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Abstract: A Mars Surface Composition Detector (MarSCoDe) instrument mounted on Zhurong rover
of Tianwen-1, adopts Laser-Induced Breakdown Spectroscopy (LIBS), with no sample preparation or
dust and coatings ablation required, to conduct rapid multi-elemental analysis and characterization of
minerals, rocks and soils on the surface of Mars. To test the capability of MarSCoDe LIBS measurement
and quantitative analysis, some methods of multivariate analysis on olivine samples with gradient
concentrations were inspected based on the spectra acquired in a Mars-simulated environment
before the rover launch in 2020. Firstly, LIBS spectra need preprocessing, including background
subtraction, random signal denoising, continuum baseline removal, spectral drift correction and
wavelength calibration, radiation calibration, and multi-channel spectra subset merging. Then, the
quantitative analysis with univariate linear regression (ULR) and multivariate linear regression
(MLR) are performed on the characteristic lines, while principal component regression (PCR), partial
least square regression (PLSR), ridge, least-absolute-shrinkage-and-selection-operator (LASSO) and
elastic net, and nonlinear analysis with back-propagation (BP) are conducted on the entire spectral
information. Finally, the performance on the quantitative olivine analyzed by MarSCoDe LIBS is
compared with the mean spectrum and all spectra for each sample and evaluated by some statistical
indicators. The results show that: (1) the calibration curve of ULR constructed by the characteristic line
of magnesium and iron indicates the linear relationship between the spectral signal and the element
concentration, and the limits of detection of forsterite and fayalite is 0.9943 and 2.0536 (c%) analyzed
by mean spectra, and 2.3354 and 3.8883 (c%) analyzed by all spectra; (2) the R2 value on the calibration
and validation of all the methods is close to 1, and the predicted concentration estimated by these
calibration models is close to the true concentration; (3) the shrinkage or regularization technique of
ridge, LASSO and elastic net perform better than the ULR and MLR, except for ridge overfitting on
the testing sample; the best results can be obtained by the dimension reduction technique of PCR
and PLSR, especially with PLSR; and BP is more applicable for the sample measured with larger
spectral dataset.

Keywords: MarSCoDe; Tianwen-1; laser-induced breakdown spectroscopy; preprocessing; quantita-
tive analysis; olivine; simulated Martian atmosphere

1. Introduction

The Mars Surface Composition Detector (MarSCoDe) is a remote sensing instrument
suite mounted on the front deck of the Zhurong rover, in China’s first Mars exploration
mission Tianwen-1. MarSCoDe adopts Laser-Induced Breakdown Spectroscopy (LIBS),
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Short Wave InfRared (SWIR) spectroscopy and Telescopic Micro-Imager (TMI) [1] to im-
plement a partial, detailed, in situ investigation of the elements, minerals, and rocks of
the roving area [2–5]. LIBS, a direct spectrochemical analytical method based on atomic
emission, focuses a high-energy pulsed laser on a sample (i.e., solid, liquid, aerosol, and
gaseous) to heat, melt, vaporize, and then generate an ionized and short-lived plasma
(contains atoms, ions, and free electrons) [6,7]. The photons emitted at wavelengths that
are unique to each element are resolved by the spectrometer to form a spectrum [8]. The
rich emission-specific lines, indicating the chemical composition of the sample, can be used
to identify and quantify the concentration of major, minor, and even trace elements [9].

LIBS has several well-known advantages, such as multi-elemental analysis without
sample preparation, the active removal of dust and coatings and the effectiveness of in
situ and remote detection, even under the extreme conditions of pressure and temperature
and hazardous pollutants [6,10]. From the first observed optical emission with laser
impact in 1962 [11], it has been recognized as a powerful tool for elemental composition
analysis and used in remote detection since the late 1980s [12]. The observed distance has
increased to as far as 180 m in some experiments [13]. Using planetary surfaces was then
suggested [14], and the first occasion was integrated onto a rover in a field setting [15].
Therefore, it is well suited for planet exploration, such as the moon, Mars, and Venus [9],
to provide the geochemical analysis of rocks and soils. The Curiosity rover’s ChemCam
was the first remote LIBS to detail Martian geochemistry with a stand-off distance of
1.5–7 m [16]. The components of the ChemCam were described by Wiens et al. [17], its
performance and science specification were reported in [18], and ground data-processing
techniques (including dark subtraction, denoising, continuum removal, spectral calibration,
radiation calibration, etc.) were used to produce clean spectra [10,19]. The Perseverance
rover’s SuperCam also uses the remote LIBS in the Mars 2020, the components and science
objectives were presented in [20,21], and its preprocessing and some quantitative analyses
were introduced in [22].

In practice, most of quantitative analysis methods of LIBS have been applied to various
research fields based on linear algebra in order to establish the best relationship between
the measured signal and the analyte concentration. The simplest case uses univariate
analysis to model the single spectral peak with the elemental content, but it is defected
in the interference, self-absorption [23], and matrix effect [24]. Meanwhile, multivariate
analysis can provide stable models when the samples have highly variable matrix and
composition [25]. There are more multivariate linear methods, e.g., ordinary multi-linear
regression (MLR), principal component regression (PCR) [26], partial least square regression
(PLSR) [10,27–29], least-absolute-shrinkage-and-selection-operator (LASSO) [28], elastic
net, sparse multivariate-regression-with-covariance-estimation (MRCE) [30,31], etc. Some
methods use artificial neural networks (ANN) [32,33] to account for the possible nonlinear
relationship. Nevertheless, quantifying the material content based on the LIBS spectra
is a difficult task, especially for stand-off detection. At present, more demonstrations
on these multivariate quantitative chemometric strategies have been performed by the
ChemCam team [10,34] and tested on SuperCam [22]. Whether these methods can be used
in MarSCoDe needs to be systematically tested and compared.

To test the capability of MarSCoDe LIBS measurement and quantitative analysis
and try to avoid the matrix effect, some olivine samples with gradient concentrations
were prepared and the experiments in a simulated Martian atmosphere were conducted
before the launch. This paper focuses on the procedure of preprocessing and quantitative
analysis on the MarSCoDe LIBS with the commonly univariate linear regression (ULR),
the multivariate analysis of ordinary MLR, PCR, PLSR, Ridge, LASSO and elastic net,
and the ANN analysis of back-propagation (BP). The performance of these methods is
compared by the mean spectrum and all the spectra for each sample and evaluated with
some statistical indicators (such as R2, mean absolute error, standard error, and root mean
square error). Firstly, the performance of the instrument, the sample preparation and
Mars simulation experiment are introduced (in Section 2.1). Secondly, the methods of
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ground data-preprocessing and some quantitative analyses are presented (in Sections 2.2
and 2.3). Then the performance on the quantification of olivine with MarSCoDe LIBS has
been compared and evaluated (in Section 3). Finally, some conclusions are discussed (in
Section 4).

2. Materials and Methods
2.1. Test Samples and Experiment Environment

The wide use of LIBS is to conduct qualitative and quantitative analysis by comparing
the examined spectra and the reference spectra with a known material concentration. The
LIBS spectra of a complex sample containing several elements may have overlapping
spectral lines and the characteristic emission lines usually need high spectral resolution to
cover a range from 240 to 850 nm [17,35,36]. Some samples can be prepared and placed in a
simulated Martian atmosphere and measured by the LIBS system of MarSCoDe.

2.1.1. Instrument Description and Simulated Experiment

MarSCoDe is one of six scientific payloads and mounted on the front deck of the
Zhurong rover, launched on 23 July 2020 and landed at the candidate site of the Utopia
Planitia on 15 May 2021. It utilizes a LIBS to provide element compositional information
with active spectroscopy over 240–850 nm, an Acousto-optic Tunable Filter (AOTF) to
collect reflected information with passive SWIR over 800–2400 nm, and a TMI to capture
sample texture and morphology image to perform the in situ detection with a stand-off
distance of 1.6–7 m. With the help of a two-dimensional (2D) pointing mirror, the remote
instrument can point small observation footprints with fine-scale sampling and perform
the line scan on rock targets and depth profiling through surface coating. These can be
used for sample classification, composition quantitative, and even 3D characterization.

Figure 1a shows the main units of the MarSCoDe instrument suite, and Table 1 lists
the main technical parameters of LIBS. The composition and performance of the equipment
have been detailed in the literature [1]. There are three array CCDs with 2048 pixels to
record the LIBS spectral response. Selected 1800 pixels among the CCD to correspond to
three channels with a spectral sampling interval of 0.067, 0.132, and 0.203 nm, respectively.
The LIBS spectrometer also has a sufficient sensitivity to collect the reflectance spectroscopy
over the same spectral range, conducted in passive mode as a by-product of the LIBS. This
measurement is typically used as a background after laser shots to assist in the calibration
of LIBS.

Table 1. Main parameters of MarSCoDe LIBS.

Items Values

Stand-off distance 1.6–7 m
Laser type Nd:YAG

Laser wavelength 1064 nm
Pulse width 4 ns
Laser energy 23 mJ

Pulse frequency 1, 2, 3 Hz
Pulse energy density 200 MW/mm2 @ 2 m32 MW/mm2 @ 5 m

Spectral range 240.00–850.00 nm

Spectral sampling interval
0.067 nm @ 240–340 nm
0.132 nm @ 340–540 nm
0.203 nm @ 540–850 nm
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Figure 1. Schematic diagram showing the main units MarSCoDe LIBS and simulated experiment:
(a) diagram of the instrument and experiment; (b) photos of the experimental site.

These samples were placed into a vacuum chamber measured in a simulated Martian
environment, as illustrated in Figure 1. The chamber was filled with the simulated Martian
atmospheric composition gases with Ar of 1.6%, N2 of 2.7% and CO2 of 95.7%, at the
pressure of 700 ± 50 Pa, with a room temperature. Considering most of the on-board
detection targets may be located at 3 m and obtained with the ideal signal–noise ratio,
the LIBS spectra were recorded by the MarSCoDe LIBS with a laser-to-sample distance of
approximately 3 m on 9 October 2019. The laser was emitted at a frequency of 3 Hz after
an autofocus was performed in the center of each sample. One location of each sample
was shot by 60 consecutive laser pulses and hence 60 LIBS spectra were recorded, another
60 passive spectra without the laser shot were collected and their on-board mean was
regarded as the background. All these spectra were measured with an integration time of
1 ms.

2.1.2. Sample Pretreatment and Component Content

Although one of the most advantages of LIBS is no need for sample preparation,
the pretreatment of samples could improve the quality of LIBS spectra. For the solid
samples, it usually directly presses the homogeneous powder of standard material into
pellet. The olivine is a silicate of magnesium and iron, an ultramafic and the main igneous
rock of Mars. A chemical composition of the olivine is usually the end member between
magnesium olivine (Mg2SiO4), referred to as forsterite (Fo), and iron rich olivine (Fe2SiO4),
referred as fayalite (Fa). The different content indicates the different physical conditions
in the geological formation. In natural igneous rock, Mg and Fe are generally oxides,
and they can also be used to simulate the Fo and Fa. For the synthesis of Mg2SiO4, MgO
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and SiO2 were mixed at a ratio of 2 to 1, and for Fe2SiO4, Fe2O3 and SiO2 were mixed at
a ratio of 1 to 1. The chemical formula of the final magnesium olivite terminal mineral
(Mg2SiO4) shares the composition (2(MgO) + SiO2). The chemical formula of the final
iron olivite terminal mineral (Fe2SiO4) and the composition scheme (Fe2O3 + SiO2) are
slightly different, but due to oxygen elements in the air, oxygen elements are ignored
in the analysis. To obtain olivine with a gradient content of Mg and Fe, homogeneous
well-ground oxide mixtures with different desired ratios of MgO, Fe2O3, and SiO2 were
prepared as a stoichiometric composition.

To investigate the accuracy of the quantitative chemical analysis of these chemical
composition with MarSCoDe LIBS, there are eleven samples with gradient concentrations
from 0% to 100% mixed as the training set to establish the calibration model, and three
samples at concentrations of 25%, 55%, and 75% mixed as a testing set to validate the
calibration model, Table 2 lists the set of mixtures. Then, the mixed powders were pressed
into pellets of 4 cm in diameters at 25 tons of pressure at room temperature to reach an
increasing level of hardness and density.

Table 2. End-number for the samples and mixtures.

Samples
Mg2SiO4 (Fo) Fe2SiO4 (Fa) MgO Fe2O3 SiO2

Content/c% Proportional Coefficient of Moles Content

Tr
ai

ni
ng

A01 0 100 0 100 100
A02 10 90 20 90 100
A03 20 80 40 80 100
A04 30 70 60 70 100
A05 40 60 80 60 100
A06 50 50 100 50 100
A07 60 40 120 40 100
A08 70 30 140 30 100
A09 80 20 160 20 100
A10 90 10 180 10 100
A11 100 0 200 0 100

Te
st

T01 25 75 50 75 100
T02 55 45 110 45 100
T03 75 25 150 25 100

2.2. Preprocessing of LIBS Spectra

To improve the accuracy of quantitative analysis, some of the preprocessing of
MarSCoDe LIBS must be carried out prior to the spectral analysis. Similar to ChemCam,
the pretreatments of the measured spectra include: (1) background subtraction, (2) random
signal denoising, (3) continuum background removal (also called baseline correction),
(4) spectral drift correction and wavelength calibration (also called on-board wavelength
calibration), (5) responded radiation calibration, and (6) multi-channel spectra merging and
normalization. However, there are also some differences on denoising, baseline correction,
wavelength, and radiation calibration. In this study, merging the channels can yield the
complete spectra over full bands.

2.2.1. Noise and Background Removal

The measured spectra are usually the sum of the analyte signals corresponding to a
specific atomic or ionic transition [37]. Besides the characteristic emission signal, background
from the environment, noise from detectors and other factors, as well as bremsstrahlung
radiation from free electrons and recombination emission are also included. In order to obtain
clearer spectral signals, we made efforts to eliminate the noises and the background radiation.

(1) Subtracting background

Regarding the dark background, the non-laser spectra closest in time to the active
spectrum of interest can be deducted to avoid the influences of background. Each sample
has 60 LIBS spectra and one background, and there are 5400 pixels corresponding to three
channels (i.e., 1800 pixels per each channel). The responded signal for each pixel of the
spectrometer could subtract the background value from the measured spectral value.
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(2) Denoising random signal

The measured spectra often contain a large amount of environmental noise, which
is usually shown as random fluctuations (approximated as a “white Gaussian noise”),
distributed over all frequencies, and have relatively low amplitudes. Their presence and
the amplitude of noise depend on the experimental conditions. Instead of the method of
undecimated cubic spline wavelet transform [16], a method of wavelet with hard threshold
is conducted to remove the white noise.

(3) Removing continuum baseline

LIBS spectra generally consist of a series of sharp peaks riding on top of a con-
tinuum background, which has a continuous spectral shape and is mainly due to the
bremsstrahlung emission and the recombination of ions and electrons [38,39], and some
stray lights during plasma radiation. The time-gating of the detector can reduce the
continuum, which usually decays much faster than the discrete fluorescence. However,
the MarSCoDe uses non-gated detectors same as the ChemCam, and the LIBS spectra
may contain higher levels of continuum background although they were decreased in
the Martian depression. Instead of the methods of linear interpolation [40] and spline
function interpolated with minima estimated by wavelet [10,16], a method based on asym-
metric least squares smoothing [41] was used to remove the continuous background in
this investigation.

2.2.2. Wavelength and Radiation Calibration

(1) Spectral drift correction and wavelength calibration

The LIBS spectrometer selected 1800 pixels among the CCD to record the spectral
response over 240–340 nm, 340–540 nm, and 540–850 nm. The relationship between pixel
and wavelength has been calibrated with four standard source lamps [1], including a
Mercury–Argon one, covering 253.6–922.5 nm, a Zinc one covering 202.5–636.2 nm, a
Cadmium one covering 214.4–643.8 nm, and a Neon one covering 337.0–1084.5 nm. The
comparison of the known peak positions with their pixel indices in the experimental data
enables the derivation of a 2nd-order polynomial calibration function for each of the three
channels. Additionally, the LIBS spectrometer wavelength may drift slightly with different
environmental conditions (i.e., temperature), and it has been indicated that the drift is
nearly entirety offset by the responded pixels within each channel [1]. The titanium element
provides multiple stable emission peaks over the main range of LIBS wavelengths that
facilitates accurate wavelength calibration [10]. Therefore, some spectra of the Ti plate
were collected in this simulated environment and can be used as reference spectra in
on-board calibration.

(2) Radiation calibration on the respond

The radiometric calibration can be used to establish the relationship between the response
signal of spectrometer and the spectral radiation of target. A relative radiometric calibration
based on an AvaLight-DH-S Deuterium-Halogen light source and an absolute radiometric
calibration based on a Labsphere integrating sphere were conducted to transform the response
signal of the spectrometer to the spectral radiation of the targets. The MarSCoDe response
measurements and corrections have been described in [1]. The response of each pixel can be
converted to the intensity with the radiometric calibration coefficient.

2.2.3. Merging and Normalization

(1) Merge multi-channel into complete spectrum

Three channels of the LIBS spectrometer have some overlaps between the adjacent
channels, so the three channels’ spectra subsets can be merged into an entire spectrum to
obtain the full bands covering 240–850 nm. The recorded spectral counts are consistent for
the three channels’ responses and can be insured with the radiation calibration. Two overlap
spectra between the adjacent channels are first selected with the range of wavelength (with
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left and right expansion of the effective wavelength boundary is 2 nm). Secondly, new
spectral counts on the given wavelength are computed by a linear interpolation. Thirdly,
new spectral counts on the overlap wavelengths are meant with two spectral counts. Finally,
a complete spectrum is merged over full bands.

(2) Normalization of the spectra

To increase the stability of the response and overcome experimental effects, the analyte
spectra can be normalized using a parameter representing the actual plasma conditions. To
reduce the interference matrix effect and further improve the calibration model, Sarkar et al.
test eleven normalization procedures for LIBS pretreatment [42], Karki et al. performed
six different normalization techniques [43], and Castro et al. used twelve normalization
methods [44]. In brief, there are three main normalization methods, divided into the
intensity of an internal standard line, the reference signal, and the plasma condition [45].
For each spectral channel of ChemCam, the normalization based on the spectral profile
area was used, i.e., each spectral set can be individually normalized by dividing each
spectral pixel by the total integrated intensity [9], because the total collected emission
integrated intensity represents approximately the total energy released by the plasma in
each shot, correcting for shot-to-shot variations in laser energy, spot size, plasma geometry
and brightness, collection geometry, and physical matrix effects. In this experiment, the
experimental conditions (such as equipment parameters, measurement of environment
and distance, and sample matrix) were set as the same; hence, a L2 normalization is used to
normalize the MarSCoDe LIBS spectra.

2.3. Quantitative Analysis and Evaluation

To test the performance of commonly statistical analysis methods conducted on the
MarSCoDe, the univariate and multivariate linear regression with characteristic spectral
lines is used to examine the capability of single-element quantitative analysis, while the
multivariate analysis of PCR, PLSR, ridge, LASSO and elastic net and even BP with entire
spectral information are performed to quantify the behavior of LIBS for full bonds. In
the analyses, the training samples’ spectra were used to build a training set, and the
test samples’ spectra are used as a test set to apply derived parameters and provide an
estimate of the generalization of the model with those fixed parameters, while the results
on the mean spectrum and all of the 60 spectra are compared. Finally, the component
concentrations predicted by these methods are evaluated with the true concentrations.

2.3.1. Quantitative Analysis

LIBS quantification is based on the relationship between the spectral signal and the
concentration of analyte, which may be arbitrarily complex but it is highly desirable to
obtain a linear correspondence between them. However, LIBS usually measures with high
resolution spectroscopy and provides redundant spectral data beyond the characteristic
lines. This will cause the number of independent variables to be greater than the number
of dependent variables, and there is a certain correlation between the variables and the
information that overlaps to some extent. It encounters the level of calculation and the
complexity of the problem, such as multicollinearity, overfitting, or underfitting. To solve
the problem of the bias–variance trade-off in linear regression, there are generally three
ways: (a) increasing the number of samples or reduce the characteristic lines, with the
attempt to remove irrelevant predictors, but in practice, both the number of samples and the
characteristic lines are limited; (b) performing regularization to constrain or regularize the
coefficients of a model to reduce the variance, which limits the size or number of parameters
in the model as much as possible to prevent overfitting; and (c) reducing dimension via
extracting PCs, which contain most of the information of the original variables can be
retained by selecting a few principal components, so that these principal components can
be used to replace the original variables. In this investigation, methods corresponding to
the above three ways were performed and compared.
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(1) Calibration curve with linear regression and multivariate linear regression

A linear regression model can assume the best linear relationship between the spectral
signals of the predictor (as input variables) and the concentration values of the analyte (as
output variables) and then can also be used to estimate the concentration of samples to be
analyzed. The univariate analysis is the simplest method, where only one predictor per
sample is exploited and only the concentration value of one single analyte is predicted. The
normalized intensity of the predictors can be plotted versus the material concentration to
build the calibration curve of spectral signal and concentration.

For LIBS, the emission lines of an element are usually not individual and have a certain
correlation with each other. The multivariate analysis is used to avoid the interference
of self-absorption and matrix effects, regarded as MLR. Generally, ordinary least squares
(OLS) is the most basic and commonly used method to fit the linear model. The equation
for a linear model can be expressed as:

ŷi = β0 + β1xi1 + β2xi2 + · · ·+ β jxij (1)

Matrix representation form:
Ŷ = β̂X (2)

where xi is the spectral features, ŷi is the concentration values, i and j are the number of
samples and features, and β is considered the coefficient assigned to each feature. This
method assumes the best fitted line of the observed data by minimizing the sum of squared
deviations of each data point from the line. The goal for a linear model then minimizes the
residual sum of squares (RSS) between predictions and actual values, which is expressed as:

RSSOLS =
n

∑
i=1

(yi − ŷi)
2 =

n

∑
i=1

(
yi − β0 −

m

∑
j=1

β jxij

)2

= (Y − βX)T(Y − βX) (3)

β̂OLS =
(

XTX
)−1

XTY, ŶOLS = β̂X (4)

where yi and ŷi are the actual values and predicted values for the ith observation and m
and n are the sum of features and samples. In fact, the error of regression model can be
decomposed into three parts: error resulting from a large variance, error resulting from
significant bias, and the unexplainable error, which can be expressed as:

E(e) = Bias2 + Variance + σ2

=
(
E
(
Xβ̂
)
− Xβ

)2
+ E

(
Xβ̂ − E

(
Xβ̂
))2

+ σ2 (5)

In the regression, the bias and the variance could be balanced as well possible to keep
both low. In practice, the predictor variables of LIBS spectra are highly correlated with
each other, there is a problem of multicollinearity, which may cause unreliable coefficient
estimates of the model and yield high variance.

(2) Ridge, LASSO, and Elastic Net

In order to reduce the model complexity and prevent overfitting of the linear models,
a shrinkage or regularization technique can be used to improve the OLS by imposing some
constraints to reduce the high variance at the cost of introducing some bias. Ridge and
LASSO regression are two of the most popular variations of linear regression, are more
robust against outliers, and have better prediction accuracy and interpretation power.

Ridge regression is an improved least squares estimation method by adding a L2
penalty term equal to the square of the magnitude of the coefficients. It is designed to
introduce a little bias so that the variance can be greatly reduced, resulting in a lower overall
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mean squared error. It enhances the regular linear regression by changing its cost function
slightly to avoid overfitting the data. Ridge regression performs L2-regularized models.

RSSridge =
n

∑
i=1

(
yi − β0 −

m

∑
j=1

β jxij + λ
m

∑
j=1

β2
j

)2

(6)

β̂ridge =
(

XTX + λI
)−1

XTY (7)

where λ is the regularization penalty.
LASSO regression adds a L1 penalty term equal to the absolute sum of the coefficients

to induce sparsity. Unlike L2-regularized models, the L1-regularizer can perform automatic
feature selection by constricting feature coefficients to zero. Since broadband LIBS has
many superfluous features, the LASSO can eliminate some noisy features [23]. To calculate
its model coefficients, the LASSO solved as follows:

RSSlasso =
n

∑
i=1

(
yi − β0 −

m

∑
j=1

β jxij + λ
m

∑
j=1

∣∣β j
∣∣)2

(8)

β̂lasso =
(

XTX
)−1

(
XTY − 1

2
λI
)

(9)

where λ controls the constriction level of the coefficient vector β. The main difference
between ridge and LASSO regression is that ridge regression can shrink the coefficient close
to 0 so that all predictor variables are retained, whereas LASSO can shrink the coefficient to
exactly 0 so that LASSO can select and discard the predictor variables that have the right
coefficient of 0. However, the LASSO causes a small bias when the prediction is dependent
on a particular variable.

Elastic net regression is a combination of ridge and LASSO that retains the sparse
properties of LASSO and the stability of ridge. It can also select groups of correlated
variables and perform variable selection and regularization through the smoothing of the
coefficient weights. To calculate its model coefficients, the elastic net solves the following
optimization problem:

RSSelastic−net =
n

∑
i=1

{
yi − β0 −

m

∑
j=1

β jxij + λ[α
m

∑
j=1

β j + (1 − α)
m

∑
j=1

β2
j ]

}2

(10)

where λ controls the strength of the combined regularizer penalty and α controls the
mixture of the two regularizers. If α = 0 the model is ridge regression, α = 1 the model is
LASSO regression.

(3) PCR and PLSR

LIBS provides redundant spectral data, and the spectral information is highly corre-
lated and overlapped to some extent. In the multivariate regression, reducing the dimen-
sionality of observations is especially critical. They can extract the significant features or
irrelevant principal components (PCs) of the spectra but still consider the global dataset for
each sample. Principle component analysis (PCA) and partial least squares (PLS) are two
classical dimension reduction approaches. PCR and PLSR are also two alternative methods
to the simple linear model that usually have better model fitting and higher accuracy.
PCR offers an unsupervised approach, while PLSR is a supervised approach based on
the correlation.

PCR is basically using the PCA to obtain the PCs and then performing multiple
regression on certain PCs. First, PCA is performed on the training spectral matrix of the
original independent variables to decompose them into an orthogonal basis, and we can
find appropriate number of PCs according to the coefficient of the independent variable
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matrix, the eigenvalue and feature vector, and the variance contribution rate and cumulative
contribution rate; second, the selected main PCs are used in the outcome variable regression
and analyzed by a multiple regressor with least squares; then, transform the findings back
to the scale of the covariates to obtain a PCR estimator so the regression coefficients are
estimated and the strongest possible correlations between the orthogonal PC scores and
elemental composition are established. The number of PCs must be selected carefully to
ascertain whether the reduced samples will contain meaningful information.

PLSR combines the advantages of the PCA, the canonical correlation analysis, and
the MLR analysis. Unlike the PCA, which try to extract the maximum information that
reflects the variability of the spectra to explain the matrix of X without guarantee that
the PCs are related to Y, PLS attempts to find the multi-dimensional direction in the X
space as well as to explain the multi-dimensional direction in the Y space and establish the
fundamental relationship of two matrices (X and Y), based on the covariance structures.
First, it extracts a set of latent factors that performs a simultaneous decomposition of X and
Y with the constraint, where the latent factors can explain as much of the covariance as
possible between the independent and dependent variables. The components of X can be
used to predict the Y component scores, which are then used to predict the actual values of
the Y variables. The PLS iteratively maximizes the strength of the relation of successive
pairs of X and Y component scores by maximizing the covariance of each X-score with
the Y variables. Second, an OLS regression is used to predict values of the dependent
variables using the decomposition of the independent variables. It involves either only one
dependent variable regarding the concentrations of a single element (PLS-1 regresses) or
multiple dependent variables concerning the concentrations of multiple element (PLS-2
regresses) against the predictor variables [46,47]. Both algorithms explain the variance and
covariance in both X and Y.

(4) Back-propagation

Back-propagation (BP) is a common supervised learning algorithm based on feed-
forward multilayered neural networks according to the error back-propagation algorithm,
in an artificial neural network (ANN). It can obtain a functional relationship between the
input and output by minimizing the loss function based on the gradient descent. The
first and last layers are called the input and output layers and those in-between are the
hidden layers.

Training the BP network involves the forward propagation of signal and back prop-
agation of error. During forward propagation, the spectra are transferred from the input
layer, processed by the hidden layer, and then the output layer. This process generates
output signals through nonlinear transformation. If the actual output concentration of the
output layer is inconsistent with the expected output concentration, it will turn to the back
propagation. The error back-propagation is to back-transmit the output error to the input
layer through the hidden layer and allocate the error to all nodes of each layer, so as to
obtain the error of each layer nodes, which is used as the basis for modifying the weight of
each node. By adjusting the connection weight between the nodes of each layer, the error
of each layer is reduced along the gradient direction. After repeated learning and training,
the network parameters (weights and thresholds) corresponding to the minimum error are
obtained. Generally, the error output is calculated in the direction from input to output,
while the weight and threshold are adjusted in the direction from output to input. In the
weight update phase, the gradient weight is obtained according to the input activation
level and output delta.

2.3.2. Evaluation and Validation

The minimum detectable concentration of an element is one of the key characteristics
of evaluation on the method, technique, and equipment [48]. The limit of detection (LOD)
can be calculated according to the IUPAC criterion [39,49], as described in Equation (11),
where σ is the standard deviation of the blank and S is the slope of the linear part of the
calibration curve. In this experiment, when the element spectral lines are present, the blank
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is measured as the background signal at the spectral position of the emission line or from
the featureless region at both sides of the analyte emission line.

LOD = 3 × σ/S (11)

In practice, some reference samples with a known component content are usually used
to construct the relationship between spectral signal and analyte concentration and can also
be used to predict other samples. Some statistical indicators can be used to evaluate the
performance of the quantitative analysis, such as the coefficient of determination (R2), the
mean absolute error (MAE), the standard error (Std), the root mean square error (RMSE),
etc. Therefore, a R2 value closer to 1 and a MAE, Std, and RMSE value closer to 0 indicate
a accurate quantitative analysis. Meanwhile, it also can be verified by predicted vs. true
concentration values to assess the accuracy and precision of the calibration model. The
same statistical indicators can be performed on the residuals.

3. Results and Discussion

Fourteen olivine pellets were probed and analyzed, among them eleven samples were
set as training and three samples as testing. Each sample was measured with 60 laser-
shot and 60 no-laser-shot in one location, and the 60 no-laser-shot spectra were taken the
average (this process used on-board averaging) as the background. To avoid impurity
contamination on the surface of the sample, the first two spectra were removed, from which
a total of 812 spectra were estimated in the quantitative analysis.

3.1. Pretreatments of LIBS Spectra Preprocessing

In the experiment, each LIBS spectrum was first subtracted by the corresponding dark
background and the white noise of the spectral signal was denoised. Figure 2 shows the
recorded 58 LIBS spectra and one background for 5400 pixels with three channels and
were reduced to obtain the signals. It indicates that the dark background within the three
channels presents three steps and is randomly distributed separately; the signals have a
high signal-to-noise ratio. The mean of the background within the three channels is 1339.3,
1474, and 1534.8, respectively. The range of the background within the three channels
is 1318–1360.5, 1455–1493, and 1517.3–1552.3, calculated using 2.5 times the standard
deviation. The recorded value of all the responded pixels within three channels are greater
than the maximum value of the corresponding background. Figure 3 shows the denoised
spectral signal with the method of wavelet with hard threshold. The noise distribution
within the three channels indicates that the noise presents a Gaussian distribution and the
denoising method retains the characteristic lines. The amount of noise ranges from −20
to 20, representing 0.3% of the maximum signal volume. Then, the continuum baseline
of each spectral signal within each channel was estimated by the method of partial least
squares and removed, as shown in Figure 4. The baseline (indicated with grey line in
the figure) denotes the continuous background at the bottom of the emission peaks. The
baseline-corrected spectrum is at the bottom near zero.



Remote Sens. 2022, 14, 5612 12 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 

(a) 

(b) 

(c) 

Figure 2. Removing the background from 58 LIBS spectra for Sample-A06: (a) raw spectra; (b) noise 
and background; (c) spectral signals. 

(a) (d) 

(b) (e)

(c) (f) 

Figure 3. Denoising the white noise of one spectrum within three channels for Sample-A06: (a) raw 
spectrum; (b) denoised spectrum; (c) noise; (d–f) noise of three channels. 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Pixel index (n)

2000

4000

6000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Pixel index (n)

1350
1400
1450
1500
1550

Average

Average
Average

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Pixel index (n)

0

2000

4000

In
te

ns
ity

(N
D

)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Pixel index (n)

-20

0

20
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Figure 4. Correcting baseline of one spectrum within three channels for Sample-A06.

Figure 5 shows the 58 LIBS spectra with the wavelength and radiation calibration. A
2nd-order polynomial function for each channel from spectral calibration was used to con-
vert each pixel to a wavelength value, where the amount of pixel drift within each channel
was determined by the titanium plate spectrum and was used to correct the measured pixel
of the sample before the wavelength calibration. Then the response digital number (DN) of
each pixel was converted to the intensity with the radiation calibration coefficients.
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The characteristic lines were found by a method of the find peak and then represented
the element of these spectral lines, which were identified through comparison to the
National Institute of Standards and Technology’s atomic spectra database. The main
characteristic lines of the elements contained in the sample can be distinctly identified, and
the elements of Mg, Fe, Si, and O were labeled in the mean spectrum of Sample-A06, as
shown in Figure 6a. Then, all the LIBS spectra were normalized by the L2 normalization.
Figure 6 shows the normalized spectra of the 14 samples, the intensity of the iron and
magnesium spectral lines depends linearly on the concentration in these samples (as listed
in Table 2) and the background of all the spectra presents a plane.
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3.2. Calibration and Validation of Quantitative Analysis

There are usually many characteristic spectral lines (peak intensity or peak area)
indicating the concentration of elements. The calibration model can be established between
representative or multiple spectra and concentration using linear regression, involving the
ULR and MLR.

In the ULR analyses, the magnesium characteristic line of 294.20 nm was used to
build the calibration curve of the Fo, while the iron characteristic line of 404.70 nm was
used to build the calibration curve of the Fa. A calibration curve can be constructed by
the measured intensity against the elemental concentration. The LOD of the calibration
curves can be calculated with the standard deviation of blank and slope of the line of
the calibration curve. To facilitate the comparison with the other methods, the intensity
of spectral lines was used for the quantitative analysis in the experiment, and the mean
spectrum and all of 58 LIBS spectra of the samples were established, respectively, against
the known concentration, as shown in Figure 7. It distinctly indicates that their linear
model between the spectral signal and the concentration values and the results of the
analyzed by the mean spectrum and all the spectra are nearly uniform. The R2 coefficients
of the training set using the mean spectral analysis on the Fo and Fa are 0.9650 and 0.9901,
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respectively, and 0.9615 and 0.9829 for analyzed by all spectra. This indicates that the LIBS
signal intensities of the training set are linearly correlated at low concentrations. Table 3
lists the quantitative analysis accuracy and detection limit for the Fo and Fa analyzed by the
mean spectrum and all spectra. The RMS of training set using the mean spectral analysis on
the Fo and Fa are 5.9131 and 3.1495, respectively, and 6.2079 and 4.1358 as analyzed by all
spectra. The LOD using the mean spectral analysis on the Fo and Fa are 0.9943 and 2.0536,
respectively, and 2.3354 and 3.8883 as analyzed by all spectra. Therefore, it clearly presents
that the better results can be obtained using the mean spectrum than all spectra in the ULR
analysis, the accuracy of Fa by iron is better than that of Fo by magnesium, but the LOD of
Fo is better than Fa, the reason for which may be that the iron has stronger activity than the
magnesium in the laser-induced plasma and it shows strong lines even with less content.
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spectra for Fo and Fa.

Table 3. Accuracy and LOD for Fo and Fa with ULR.

Item
Fo Fa

Mean Spectrum All Spectra Mean Spectrum All Spectra

R2_train 0.9650 0.9615 0.9901 0.9829
R2_test 0.9466 0.9386 0.9839 0.9737

MAE_train (c%) 5.3633 5.4351 2.8993 3.4161
MAE_test (c%) 4.4533 4.5612 2.3015 2.6759

RMSE_train (c%) 5.9131 6.2079 3.1495 4.1358
RMSE_test (c%) 4.7486 5.0935 2.6056 3.3337
Std_train (c%) 5.9131 6.2079 3.1495 4.1358
Std_test (c%) 1.6485 2.4202 2.6036 3.3337

LOD (c%) 0.9943 2.3354 2.0536 3.8883
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In the ordinary MLR analysis, the more characteristic lines of magnesium and iron
(such as the Mg of 294.20, 383.30, 517.40, and 518.50 nm and the Fe of 372.90, 404.70,
438.50, and 440.6 nm) were used to establish the relationship between spectral signal
and component content for Fo and Fa. Meanwhile, in the multivariate analysis based
on shrinkage or the regularization technique of ridge, LASSO and elastic net, based on
principal components for PCR and PLSR and the ANN analysis of BP, all the spectral
information was set as the independent variable matrix. Then the relationship involving
the analyte concentration against the spectral intensity was estimated. In the PCR and PLSR
analysis, we found that three PCs were sufficient to explain 95% of the variance of LIBS
spectra. In the BP analysis, three hidden layers was set (each with a number of neurons
of 12, 8, and 4), and the activation functions of the hidden and output layers adopt the
tangential and linear transfer functions, respectively.

Table 4 lists the accuracy of quantitative analysis for Fo and Fa analyzed by the mean
spectrum and all the spectra of each sample; meanwhile, the validation on the predicted
concentration and true concentration are also evaluated, as shown in Table 5. These
results show that the R2 value of the calibration and validation is closer to 1 (besides BP
algorithm with mean spectrum is approximate 0.89, the other methods are larger than 0.99),
and the R2 value on the validation is better than that of the calibration. This indicates
that the calibration model well describes the linear relationship between spectral signal
and concentration of analytes and the predicted concentration is very close to the true
concentration. To facilitate the comparison of the performance of these methods, some
histograms of the training and testing samples are drawn by the RMSE value of these
methods on the calibration and the validation, as displayed in Figure 8. For the accuracy
of using the calibration model for the training sample (as shown in Figure 8a), the PLSR
performs the best with either the mean spectrum of the sample or all spectra, with the RMSE
value of 0.00 and 0.75, respectively. The PCR algorithm also performs better with the mean
spectrum, although slightly worse than LASSO and elastic net using all the spectra, with
the RMSE value of 1.47 and 2.34, respectively. For the BP algorithm, using all the spectra
of each sample can accurately predict the concentration, while using the mean spectrum
has the worst performance, with the RMSE value of 1.87 and 2.94 for Fo and Fa and 10.34
and 10.72 for Fo and Fa, respectively. The reason may be that the neural network needs
more spectral data for each sample to train the accurate model. The algorithms of ridge,
LASSO and elastic net also show better results for all spectra than on the mean, so these
methods also require more data per sample to train the model. Of the three methods, elastic
net generally performed the best and ridge performed the worst; this also confirms that
elastic net combines the advantages of ridge and LASSO. The algorithms of ULR and MLR
perform poorly compared to other algorithms, except the BP method (when used samples’
mean spectrum), since MLR adopts more characteristic lines and its results are slightly
better than ULR. For the accuracy of using the calibration model for the testing sample (as
shown in Figure 8b), PLSR and PCR also perform the best, with the RMSE value of 1.33
and 1.23 for the Fo on the mean spectrum; 1.81 and 1.95 for Fa on all spectra, respectively;
with the RMSE value of 1.33 and 1.27 for the Fa on mean spectrum; and 1.81 and 1.95 for
Fa on all spectra, respectively; followed by elastic net and LASSO. For the accuracy of
validation on both training and testing samples, these methods show consistent trends,
and the accuracy of all spectra is better than the mean spectrum, comparing Figure 8c
with Figure 8d. Generally speaking, the shrinkage or regularization technique of ridge,
LASSO and elastic net perform better than the ULR and MLR, while the best results can
be obtained using the principal component techniques of PCR and PLSR, representing all
spectral information. Meanwhile, the neural network is more applicable for the sample
measured with lager number spectral data. In practice, using the entire spectral information
of all the spectra instead of the mean spectrum or characteristic lines in the quantitative
analysis can avoid the cumbersome processes of preprocessing, such as spectra averaging,
finding the spectral peak of characteristic lines, etc.
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Table 4. Accuracy of quantitative analysis for Fo and Fa with MLR, ridge, LASSO, elastic net, PCR,
PLSR, and BP.

Data Source Methods R2 MAE (c%) RMSE (c%) Std (c%)
Train Test Train Test Train Test Train Test

Fo
ca

lib
ra

ti
on

M
ea

n
sp

ec
tr

um

MLR 0.9888 0.9712 2.4502 2.8176 3.3454 3.4870 3.3454 3.3930
Ridge 0.9915 0.6335 2.5350 11.8251 2.9094 12.4391 2.9094 12.2429

LASSO 0.9919 0.9168 2.4495 4.8005 2.8381 5.9268 2.8381 5.8816
Elastic Net 0.9926 0.9573 2.3732 3.6437 2.7153 4.2448 2.7153 4.2294

PCR 0.9978 0.9962 1.1177 1.2100 1.4731 1.2706 1.4731 1.1350
PLSR 1.0000 0.9958 0.0000 1.0242 0.0000 1.3313 0.0000 0.8505

BP 0.8930 0.6320 5.9867 11.7907 10.3428 12.4648 10.0868 4.0438

A
ll

sp
ec

tr
a

MLR 0.9751 0.8930 3.7925 5.6764 4.9931 6.7221 4.9931 6.6167
Ridge 0.9950 0.9456 1.7865 4.2160 2.2281 4.7936 2.2281 4.3511

LASSO 0.9983 0.9899 0.9774 1.7033 1.3178 2.0640 1.3178 1.9793
Elastic Net 0.9983 0.9889 0.9403 1.8355 1.2856 2.1623 1.2856 2.0697

PCR 0.9945 0.9910 1.8679 1.5385 2.3350 1.9465 2.3350 1.8932
PLSR 0.9994 0.9923 0.5814 1.4683 0.7457 1.8087 0.7457 1.8067

BP 0.9965 0.9696 0.7422 6.4056 1.8700 8.3740 1.8692 6.0885

Fa
ca

lib
ra

ti
on

M
ea

n
sp

ec
tr

um

MLR 0.9932 0.8981 2.2134 6.4493 2.6053 6.5605 2.6053 6.3726
Ridge 0.9904 0.6185 2.7046 12.0484 3.0910 12.6919 3.0910 12.5018

LASSO 0.9919 0.9168 2.4495 4.8005 2.8381 5.9268 2.8381 5.8816
Elastic Net 0.9964 0.9656 1.6474 3.3251 1.9016 3.8095 1.9016 3.7957

PCR 0.9978 0.9962 1.1177 1.2100 1.4731 1.2706 1.4731 1.1350
PLSR 1.0000 0.9958 0.0000 1.0242 0.0000 1.3313 0.0000 0.8505

BP 0.8852 −1.7729 5.4088 27.1768 10.7164 34.2169 9.2513 29.9132

A
ll

sp
ec

tr
a

MLR 0.9932 0.8981 2.2134 6.4493 2.6053 6.5605 2.6053 6.3726
Ridge 0.9904 0.6185 2.7046 12.0484 3.0910 12.6919 3.0910 12.5018

LASSO 0.9919 0.9168 2.4495 4.8005 2.8381 5.9268 2.8381 5.8816
Elastic Net 0.9964 0.9656 1.6474 3.3251 1.9016 3.8095 1.9016 3.7957

PCR 0.9978 0.9962 1.1177 1.2100 1.4731 1.2706 1.4731 1.1350
PLSR 1.0000 0.9958 0.0000 1.0242 0.0000 1.3313 0.0000 0.8505

BP 0.8852 −1.7729 5.4088 27.1768 10.7164 34.2169 9.2513 29.9132
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Table 5. Accuracy of validation for Fo and Fa with MLR, ridge, LASSO, elastic net, PCR, PLSR, and BP.

Data Source Methods
R2 MAE (c%) RMSE (c%) Std (c%)

Train Test Train Test Train Test Train Test

Fo
va

lid
at

io
n

M
ea

n
sp

ec
tr

um

MLR 0.9999 0.9999 0.3052 0.2052 0.3539 0.2307 0.3539 0.2300
Ridge 0.9948 0.9947 1.9739 1.3269 2.2887 1.4921 2.2887 1.4872

LASSO 0.9920 0.9920 2.4334 1.6358 2.8216 1.8394 2.8216 1.8334
ElasticNet 0.9930 0.9929 2.2828 1.5346 2.6469 1.7256 2.6469 1.7199

PCR 1.0000 1.0000 0.0592 0.0398 0.0686 0.0447 0.0686 0.0446
PLSR 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BP 0.9941 0.9864 2.2873 2.3309 2.4328 2.3923 0.8288 0.5386

A
ll

sp
ec

tr
a

MLR 0.9994 0.9994 3.7925 5.6764 0.7884 0.5140 0.7884 0.5123
Ridge 0.9991 0.9991 0.8150 0.5479 0.9450 0.6161 0.9450 0.6141

LASSO 0.9999 0.9999 0.3096 0.2081 0.3589 0.2340 0.3589 0.2332
Elastic Net 0.9999 0.9999 0.2386 0.1604 0.2767 0.1804 0.2767 0.1798

PCR 1.0000 1.0000 0.1487 0.1000 0.1724 0.1124 0.1724 0.1120
PLSR 1.0000 1.0000 0.0152 0.0102 0.0176 0.0115 0.0176 0.0114

BP 1.0000 1.0000 0.0541 0.0539 0.0543 0.0540 0.0040 0.0026

Fa
va

lid
at

io
n

M
ea

n
sp

ec
tr

um

MLR 1.0000 1.0000 0.1851 0.1244 0.2146 0.1399 0.2146 0.1395
Ridge 0.9939 0.9938 2.1385 1.4375 2.4796 1.6165 2.4796 1.6112

LASSO 0.9920 0.9920 2.4334 1.6358 2.8216 1.8394 2.8216 1.8334
Elastic Net 0.9967 0.9966 1.5764 1.0597 1.8279 1.1916 1.8279 1.1877

PCR 1.0000 1.0000 0.0592 0.0398 0.0686 0.0447 0.0686 0.0446
PLSR 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

BP 0.9441 0.9108 6.1141 5.1367 7.4780 6.1355 5.1638 3.3554

A
ll

sp
ec

tr
a

MLR 1.0000 1.0000 1.2767 1.7129 0.0922 0.0601 0.0922 0.0599
Ridge 0.9992 0.9992 0.7544 0.5071 0.8747 0.5703 0.8747 0.5684

LASSO 0.9999 0.9999 0.2856 0.1920 0.3312 0.2159 0.3312 0.2152
Elastic Net 0.9999 0.9999 0.2581 0.1735 0.2993 0.1951 0.2993 0.1945

PCR 1.0000 1.0000 0.1487 0.1000 0.1724 0.1124 0.1724 0.1120
PLSR 1.0000 1.0000 0.0152 0.0102 0.0176 0.0115 0.0176 0.0114

BP 1.0000 1.0000 0.0807 0.0782 0.0929 0.0838 0.0460 0.0299

In addition, the predicted content of these methods on calibration and validation for
each sample is detailed in the Supplementary Material Table S1. Supplementary Material
Figure S1 plots the linear regression of relation on the predicted and true concentration
values of these methods, and the estimated 95% confidence interval and 95% prediction
interval. The deviation between the predicted concentration and the true concentration
for each sample is detailed qualitatively and quantitatively, and it demonstrates that
the predicted concentrations are consistent with the true concentrations. The PLSR also
performs best with either the mean spectrum of the sample or all the spectra and yields a
narrower 95% confidence interval and 95% prediction interval, followed by elastic net and
PCR. Nearly all the samples are distributed within the 95% confidence interval. Although
LASSO performs similar to elastic net, there are larger deviations than elastic net on the
testing samples of T01 and T03, which are distributed outside the 95% confidence interval.
This may overfit the raining set, as a given model may be able to fit the training dataset
well but perform poorly on the testing dataset. The ULR and MLR algorithms analyzed
by the spectral line also perform linear relationships well, where the MLR performs better
than the ULR. Of all the methods, algorithm BP analyzed by the mean spectra has the worst
performance, especially the results of the analysis of Fa with the largest 95% confidence
intervals. This result is consistent with the accuracy analysis above. Since the concentration
gradients of Fo and Fa are opposite, the calibration curve and the predicted concentration
distribution plots analyzed by the entire spectral information of all spectra are almost
identical in the figure. For the calibration curves obtained from analysis with all spectra, the
predicted concentrations of the training and test samples are strongly consistent with the
true concentrations, except that the confidence interval is larger than that analysis with the
mean spectra, which may be due to the increased sample size of all spectra for each sample.
Generally speaking, the principal component techniques of PCR and PLSR represent the
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best results and performance, especially PLSR. The shrinkage or regularization technique
of ridge, LASSO and elastic net performs better than the ULR and MLR, except that the
LASSO and ridge have large deviations on testing samples. The accuracy analysis using
all the spectral information of all spectra can achieve better quantitative accuracy than the
mean spectrum or characteristic lines.

4. Conclusions

This paper focuses on the procedure of preprocessing and quantitative analysis on
the MarSCoDe LIBS spectra, utilizing common univariate linear regression (ULR) and
multivariate linear regression, such as ordinary MLR, PCA, PLSR, ridge, LASSO, and
elastic net and even the nonlinear analysis with BP. Thereinto, ULR and MLR are conducted
on the characteristic lines, other methods are conducted on the entire spectral information.
Firstly, the performance of the instrument suit, sample preparation and Mars simulation ex-
periment are introduced. Secondly, the ground data-preprocessing, including background
subtraction, denoising random signal, continuum baseline removal, spectral drift correc-
tion and wavelength calibration, radiation calibration, merge multi-channel spectra, and
normalization, is presented and the qualitative and quantitative analysis of these methods
are described. Thirdly, quantitative analyses (i.e., PCR, PLSR, Ridge, LASSO, Elastic Net,
and BP) are conducted. Their results are compared and analyzed. Finally, the performance
on the quantification of olivine with MarSCoDe LIBS is compared and evaluated by the
mean spectrum and all spectra for each sample with statistical indicators (such as R2, MAE,
Std, and RMSE). The results show that (1) the calibration curve of ULR constructed by
the characteristic line of iron and magnesium can describe the linear relationship between
the spectral signal and the element concentration, and the LOD using the mean spectral
analysis on the Fo and Fa are 0.9943 and 2.0536, respectively, while they are 2.3354 and
3.8883 as analyzed by all spectra. (2) The R2 value of the calibration and validation is close
to 1, the calibration model describes the linear relationship between spectral signal and
elemental concentration well, and the predicted concentration is very close to the true
concentration. (3) The shrinkage or regularization technique of ridge, LASSO, and elastic
net perform better than the ULR and MLR, and the best results can be obtained using the
principal component techniques of PCR and PLSR, representing all spectral information,
especially PLSR; BP is more applicable for the sample measured with lager spectral dataset.
In addition, using all the spectral information of all the spectra instead of the mean spec-
trum or characteristic lines in the quantitative analysis can avoid the cumbersome processes
of preprocessing in practice.

Future work will use the quantification model for the analysis of the in situ olivine
data, realize the transmission of positive sample equipment and backup equipment, and
obtain more sample data used for neural network analysis. In addition, the calculation of
LOD in multivariate calibration will be studied.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14215612/s1, Table S1. Predicted content of each sample on
calibration and validation analyzed by the mean spectrum; Table S2. Predicted content of each sample
on calibration and validation analyzed by all spectra, and Figure S1. calibration curve for Fo and Fa
with the mean spectrum and full spectra of the samples.
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