scale target detection in synthetic aperture radar (SAR) images is one of the key
techniques of SAR image interpretation, which is widely used in national defense and security.
However, multi-scale targets include several types. For example, targets with similar-scale, large-
scale, and ultra-large-scale differences coexist in SAR images. In particular, it is difficult for existing
target detection methods to detect both ultra-large-scale targets and ultra-small-scale targets in SAR
images, resulting in poor detection results for these two types of targets. To solve these problems,
this paper proposes an ultra-high precision deep learning network (UltraHi-PrNet) to detect dense
multi-scale targets. Firstly, a novel scale transfer layer is constructed to transfer the features of targets
of different scales from bottom networks to top networks, ensuring that the features of ultra-small-
scale, small-scale, and medium-scale targets in SAR images can be extracted more easily. Then,
a novel scale expansion layer is constructed to increase the range of the receptive field of feature
extraction without increasing the feature resolution, ensuring that the features of large-scale and
ultra-large-scale targets in SAR images can be extracted more easily. Next, the scale expansion layers
with different expansion rates are densely connected to different stages of the backbone network, and
the features of the target with ultra-large-scale differences are extracted. Finally, the classification
and regression of targets were achieved based on Faster R-CNN. Based on the SAR ship detection
dataset (SSDD), AIR-SARShip-1.0, high-resolution SAR ship detection dataset-2.0 (high-resolution
SSDD-2.0), the SAR-ship-dataset, and the Gaofen-3 airport dataset, the experimental results showed
that this method can detect similar-scale, large-scale, and ultra-large-scale targets more easily. At the
same time, compared with other advanced SAR target detection methods, the proposed method can
achieve higher accuracy.

Keywords: ultra-high precision deep learning network (UltraHi-PrNet); multi-scale; target detection;
synthetic aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) is an active Earth observation system, which can ac-
quire high-resolution remote sensing images. However, target detection is an indispensable
part of SAR image interpretation, and its detection results directly affect the efficiency and
quality of subsequent interpretation tasks [1]. In addition, target detection based on SAR
images is one of the pivotal means of national battlefield reconnaissance, which can greatly
enhance the capability of battlefield precision strikes, sea and land reconnaissance, military
intelligence, and other tasks [2].

Fueled by SAR image technology, target detection based on SAR images has been
paid more and more attention all over the world. Lincoln Studio at MIT proposed the SAR
automatic target recognition (SAR-ATR) system, which focuses on target detection, target
identification, and target recognition under different resolutions. They [3] also proposed
that the target detection and recognition based on SAR image process follow the rule of
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detection first and recognition later. Traditional SAR-ATR methods, to a great extent, rely
on hand-crafted features, with much computation and poor generalization capabilities [4].
In addition, traditional target detection based on SAR image algorithms also needs to use
hand-designed features for modeling, which is relatively complex [5].

In the early stages, some scholars proposed detection methods based on segmentation,
line segments, saliency, and the constant false alarm rate (CFAR) [6]. Aytekin et al. [7]
and Freund et al. [8] selected the most discriminating features based on the Adaboost
algorithm [9] for target detection of SAR images with complex scenes. Tang et al. [10]
defined different features for line segments in SAR images and then trained support vector
machines (SVMs) [11] for these features to achieve the purpose of distinguishing whether
a line segment is an airport line segment and, finally, to identify each candidate region
according to the classifier. Zhao et al. [12] combined the linear elementary density saliency
map with enhanced learning to obtain the saliency map and, finally, obtained the saliency
map for detection. Hou et al. [13] proposed multi-layer CFAR. With respect to this, firstly,
they adopted a high false alarm rate, which was used to obtain the background area,
and then, CFAR was conducted iteratively on the background area; finally, they detected
the weak targets. He et al. [14] and Wang et al. [15] constructed a superpixel-based ship
detection algorithm for polar SAR images. These methods, however, cannot realize the
integration of detection and recognition and are prone to a large number of false alarms
and missed detections.

In recent years, the emergence of AlexNet [16] has made convolutional neural net-
works (CNNs) [17] develop rapidly, and many scholars have also proposed a large number
of object detection algorithms. These algorithms are rapidly becoming popular and can also
detect and identify different targets simultaneously. Compared with traditional target de-
tection methods, these algorithms do not need to design features manually, thus enhancing
the generalization ability [18]. Although you only look once (YOLO) [19] can detect many
targets faster, the detection effect of multi-scale targets is poor. The simultaneous single-
shot multibox detector (SSD) [20] can detect small targets better, but the detection result of
large targets is not ideal. To improve the detection accuracy, Region-CNN (R-CNN) [21]
and its improved version Fast R-CNN [22] can detect more targets. Due to low detection
efficiency, large-scale targets in SAR images cannot be detected. It can be seen that these
methods are only applicable to the detection of targets of similar-scale differences.

With the increase of SAR image resolution, multi-scale target detection becomes the
core problem. To solve this problem, some scholars also proposed multi-scale target detec-
tion algorithms for SAR images [23,24]. At present, multi-scale target detection algorithms
in SAR images mainly include traditional algorithms and deep learning algorithms. Li
et al. [25] proposed a multi-stage superpixel-based CFAR detection algorithm, which can
obtain better results in simple scenes. The detection performance of this method, however,
is poor when the target is in complex scenes. Zhai et al. [26] proposed a target detection
algorithm with saliency and context information processing functions, which can pay more
attention to large ships with prominent features and background targets, but this method
ignores small ships. Hong et al. [27] proposed a YOLOv3 [28] algorithm with a multi-layer
feature pyramid structure, which solved the problem of multi-scale target detection in a
complex environment, but this method mainly improved the detection performance of
small targets. Wang et al. [29] used attention and semantic aggregation to improve SSD [20]
to detect multi-scale targets in SAR images. Although these algorithms can preliminar-
ily solve the existing problem of multi-scale target detection, the scale of simultaneously
detected targets should not be too different; otherwise, there will be missed detections.

However, in SAR images, targets with similar-scale differences, large-scale differences,
and super-large-scale differences often exist at the same time, as shown in Figure 1. At
the same time, we also define the targets with a large size difference and a huge size
difference as cross-scale targets. In a SAR image, a target with a resolution of less than
15 × 15 pixels is defined as an ultra-small target, and a target with a resolution of more
than 600 × 600 pixels is defined as an ultra-large target, such as airports and airplanes,



Remote Sens. 2022, 14, 5596 3 of 22

airports and vehicles, airports and ships, different types of vehicles and different types
of ships, and so on. It is difficult to realize simultaneous detection of different targets,
especially targets with a huge size difference. However, traditional algorithms and deep
learning algorithms have poor effects on simultaneous detection. To solve this difficult
problem, Lin et al. [30] made a single prediction of features extracted at different levels
and achieved multi-scale target detection. Subsequently, Ren et al. [31] and Jiao et al. [32]
proposed a dense-connection-based Faster R-CNN [31] algorithm that can detect more
multi-scale targets. Fang et al. [33] proposed a remote sensing target detection algorithm
with a pyramid structure for small targets, which improved the performance of small
target detection. At the same time, Nie et al. [34] constructed a multi-scale target detection
algorithm with the Mask R-CNN [35] structure, which improved the detection performance
of both large and small targets. However, these methods are not sufficient to extract the
features of targets with different scales and cannot simultaneously detect targets with huge
size differences.

Figure 1. Examples of multiscale targets in SAR images, including small-scale ships, large-scale ships,
and ultra-large-scale airports. There are huge differences in the scale between different targets.

Through the above analysis, both the traditional target detection algorithm and the
deep-learning-based target detection algorithm have a shortcoming. When the target with
large size difference appears at the same time, these methods cannot detect such targets
well at the same time. Inspired by this, we designed an ultra-high precision deep learning
network (UltraHi-PrNet) that can detect dense objects of different scales in SAR images.
The network can achieve excellent detection performance for targets with similar-scale
differences, large-scale differences, and ultra-large-scale differences in SAR images.

In conclusion, the following are the innovative parts proposed in this paper:

1. Firstly, a novel scale transfer layer is constructed, which can transfer the target features
of different scales from the bottom network to the top network, while at the same
time, ensuring that the ultra-small-scale and small-scale target features in SAR images
can be better extracted, as well as the large-scale target features in SAR images. This
method avoids the problem of missing detections of multi-scale targets in SAR images.

2. Then, a novel scale expansion layer is constructed, which can better expand the
receptive field of feature extraction and can extract the features of both large-scale
targets and ultra-large-scale targets simultaneously. This method solves the problem
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that large-scale and ultra-large-scale targets cannot be detected simultaneously in
SAR images.

3. Finally, an ultra-high precision deep learning network is established based on the
ResNet101 backbone, the FPN architecture, and the Faster R-CNN [31], which can
better detect ultra-small-scale targets, large-scale targets, and ultra-large-scale targets
simultaneously. This method can detect targets with similar-scale differences, large-
scale differences, and ultra-large-scale differences simultaneously. According to the
experimental results, the algorithm has excellent performance in target detection at
different scales.

The remaining sections are as follows: Section 2 describes UltraHi-PrNet and its key
points in detail. Section 3 introduces the detailed contents and results of the ablation
experiment. In Section 4, the results compared with other algorithms are introduced in
detail. Finally, Section 5 summarizes this paper.

2. Proposed Method

In this section, we introduce the innovation in detail. First, we introduce the important
idea of the overall structure of the proposed method. Next, the UltraHi-PrNet architecture
is described in detail, including the scale transfer layer, the scale expansion layer, the RPN,
and the detection network. Finally, the loss function is explained.

2.1. Ideas of the Method and Overall Structure

As SAR imaging technology becomes stronger and stronger, a large number of high-
resolution SAR images appear, among which multi-scale target detection becomes the core
problem of target detection. In some high-resolution SAR images, there are multiple objects
of different scales. It is difficult for existing methods to detect similar-scale differences,
large-scale differences, and ultra-large-scale differences in SAR images simultaneously.

2.1.1. Ideas of the Method

In the multi-scale target detection of SAR images, it is the core of the whole process
to effectively use the features of different levels to realize the detection of different scales.
Therefore, in this paper, a structure with scale transfer was adopted in a bottom-up network,
which can transfer the features of the lower layer to the higher layer more fully than the
original network. Compared with the dense connectivity in [32], which directly adopts
element addition, the proposed method can better retain the features of different scale
targets. Meanwhile, the method in [32] lacks adaptive feature selection at a specific scale,
which results in the disappearance of some targets at different scales.

In order to avoid the difficulty of extracting partial target features at different scales at
different layers, inspired by [36], this paper injected a scale expansion layer in the process
from the bottom network to the top network, which is beneficial to the network to better
extract the features of the target with a larger size. In different scale layers, more target
features can be extracted as much as possible. In particular, they can better extract the
target features with large size differences.

In contrast, we injected the scale transfer layer and scale expansion layer into the
bottom-up network. In this way, the scale transfer layer can save more target feature maps
of different scales, especially the features of small targets. While ensuring that more target
features can be extracted, the scale expansion layer can more easily extract target features
with larger size differences, especially features of large targets. Finally, the network can
realize the effective detection of various scales of targets, with excellent precision and a low
false alarm rate.

2.1.2. Overall Structure

According to the above ideas, the overall process architecture of SAR image multi-scale
target detection is shown in Figure 2. The whole process mainly includes the following
four parts:
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1. SAR image preprocessing: The size of SAR images was used to determine whether to
preprocess SAR images. If the image to be detected is a large SAR image, the target
occupies a small proportion of the whole large image. Therefore, the large SAR image
needs to be reasonably segmented into some small images in advance, and then, target
detection is carried out.

2. Feature extraction network: Firstly, the pre-processed images are fed into the backbone
network for feature extraction, which is mainly composed of three parts: ResNet101,
scale transfer layer, and scale expansion layer. The initial extracted features are then
fed into a feature pyramid network (FPN) for feature fusion. Finally, the fused features
are fed into the region proposal network (RPN) network.

3. Region proposal network: The candidate region of a multi-scale target in a SAR image
is screened.

4. Detection network: The final multi-scale target detection is mainly performed by the
detection head of the Faster R-CNN, including confidence scores and bounding boxes.

Figure 2. The entire flowchart of the algorithm. Firstly, the input SAR images of various sizes are
preprocessed, then the preprocessed SAR images are transmitted to the proposed UltraHi-PrNet for
feature extraction and detection, and finally, the SAR target detection results are obtained.

2.2. Network Architecture

Most object detection methods mainly use top-level features for prediction, such
as [22,31,37], which all use the last layer of features for prediction. Those methods are
only suitable for SAR images with similar-scale targets, but not suitable for SAR images
with multi-scale targets. While [20,38] fused the features of different scales, the detection
effect of small targets was very poor. Subsequently, the most advanced target detection
method appeared [39], and the YOLOv5 methods introduced a feature pyramid network,
which improved the multi-scale target detection performance; especially, it was easier to
detect small-scale targets. However, small-scale targets and large-scale targets often exist
simultaneously in SAR images, which cannot be detected simultaneously by simply using
existing methods.

Inspired by advanced algorithms such as [30], the core network used in this paper
is the feature pyramid network. Compared with other networks, it can better extract the
features of multi-scale targets in SAR images and has better detection results. However, in
the feature extraction stage, the network cannot well extract the features of the targets with
large-scale differences in SAR images. Especially, the detection performance deteriorates
when both the ultra-small-scale and ultra-large-scale targets exist in the SAR image.

To better detect targets of various scales in SAR images, we formed a scale transfer
layer between each module of the pyramid network to reduce the problem of the vanishing
features and vanishing gradients of small-scale targets in the process of feature extraction.
In addition, To ensure that the features of large-scale targets in SAR images are retained as
much as possible, we added scale expansion layers in the network process to expand the
receptive field of feature extraction, so that the network is more sensitive to the features of
large-scale targets and ultra-large-scale targets in SAR images.

First, this article elaborates on the key components of the scale transfer layer and scale
expansion layer of UltraHi-PrNet. Then, it describe each of the key parts in Figure 2.
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2.2.1. Scale Transfer Layer

To obtain more different types of multi-scale target features in SAR images, inspired
by [36,40], this paper proposes a scale transfer layer. Although [40] can make the detailed
features of the target more prominent, it cannot better extract the features of targets of
different scales, resulting in the failure to detect some small targets and large targets.

In the feature extraction stage, as the number of network layers increases, some target
features will disappear, and the range of some feature maps will also change with the
increase of network layers. The layers with no change in the feature map are regarded as a
stage and use the output of this stage as the feature to be extracted in the later stage.

At this time, adding the scale transfer layer to the feature extraction stage can ensure
that the low-level network does not lose the small-scale target features when extracting
features, while also allowing the high-level network to more accurately extract the large-
scale target features. As shown in Figure 3, we transferred all the target features of different
scales in each stage to the feature map of each subsequent stage and fully retained the
small-scale target features on the SAR image, so that there were small-scale target features
in the feature map at each stage. As the network layers increased, there were more target
features of different scales in different stages.

Figure 3. Structure of scale transfer layer, to realize the transition from low-level small-scale features
to high-level large-scale features.

In the entire scale transfer layer, the target features of different scales output in different
stages are transferred and effectively connected across stages, and the size of the feature
maps in each stage is kept consistent through pooling. For example, when the target
features from stage 2 Conv2 are transferred to stage 4 Conv4, the input of stage 4 Conv4 is
guaranteed to be consistent in the size of feature maps of different scales in different stages.
The feature scale of the target is different in different stages, and the pooling size was set as
2, while the pooling step was set as 4. Among them, for the multiple features input in each
stage, we needed to effectively connect and merge them, but the feature dimension after the
connection and merging would increase. In order to make the dimension the same as the
input dimension of the original stage feature, we needed to add 1× 1 convolution to reduce
the dimension of the connected features after the transfer to ensure that the convolutional
kernel and the number of input feature channels were exactly the same.

For target detection of different scales in SAR images, the scale transfer layer can
effectively improve the maximum information transfer capability between the bottom
network and the top network and also alleviate the gradient disappearance. This structure
retains as much as possible the target feature information of various scales in the SAR image,
especially for small-scale targets and ultra-small-scale targets. This structure promotes
better subsequent feature fusion effects and can also detect more different types of targets
with different scales, such as small ship targets densely arranged in large SAR images.
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2.2.2. Scale Expansion Layer

Through the scale transfer layer, we can obtain more target features of different scales,
especially the features of small targets. However, in addition to small targets in SAR
images, there are also targets with larger sizes. Such targets have a large difference in
size, as shown in Figure 1. In the feature extraction of convolutional networks, such target
features often cannot be simultaneously extracted, accompanied by feature disappearance
and other problems.

In order to extract the larger-scale and ultra-larger-scale target features in the SAR
image, we added a scale expansion layer in the feature extraction process, as shown in
Figure 4. In addition, To ensure that the features of small and large targets in the SAR
image are extracted as much as possible, we added different scale expansion layers to the
network layer, as shown in Figure 5.

Figure 4. Structure of scale expansion layer. The feature extraction of ultra-small-scale targets and
ultra-large-scale targets is realized by changing the receptive field of the scale extension layer.

The scale expansion layer includes multiple dilated convolutional kernels with differ-
ent dilation rates. The data spacing is controlled by adjusting the expansion rate, and the
feature extraction receptive field is increased without reducing the feature resolution, so
that more useful feature representation can be learned in high-level semantic information.
When the set expansion rate is larger, the corresponding convolutional kernel size is larger
and the feature extraction receptive field is larger.
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Figure 5. Architecture of dense-scale expansion layer. Different scale extension layers are placed in
different network layers.

For the traditional convolutional receptive field, there is no additional expansion rate.
For the kth layer, the receptive field calculation formula is as follows.

Lk = Lk−1 + ((Fk − 1) ∗
k−1

∏
i=1

Si) (1)

where Lk−1 represents the receptive field size of the current convolutional layer, Fk repre-
sents the convolutional kernel size of the current convolutional layer, and Si represents
the stride.

For the scale expansion layer, the convolutional kernel and receptive field with ex-
panded convolution are calculated as follows.

CKS
′
= (DR− 1)× (CKS− 1) + CKS (2)

RF1 = DR× (CKS
′ − 1) + 1 (3)

RFi = DR× (CKS
′ − 1) + RFi−1 (4)

where CKS represents the initial convolutional kernel size with a value of 3, DR represents
the expansion rate, RFi represents the receptive field of the i-th convolutional layer, and
the interval between adjacent weights is DR − 1. The DR of ordinary convolution is 1
by default.

Compared with the traditional convolutional receptive field, the receptive field range
of the convolutional layer with the scale expansion layer changes with the expansion rate.
For example, for a 3× 3 convolutional layer, the size of the convolutional kernel is 3 when
DR = 1, and the receptive field size of the first layer is 3; the size of the convolutional kernel
is 55 when DR = 27, and the size of the receptive field on the first layer is 1459. It can be
seen that the size of the receptive field for feature extraction will increase hundreds or even
thousands of times with the increase of the expansion rate.

To obtain a larger receptive field, the scale expansion layers with different scaling rates
were superimposed together to form a pyramidal dense-scale expansion layer. As shown
in Figure 6, the number in each band represents the combination of different expansion
rates, and the length of each band represents the convolutional kernel size of the band
expansion rate after combination and is defined as NCKS. As can be seen from the figure,
this structure has greater scale diversity and a greater receptive field, and it can better
extract multi-scale target features from SAR images. NCKS can be represented as follows.

NCKS = CKS1 + CKS2 + · · ·+ CKSi − (i− 1) (5)
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where CKSi represents the convolutional kernel with the expansion rate in the ith layer and
i is a positive integer.

Figure 6. Pyramidal dense-scale expansion layer. The number in the pyramid structure is the
expansion rate, and the scale expansion layer marked red will be added to the network layer.

In this paper, we added the scale expansion layers of the expansion rate group {1, 3, 6},
{1, 3, 6, 9, 12}, {1, 3, 6, 9, 12, 15, 18}, {1, 3, 6, 9, 12, 15, 18, 21, 24} to the layer, respectively, be-
tween {C1, C2}, {C2, C3}, {C3, C4}, {C4, C5}. As shown in Figure 5, it is a gradient
dense-scale pyramid network. This operation can make the network feature extraction
receptive field increase tens or even thousands of times. In addition, feature images cor-
responding to the connection stage will be parallel to the expansion convolution in this
scale expansion layer to better extract the target features of a large size in SAR images.
Therefore, the proposed scale expansion layer can solve the problem that large-scale and
ultra-large-scale targets in SAR images are difficult to detect.

2.2.3. UltraHi-PrNet

Inspired by [30,33], we designed UltraHi-PrNet as shown in Figure 7. UltraHi-PrNet
can better extract low-level and high-level target features in SAR images. UltraHi-PrNet is
composed of a bottom-up feedforward network, a dense-scale transfer layer, a dense-scale
expansion layer, horizontal connections, and a top-down upsampling process.

In the bottom-top process, the feedforward network mainly performs the feedfor-
ward calculation, which mainly calculates the characteristics of a multi-scale hierarchical
structure. In the whole bottom-top process, the convolutional layer is composed of five
stages. We chose the output from Conv1 to Conv5 as the reference set for the mapping of
target features. Among the five stages, we took the final output of the last four stages as
{C2, C3, C4, C5}, formed a scale transfer layer between the two different stages, and added
a scale expansion layer between the two adjacent stages. This created UltraHi-PrNet, which
is mainly used to extract target features with large-scale differences in SAR images. The
calculation process is shown below.

CFMn =


Ds(Conv7×7(Images)), n = 1

Ds
(
CFMsn−1

)
+

n−1
∑

m=1
STL(CFMm), n = 2, 3, 4

Ds
(
CFMsn−1

)
, n = 5

(6)

CFMsn = CFMn ⊕ SEL(CFMn), n = 1, 2, 3, 4 (7)

where CFMn is all the feature maps at the stage Convn in the bottom-up process, CFMsn is
all the input feature maps of the stage Convn+1, STL and SEL, respectively, are the scale
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transfer layer and scale expansion layer, Ds is the downsampling operation, and ⊕ is the
operation of concatenation.

Figure 7. Architecture of UltraHi-PrNet. When the scale transfer layer and scale expansion layer
are placed in the network layer, the whole network can realize the extraction of various scale
difference features.

In the process of top-down and horizontal linking, the top-down network upsamples
the feature map with high semantic information twice and obtains the feature map with
more semantic information. First, P5 is generated by 1× 1 convolution at C5. Then, the
down-top and top-down processes are fused by horizontal connection. The space size of the
features to be fused is the same, and the horizontal link mainly uses a 1× 1 convolutional
layer. Finally, the final feature map {P2, P3, P4, P5} is obtained by convolution of the fused
feature map 3× 3. Among them, a 3× 3 convolution is added to better eliminate aliasing
in the upsampling process. The entire calculation formula is shown below.

Pn =

{
Conv1×1(Cn), n = 5
Conv3×3(Conv1×1(Cn)⊕ f (n)), n = 2, 3, 4

(8)

f (n) =
5

∑
m=n+1

Upsampling(Pm) (9)

where P is the generated feature map, Upsampling is the upsampling operation, and ⊕ is
concatenation.

Therefore, we sent the final fusion feature map extracted by UltraHi-PrNet to RPN [31]
to generate a bounding box proposal and used our method in Faster R-CNN [31] to achieve
various scale targets for SAR image detection.

2.2.4. Region Proposal Network

UltraHi-PrNet replaces the single-scale feature map without scale transfer expansion
to adapt to the RPN. The whole process of the RPN is shown in Figure 8. First, the feature
map obtains the intermediate layer through a 3× 3 convolutional layer. It then passes
through two 1× 1 convolutional layers for classification and regression. Finally, we obtain
the region proposal. {P2, P3, P4, P5, P6} are respectively input into the RPN, which is used
for object detection of different scales in different stages, where P6 is P5 obtained by a max
pooling operation with a step size of 2.
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Figure 8. Architecture of the RPN.

We set {162, 642, 1282, 5122, 10242} different pixel regions on {P2, P3, P4, P5, P6} for all
anchors. We set the anchors with ratios of {1 : 1, 1 : 2, 1 : 3, 2 : 1, 2 : 3, 3 : 1, 3 : 2} on
each stage. Therefore, there were 35 anchors on the feature map fused on UltraHi-PrNet.

2.2.5. Detection Network

The last part of UltraHi-PrNet is mainly composed of the region of interest (RoI)
pooling and a fully connected layer, as shown in Figure 9. Firstly, in different stages of
UltraHi-PrNet, the non-maximum suppression (NMS) method was used to extract the RoIs
of the feature maps of different scales, and classifiers and regressors were added to the
extracted RoIs. Then, RoI pooling was used to extract the target feature, and the feature
was tiled onto two fully connected layers to perform classification and regression again.
Finally, the detection of targets with similar-scale differences, large-scale differences, and
ultra-large-scale differences in SAR images was completed.

Figure 9. Architecture of the detection network.

2.3. Loss Function

Inspired by Faster R-CNN [31], we applied the loss function of Faster R-CNN in this
paper, mainly by adding loss functions to the RPN and detection networks, which belong
to multi-task loss functions. Since the outputs of both the RPN and detection networks are
classification values and bounding box regression values, the loss functions in this paper
included the following two types: the classification loss function was the cross-entropy loss
function, and the regression loss function was the smooth L1 loss function.

3. Experiments and Results

In this part, first of all, we give a detailed introduction to the experimental settings,
datasets, and evaluation indicators. Then, we= evaluate the proposed method. We conduct
performance tests in different scenarios, including simple and complex scenarios. Ablation
experiments on the scale transfer layer, the scale expansion layer, and UltraHi-PrNet were
conducted to verify the feasibility of the proposed algorithm. Finally, to verify the feasibility
of the proposed method in large-scene SAR images, we selected large SAR images with
high resolution for the experiment. The effectiveness of UltraHi-PrNet for the simultaneous
detection of objects with similar-scale differences, large-scale differences, and very-large-
scale differences in SAR images was verified.
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3.1. Settings

The UltraHi-PrNet architecture proposed in this article was based on the FPN [30]
architecture, and the deep learning architecture was the tensorFlow [41] system architecture.
The algorithm and experiments were all verified on a computer with an Intel(R) Core(TM)
I5-9400F CPU processor and an NVIDIA GeForce RTX 3060Ti GPU. The operating envi-
ronment was Ubuntu, and the corresponding version was 18.04. The CUDA version was
10.2, and the corresponding cuDNN version was 7.6.5. In the experiment, ResNet-101 [42]
was used as the backbone network of UltraHi-PrNet. Among them, the Resnet101 model,
which was pre-trained on the ImageNet dataset [43], was selected.

3.2. Dataset

The datasets used in this article were: SSDD [44], AIR-SARShip-1.0, high-resolution
SSDD-2.0 and SAR-ship-dataset [45], Gaofen-3 Airport Dataset. The SAR images in these
datasets contain different polarization modes, resolutions, and sensors, and the airport
dataset also has airport targets of different scales because of the SAR images with different
resolutions. In the SAR images, airport targets near the coast are relatively larger in scale
compared to ships near the coast, and there are also ultra-large and ultra-small ships close
to the coast. The specific parameters are shown in Table 1.

Table 1. Detailed descriptions of several open SAR datasets.

Dataset Sensor Resolution Polarization

SSDD Sentinel-1, RadarSat-2 1 m–10 m Full
AIR-SARShip-1.0 Gaofen-3 1 m, 3 m Single
SAR-ship-dataset Gaofen-3, Sentinel-1 5× 5, 8× 8, 10× 10, etc. Dual, Full

Gaofen-3 Airport Dataset Gaofen-3 3 m, 5 m, 8 m, 10 m, etc. Full

All experiments in this paper were based on the datasets proposed above. There
were 1160 images selected in the SSDD dataset, 31 images selected in the AIR-SARship-
1.0 dataset, 300 images selected in the high-resolution SAR ship detection dataset-2.0,
2000 images selected in the SAR-ship-dataset dataset, and 60 images selected from the
dataset of Gaofen-3 airport. A total of 3551 images were counted and divided into a
training set, a validation set, and a test set according to a ratio of 7:2:1. Considering that
the airport dataset is a small sample and the number is very small, the 42 airport training
sets were increased to 1680 through data enhancement methods such as flipping, rotating,
random cropping, and brightening. From the data statistics, there were a total of 5189
datasets used for experiments, of which 4124 were training sets used for experiments, 710
verification sets, and 355 test sets.

3.3. Evaluation Metric

To evaluate the proposed algorithm and quantitatively evaluate the performance of
the network, we used standard indicators. These mainly included: true positives (TPs),
true negatives (TNs), false positives (FPs), false negatives (FNs). Recall, precision, average
precision (AP), mean average precision (mAP), and other indicators were used to evaluate
the superiority and feasibility of the algorithm. The calculation formula is as follows.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

The AP is determined according to the recall and precision of each class of target.
Among them, recall is the abscissa and precision the ordinate (these form the PR curve),
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and AP is the area under the PR curve, where P is the precision rate of a single point and R
is the recall rate of a single point.

AP =
∫ 1

0
P(R)dR (12)

The mAP is averaged over the sum of the AP of targets in all categories.

mAP =

n
∑

i=0
AP(i)

n
(13)

when calculating the mAP, AP(i) represents the average detection accuracy of a certain
class and n represents the quantity.

3.4. Evaluation of UltraHi-PrNet

In this part, the performance of the algorithm is tested from three aspects: scale transfer
layer, scale expansion layer, and UltraHi-PrNet, to prove the feasibility of the algorithm.

3.4.1. Effect of Scale Transfer Layer

In this subsection, we perform ablation tests on the scale transfer layer. The proposed
UltraHi-PrNet uses scale transfer layers to connect the feature maps of low-level networks
and high-level networks. The scale transfer layer improves the information transmission
ability between network layers. Moreover, the scale transfer layer obtains the feature
information of various scales and extracts the features of small and medium targets and
large targets in the SAR images, especially for small or extremely small targets. In addition,
the structure can better extract the closely packed target feature information in SAR images.

Based on the same dataset and experimental setup, in the absence of scale expansion
layers, the proposed method was verified by experiments with and without scale transfer
layers. The ablation test is shown in Figure 10. The detection performance is shown in
Table 2.

Figure 10a is the initial image, Figure 10b the image with the truth box, Figure 10c the
detection image without the scale transfer layer method, and Figure 10d the detection image
using the scale transfer layer method. Figure 10e,f are simple scenes, and Figure 10g,h
are complex scenes. In simple scenes, the detection effect of the method without the scale
transfer layer was obviously poor, and there were omissions of small-scale targets. In
complex scenes, the detection effect of the method without the scale transfer layer was poor,
and there were not only missed detections of densely arranged ship targets, but also some
false alarms. The proposed method can avoid these problems. Therefore, the algorithm
performed well in both simple and complex scenarios.

As shown in Table 2, the proposed algorithm had good performance in simple and
complex scenarios, where the recall, precision, AP, and mAP were significantly improved,
with he mAP being 4.5% higher. Because the scale transfer layer transfers the features of
small targets from the bottom network to the top network, the feature information of the
targets of various scales can be better preserved, and the network can more easily extract
target features of different scales. As shown in Figure 10, this algorithm can achieve a better
detection effect. Therefore, the scale transfer layer proposed in this paper is feasible and
effective for SAR target detection. It can detect ultra-small-scale targets.
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Figure 10. Effect of scale transfer layer. (a) is the initial image. (b) is the image with the truth box.
(c) is the detection image without the scale transfer layer method. (d) is the detection image using the
scale transfer layer method. As shown in the figure, (e,f) are simple scenes, and (g,h) are complex
scenes.

Table 2. Feasibility of scale transfer layer.

Methods Input Size Class Recall Precision AP mAP

The original method 600 × 800
ship

airport
91.1%
90.5%

86.2%
85.3%

89.5%
87.3% 88.4%

The proposed method 600 × 800
ship

airport
95.8%
95.2%

89.5%
89.6%

93.1%
92.7% 92.9%

3.4.2. Effect of Scale Expansion Layer

In this subsection, we perform ablation tests on the scale expansion layer. The proposed
UltraHi-PrNet uses scale expansion layers to change the size of the receptive field for
feature extraction. The scale expansion layers with different expansion rates were placed in
different positions of the feature extraction layer. The receptive field size changes with the
expansion rate. The scale expansion layer can also extract large-scale and ultra-large-scale
target features from SAR images without losing the small-scale target features.

Based on the same dataset and experimental setup, in the absence of the scale transfer
layer, we verified the proposed method with or without the scale expansion layer. The
ablation test results are shown in Figure 11. See Table 3 for the performance comparison.

Figure 11a is the original images, Figure 11b the ground truth, Figure 11c the detection
image using the scale expansion layer method, and Figure 11d the detection image without
the scale expansion layer method. Figure 11e,f are simple scenes, and Figure 11g,h are
complex scenes. In simple scenes, the detection effect of the scale-free expansion layer
method was obviously poor, and a large number of small-scale targets were missed in the
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scenes of Figure 11e,f. In complex scenes, the detection results without the scale expansion
layer method were also poor, and there were also large targets missed. In Figure 11g,
although large-scale ship targets were detected, many small-scale ship targets were not.
In the scene of Figure 11h, the airport target cannot be detected due to its large scale.
The proposed method can solve these problems in both simple and complex scenes. The
algorithm can detect small-scale targets, large-scale targets, and very-large-scale targets
well. Therefore, the proposed scale expansion layer is feasible and effective for SAR
target detection.

Figure 11. Effect of scale expansion layer. (a) is the initial image. (b) is the image with the truth
box. (c) is the detection image without the scale expansion layer method. (d) is the detection image
using the scale expansion layer method. As shown in the figure, (e,f) are simple scenes, and (g,h) are
complex scenes.

Table 3. Feasibility of scale expansion layer.

Methods Input Size Class Recall Precision AP mAP

The original method 600 × 800
ship

airport
91.1%
90.5%

86.2%
85.3%

89.5%
87.3% 88.4%

The proposed method 600 × 800
ship

airport
95.4%
95.0%

90.2%
88.6%

92.8%
92.0% 92.4%

As shown in Table 3. In both simple and complex scenarios, each evaluation index of
the proposed method with a scale expansion layer was higher than that without a scale
expansion layer. As can be seen from the table data, there was a significant increase in the
recall, precision, AP, and mAP, with the mAP being 4% higher. To facilitate the network to
extract more features of multi-scale targets, it is necessary to change the expansion rate so as
to obtain a wider range of receptive fields. As shown in Figure 11, the proposed algorithm
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can detect more targets. Therefore, the proposed scale expansion layer can greatly improve
the overall detection performance and can better detect large targets and ultra-large targets.

3.4.3. Effect of UltraHi-PrNet

In this section, we verify the role of the UltraHi-PrNet proposed in this paper. The
scale transfer layer and scale extension layer in the proposed Ultra-HI-PRNet can better
extract the target features with similar-scale differences, large-scale differences, and very-
large-scale differences in SAR images. It can detect not only small- and ultra-small-scale
targets, but also large- and ultra-large-scale targets.

Based on the same dataset and experimental setup, we tested the proposed method
with or without the scale transfer layer and scale extension layer. The ablation test is shown
in Figure 12. The detection performance is shown in Table 4.

As shown in Figure 12. In simple scenes, the method without the scale transfer layer
and scale expansion layer had poor results, and there were obviously small targets missed
in the scene in Figure 12e,f. In complex scenes, the proposed algorithm can detect both
small-scale and ultra-large-scale targets better. In the scene in Figure 12g–j, there were
different targets with the ultra-large-scale difference in SAR images simultaneously. The
original algorithm cannot detect the targets with large-scale differences simultaneously.
Therefore, the proposed algorithm can perform well in both simple and complex scenes. It
can not only realize the multi-scale target detection under general conditions, but also better
detect the target with a large gap in the SAR image. Finally, the simultaneous detection
of similar-scale differences, large-scale differences, and ultra-large-scale differences was
realized.

As shown in Table 4, in both simple and complex scenarios, each evaluation index
with a scale transfer layer and scale expansion layer was higher than that without a scale
transfer layer and scale expansion layer. From the data in the table, it can be seen that
the proposed method had excellent performance, in which the recall, precision, AP, and
mAP all had substantial improvement, and the mAP improved by 8.5%. In this paper, the
scale transfer layer can effectively guarantee that more targets in the SAR image features
are extracted, and at the same time, the scale expansion layer can effectively change the
scope of the receptive field of feature extraction, prompting the extracting of more multi-
scale characteristics of the target, especially when small-scale targets, large-scale targets,
and ultra-large-scale targets exist at the same time. Therefore, as shown in Figure 12, the
UltraHi-PrNet algorithm has good performance and can effectively detect more multi-scale
targets.

Table 4. Effect of UltraHi-PrNet.

Methods Input Size Class Recall Precision AP mAP

The original method 600 × 800
ship

airport
91.1%
90.5%

86.2%
85.3%

89.5%
87.3% 88.4%

The proposed method 600 × 800
ship

airport
99.3%
99.1%

94.8%
93.7%

97.2%
96.6% 96.9%
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Figure 12. Effect of UltraHi-PrNet. (a) is the initial image. (b) is the image with the truth box. (c) is
the result image of the method without the scale transfer layer and scale extension layer. (d) is the
result image of UltraHi-PrNet. As shown in the figure, (e,f) are simple scenes, and (g–j) are complex
scenes.

4. Discussion
4.1. Comparison with Other Algorithms

For the proposed dataset, we put forward the method and the current popular method
for a comparison test, and the test results were analyzed in detail. In this paper, the typical
algorithms in the optical field were compared with those in the SAR field based on the FPN
and CenterNet. For example, target detection methods based on one stage include SSD-
300 [45], SSD-512 [45], YOLOv3 [28], YOLOv4 [39], and YOLOv5. Algorithms based on two
stages include Faster R-CNN, DAPN [40], Improved Faster R-CNN [40], and PANet [46].
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Center-point-based target detection methods include SSE-CenterNet [47]. All the above
algorithms use the mAP for performance evaluation.

To verify whether the proposed method can simultaneously detect three types of tar-
gets with similar-scale differences, large-scale differences, and ultra-large-scale differences
in SAR images, in Figure 13, we selected the above three types of SAR images in the dataset
for testing. Figure 13c, Figure 13d, and Figure 13e, respectively, represent the detection
images of YOLOv4, DAPN, and SSE-CenterNet. Figure 13f is the detection image of the
proposed algorithm.

Figure 13. The proposed algorithm is compared with other advanced algorithms. (a) is the initial
image. (b) is the image with the truth box. (c,d,e), respectively, represent the detection images of
YOLOv4, DAPN, and SSE-CenterNet. (f) is the detection image of the proposed algorithm. As
shown in the figure. There are targets with similar-scale differences, large-scale differences, and
ultra-large-scale differences in the SAR images.

According to the final result of the comparative experiment (Figure 13), it can be clearly
seen that the detection performance of different methods in both simple and complex scenes
varied little only when the scale difference of the target was small. However, the detection
performance of other methods decreased with the increase of the scale difference of the
target, but the proposed algorithm could still maintain excellent detection performance. In
particular, the detection performance of the other three methods was poor when there were
also very-large-scale targets in the SAR image. Therefore, according to the final detection
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results, the algorithm in this paper has the ability to detect small ship targets, large ship
targets, and even ultra-large-scale airport targets.

On the one hand, we selected the most representative object detection algorithms in
the optical field for a comparative test, for example algorithms based on YOLO4, SSD-512,
Faster R-CNN, and so on. The compared detection performances are shown in Table 5.

Table 5. Comparison with target detection algorithms in the optical field.

Methods Input size Class Recall Precision AP mAP

YOLOv4 600 × 800
ship

airport
88.9%
87.9%

93.3%
92.6%

88.7%
87.7% 88.2%

Improved Faster R-CNN 600 × 800
ship

airport
90.4%
87.2%

87.0%
83.1%

89.7%
87.9% 88.8%

SSD-512 600 × 800
ship

airport
89.8%
88.1%

94.5%
93.1%

89.6%
89.2% 89.4%

The proposed method 600 × 800
ship

airport
99.3%
99.1%

94.8%
93.7%

97.2%
96.6% 96.9%

On the other hand, we chose the algorithms of FPN and CenterNet based on the SAR
domain for a comparative test. In [40], CBAM [48] was applied to the feature pyramid
network [30], so that more multi-scale targets could be detected. In [47], spatial shuffle
group enhance was added to the CenterNet network [49], which improves the ability of
small target detection in large SAR images. The compared detection performances are
shown in Table 6.

Table 6. Comparison with target detection methods in the SAR field.

Methods Input size Class Recall Precision AP mAP

DAPN 600 × 800
ship

airport
95.6%
94.5%

90.1%
88.9%

90.5%
89.1% 89.8%

SSE-CenterNet 600 × 800
ship

airport
84.2%
82.6%

97.1%
94.2%

95.2%
93.4% 94.3%

The proposed method 600 × 800
ship

airport
99.3%
99.1%

94.8%
93.7%

97.2%
96.6% 96.9%

According to Tables 5 and 6, the proposed algorithm has good feasibility and effec-
tiveness in comparison, where the mAP values in this paper were all higher than the mAP
values of the other algorithms.

4.2. Target Detection in Large-Scale SAR Images
Preprocessing

Due to the increasing number of SAR images, many scholars have begun to pay
attention to large-scale SAR images. Since the latest methods cannot directly process
the original large-sized SAR images, otherwise the detection result would be very poor
and the computer would crash due to the large amount of calculation after inputting the
image, we performed sliding window cropping on the large-scale SAR image according to
800 × 800 pixels with a step size of 400 pixels. The preprocessing part is shown in Figure 2.

This paper selected typical large-scene SAR images in the experimental dataset and
performed detection under the same experimental settings. Figure 14 is the detection
result image.
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Figure 14. The algorithm proposed in this paper detects large SAR images. There are two kinds of
targets with huge scale differences in the two ultra-large SAR images tested, which are a small ship
target and an ultra-large airport target.

According to the analysis of Figure 14, the detection result was a large-scale SAR
image with a complex background, and the multi-scale target in the image was composed
of an ultra-large-scale airfield and a small-scale ship. Since small-scale ships account for
a very small proportion in SAR images, they are not easy to detect. Meanwhile, artificial
targets are also easy to identify as ships, which leads to some false alarms.

According to the result analysis, the proposed algorithm can perform well on large-
scale SAR images. Because SAR targets are small and similar to speckle noise, it is easy to
confuse targets and non-targets. In addition, large ships and ultra-large airports exist simul-
taneously with small ships in some large-scene SAR images, resulting in huge differences
in target scales between different categories. At present, the most advanced algorithms still
cannot detect them simultaneously, but the proposed method can still effectively detect
different types of targets with large scale differences.

5. Conclusions

The target detection task for SAR images has important research significance and
practical value. Aiming at the problem that targets with similar-scale differences, large-
scale differences, and very-large-scale differences in SAR images are prone to missed
detections, a deep learning network based on ultra-high precision was proposed to solve
this problem.

A novel scale transfer layer was introduced into the feature extraction network, which
can effectively connect the feature map of the bottom network and the top network and was
beneficial to the small- and medium-scale target feature extraction from SAR images. At
the same time, the scale extension layer was added after the scale transfer layer, which can
change the size of the receptive field of feature extraction by adjusting the expansion rate,
and the scale expansion layer with different expansion rates was connected to different
stages of the feature extraction network, which can better extract the features of the ultra-
large-scale target in the SAR image.

More spatial and semantic information is the prerequisite for multi-scale target detec-
tion. In order to preserve spatial and semantic information to a greater extent, the scale
expansion layer and the scale transfer layer were connected effectively. In the whole feature
extraction process, UltraHi-PrNet can better extract the features of small targets, as well as
the features of large targets and ultra-large targets.

A large number of test results showed that the mAP value obtained by this algorithm
was as high as 96.9%, and its detection performance was better than that of excellent object
detection algorithms such as YOLOv4, SSE-CenterNet, DAPN, and so on. Finally, it was
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verified that the algorithm can detect similar-scale differences, large-scale differences, and
ultra-large-scale differences simultaneously.
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