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Abstract: Previous studies have suggested that a major part of the observed variability in vegetation
state might be associated with variability in climatic drivers during relatively short periods within
the year. Identification of such critical climate periods, when a particular climate variable most likely
has a pronounced influence on the vegetation state of a particular ecosystem, becomes increasingly
important in the light of climate change. In this study, we present a method to identify critical climate
periods for eight different semi-natural ecosystem categories in Hungary, in Central Europe. The
analysis was based on the moving-window correlation between MODIS NDVI/LAI and six climate
variables with different time lags during the period 2000–2020. Distinct differences between the
important climate variables, critical period lengths, and direction (positive or negative correlations)
have been found for different ecosystem categories. Multiple linear models for NDVI and LAI were
constructed to quantify the multivariate influence of the environmental conditions on the vegetation
state during the late summer. For grasslands, the best models for NDVI explained 65–87% variance,
while for broad-leaved forests, the highest explained variance for LAI was up to 50%. The proposed
method can be easily implemented in other geographical locations and can provide essential insight
into the functioning of different ecosystem types.

Keywords: remote sensing; MODIS; vegetation indices; meteorology; soil moisture; interannual
variability

1. Introduction

The leaf development stage is a major determinant of gross photosynthesis, carbon
balance and biomass accumulation of plants. The amount and condition of green leaves
are influenced by genetic factors, environmental conditions including biotic and abiotic
factors, and other disturbances, such as management [1–4]. Observations revealed that
vegetation greenness and productivity have large interannual and spatial variability, which
is associated with climatic fluctuations [4–7], such as large-scale drought events or heat
waves [8,9]. Understanding and quantifying the causes of the observed variability is a
major challenge for the scientific community due to the interaction between the multiple
drivers [10].

It has been demonstrated that the variability of annual productivity and vegetation
state can be associated with environmental conditions during shorter periods within the
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year, instead of the annually aggregated climate conditions [11–14]. This indicates that
not only the environmental effect itself but also the timing of the climatic fluctuation can
be critical factors for the annual productivity and vegetation state [15–17]. It was also
demonstrated that the vegetation state (i.e., intra-annual variations) can be affected by the
environmental conditions in the antecedent periods with different time lags spanning from
months to years [6,17–23]. These short periods during the year, when the environmental
conditions have a profound role in the forthcoming vegetation state and overall annual
productivity, are referred to as critical climate periods [11,12,24–26]. The existence of critical
climate periods within the year and the associated time lags are less studied for different
climate zones and ecosystem types.

Climate change will have many facets, and the most obvious one will be the increase
in the frequency of extreme events and their devastating consequences on various ecosys-
tems [5]. However, even smaller changes, such as local shifts in the precipitation pattern,
changes in temperature, radiation, vapor pressure deficit and soil water content, etc. will
affect vegetation [6,15]. Plants will probably attempt to adapt to the shifts in the meteoro-
logical conditions, but the ability of different plant species and ecosystems to adapt varies,
and is still greatly unknown [7,10]. Therefore, the identification of the periods during the
year when a particular climate variable is most likely to have pronounced influence on the
vegetation state of a particular ecosystem has high relevance.

Satellite-based remote sensing is a powerful tool to study the vegetation state and
overall productivity of ecosystems at large spatial scales with high accuracy [8,10,20,27–31].
The identification of ecosystem-specific critical climate periods under diverse climatic
conditions has been hindered so far because detailed ecosystem maps have seldom been
available for large areas, such as landscapes or countries. Therefore, remote-sensing-
based studies have usually focused on generic land cover types (e.g., deciduous broadleaf
forests, grasslands; [32]) instead of particular ecosystems (e.g., habitat types or dominant
species). In recent years, new generation ecosystem maps have been published in several
countries of Central Europe, such as the Ecosystems in Slovakia dataset [33], the dataset of
Czechia [34], the Croatia dataset [35], or the NÖSZTÉP database of Hungary [36]. These
datasets offer new perspectives in the vegetation-related, remote-sensing studies focusing
on ecosystem-specific productivity, carbon balance, stability, and vulnerability in a way that
is unprecedented, and can provide insight to a better understanding of plant functioning.

In this study, we present a comprehensive analysis of the Hungarian forests and grass-
lands using the remote-sensing-based Normalized Difference Vegetation Index (NDVI) and
Leaf Area Index (LAI) as indicators of plant functioning, provided by the measurements of
the Terra/MODIS sensor [37] with 500 m spatial resolution. NDVI and LAI were used to
identify critical climate periods on an intra-annual time scale during 2000–2020. Studying
the response of the ecosystems to extreme environmental conditions is particularly impor-
tant in light of the ongoing climate change, and Hungary, as one of the driest countries in
Central Europe, offers an ideal study area.

The present study focuses on different ecosystem categories within deciduous broadleaf
forests and grasslands, representing semi-natural ecosystem categories in Hungary (lo-
cated in the Pannonian biogeographical region). Semi-natural in this context means that
those ecosystems might include plantations and are typically affected by some kind of
management, but they represent otherwise perennial ecosystems not affected by land-use
change and are not part of the annual cropping systems. Deciduous broadleaf forests
have a ~23% share in the country [36] and are subject to disturbances due to pests and
extreme weather, with some of them located at the receding edge of the distribution, which
indicates vulnerability to climate change [38]. Grasslands cover about 11% of the total
area of Hungary [36,39] and are characterized by broad biodiversity due to the special
pedo-climatic conditions, forming the oldest managed grasslands in Europe [40]. Grassland
ecosystems are drought-prone during summer in the majority of the country [41], which
highlights the issue of their vulnerability and long-term stability with climate change.
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In our study, we address the following questions: (1) What is the long-term mean NDVI
and LAI and the intra-annual and interannual variability for the investigated forest and
grassland ecosystems? (2) What is the relationship between the foliar development stage
and the antecedent environmental conditions with a relatively short time lag? (3) Which
are the critical climate periods with short time lags during the year that are predominantly
responsible for the observed interannual variability of NDVI and LAI?

2. Materials and Methods
2.1. Study Area

The present study focuses on Hungary, located in Central Europe in the Pannonian
biogeographical region (BGR) [40], which almost completely corresponds to the area of
Hungary. The climate of the area is mostly continental (with warm or hot summers)
according to Köppen’s classification scheme, with high variability in the meteorological
conditions, and a tendency toward summer droughts [41]. Based on the meteorological
dataset used (see Section 2.3), the mean annual temperature during 2000–2020 was ~11.7 ◦C,
while the mean annual precipitation ranged from 750 mm in the south-west down to less
than 500 mm in the central part of the study area, which is one of the driest regions of
Central Europe. The mean elevation of Hungary based on SRTM data [42] is 150 m above
sea level.

2.2. Remote-Sensing-Based NDVI and LAI Datasets

Vegetation indices (VI) are designed to provide information on the greenness of
the vegetation, which is closely related to foliar development, and the overall state of
vegetation [29]. The Normalized Difference Vegetation Index (NDVI) and Leaf Area Index
(LAI) at 500 m spatial and 8-day temporal resolution, derived from the data of the MODIS
sensor on-board satellite Terra [37], were used for the 2000–2020 study period. Collection 6
MODIS products were downloaded from NASA LP DAAC for the tile h19v04 [43].

NDVI was derived from the surface reflectances of Band-1 (ρRED; visible red) and
Band-2 (ρNIR; near-infrared) of the MODIS sensor, included in the MOD09A1 product [44],
as (ρNIR − ρRED)/(ρNIR + ρRED). The quality filtered and smoothed NDVI time-series
at an 8-day temporal grid was created based on the work of Kern et al. [30,31]. To avoid
any misleading and non-realistic sudden decrease in the NDVI due to the presence of
unrecognized and incorrectly quality flagged atmospheric effects (such as high aerosol
content, presence of thin cirrus, sub-pixel clouds, etc.), the Best Index Slope Extraction
(BISE) method [45] was applied at the pixel-level. The quality-checked and gap-filled NDVI
dataset was then resampled into daily resolution using linear interpolation, taking into
account the actual Julian dates of the measurements, indicated in the temporal composite
products. Finally, the Savitzky–Golay filter [46] was also applied with a 30-day window and
a second-degree polynomial smoothing to gain smoothed daily datasets. From the daily
NDVI time-series, a dataset with a regular 8-day resolution was created, corresponding to
the 8-day equidistant resolution of the MODIS LAI dataset. We refer to these 8-day long
intervals of the annual cycle as periods. The temporal grid of the resulting 46 data per year
served as a basic temporal resolution in our research.

Unlike NDVI, which is calculated only from the reflectances, LAI is obtained with
more sophisticated calculation methods, which include modeling elements [47]. In this
study, we used the MODIS LAI [m2 m−2] dataset, contained within the MOD15A2H data
product [48]. The MODIS LAI values represent a one-sided green leaf area per unit ground
area in broadleaf canopies and one-half the total needle surface area per unit ground area
in coniferous canopies. Both are the results of the applied algorithm, which uses daily
L2G-lite surface reflectance, and also biome type [47].

For the pre-processing of the LAI dataset, the QC flag and the additional “Extra QC
flag” information within the HDF files were used. Only data with QC flags 0 and 32 along
with Extra QC flags 0, 1, 8, 9, 128, 129, 136, and 137, and the snow/ice covered versions
(values shifted with 4) were accepted. Allowance of the snow-/ice-covered pixels (similarly
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to the method for NDVI) was important to gain reliable spring phenology in mountainous
areas, where otherwise no valid data point would have been present. Data with other QC
flags were discarded and temporally filled by linear interpolation at the pixel-level. After
QC filtering, the BISE method was applied to eliminate the remaining sudden decreases in
the LAI courses.

2.3. Meteorological and Environmental Datasets

To study the effects of the weather on the state of the vegetation, we used meteoro-
logical data for the period 2000–2020. Daily minimum (Tmin) and maximum (Tmax; ◦C)
temperature, precipitation (Prec; mm day−1), daylight average vapor pressure deficit (VPD;
Pa), and daylight average shortwave radiative flux (i.e., global radiation, Rad; W m−2) were
obtained from the FORESEE v3.2 dataset [49,50]. Daily mean soil water content (SWC2;
m3 m−3) was calculated from the hourly volumetric soil water content data for the second
soil layer (0.07–0.28 m depth) of the ERA5-Land dataset [51,52].

The daily data stored at the original FORESEE grid (1/6◦ × 1/6◦) or ERA5-Land
grid (0.1◦ × 0.1◦) were resampled to the finer spatial grid of the MODIS products and
averaged to the regular 8-day temporal grid. In the cases of temperature and precipitation,
the resampling was performed based on the methodology of Kern et al. [53], where the
elevation of the pixels was also taken into account.

In our study, the climate variables were used to detect the climatology of plant-
weather interactions (see 2.6 and 2.7). Although co-linearity might exist between the
climate variables (primarily between Tmin and Tmax; Tmax and VPD; Rad and SWC2; as
it was investigated in our previous study [13]), we assume that all variables affect plant
processes differently during different stages of plant growth. This means that it is not
unreasonable to investigate them separately.

2.4. Ecosystem Category and Land Cover Datasets

The classification into ecosystem categories was based on the species/habitat type
distribution information available in the Ecosystem Map of Hungary of the NÖSZTÉP
project [34,54]. This map (hereafter referred to as the NÖSZTÉP dataset) has 56 different
Level 3 categories at 20 m spatial resolution, covering the entire area of Hungary. Resam-
pling of the dataset to the grid of the QKM (250 m) and HKM (500 m) MODIS products
resulted in values of the actual shares (in percent) of each ecosystem category for every
pixel [31].

We selected reliable pixels with pure land cover types from homogeneous areas. The
determination of the pure pixels was based on at least a 90% share threshold of a given
NÖSZTÉP category within a pixel. To ensure that the selected pixels were situated in a
largely homogenous environment, we applied an additional condition. That is, each of the
eight neighboring QKM pixels around each HKM pixel should have contained at least 60%
of the same category. This criterion was fundamental to reducing the noise introduced by
the potential presence of other ecosystem categories in the neighboring pixels, which would
affect the recorded reflectance due to the known geolocation inaccuracy of the MODIS
measurements [55], or due to the artefacts of the gridding procedure [56] and possible
re-projection inaccuracies.

To reduce the effects of possible land cover change during 2000–2020 relative to the
base year of the NÖSZTÉP dataset (2015–2017), the CLC2000 and CLC2012 [57] land cover
datasets resampled to the HKM MODIS grid were used, where only pixels that met the
criteria of the same share threshold were retained for further analyses. In the case of
broad-leaved forests, an additional NDVI threshold (0.8) was also used to discard unstable
pixels with a growing season mean NDVI of less than 0.8 in any of the years during the
study period. Finally, only the ecosystem categories that had at least 10 pixels were used
(Table 1 and Figure 1). We also created a group called All pedunculate oak (n = 15) by merging
multiple oak categories in which pedunculate oak was also present, due to the importance
of pedunculate oaks and the lack of a pure category. The selected ecosystems, with the
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exception of All pedunculate oak, followed a distinct precipitation-temperature gradient from
wetter & cooler to dryer & warmer (Figure S1).

Table 1. Spatial, areal, and altitudinal descriptive statistics of the selected HKM MODIS pixels
regarding the different ecosystem categories of the NÖSZTÉP dataset. The “total native share” gives
information about the total presence of the given ecosystem category within Hungary based on the
native resolution of the LC dataset (at 20 × 20 m).

Ecosystem Categories
Number

of the
Pixels

Mean of the
Pixel-Level
Share of the

Given Category within
the Pixels

Share in Hungary
Based on the Used

Pixels at 500 m (and
all Possible at 20 m)

Altitudinal
Distribution

(Median,
5 and 95

Percentiles)

(1) Open sandy grassland 11 99.4% 0.01% (0.68%) 117 m [106–144 m]
(2) Grassland on saline soil 1086 99.4% 1.01% (2.27%) 86 m [83–93 m]
(3) Closed grassland on hard mountainous ground 117 98.9% 0.11% (4.91%) 219 m [81–286 m]
(4) Beech 192 98.5% 0.18% (1.49%) 586 m [262–879 m]
(5) Sessile oak with hornbeams 210 98.6% 0.19% (1.74%) 400 m [242–530 m]
(6) Turkey oak 115 97.6% 0.11% (2.83%) 293 m [216–435 m]
(7) Black locust dominated plantation 42 97.7% 0.04% (4.87%) 139 m [112–210 m]
(8) All pedunculate oak (merged category) 15 95.3% 0.01% (1.67%) 115 m [86–154 m]

Figure 1. Map of the selected HKM MODIS pixels within Hungary with the dominant NÖSZTÉP
ecosystem categories. The map of the used ecosystem categories with all pixels and with the native
20 m × 20 m resolution is presented in Figure S2.

All of the selected ecosystem categories are of significant socio-economic importance,
not only for Hungary but also at the Central European scale, as some of them are fairly
unique (e.g., Open sandy grassland). Therefore, despite the low pixel numbers in some cases,
investigation thereof is highly relevant.
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2.5. Statistical Analysis of the Remote Sensing-Based Products

Different statistical measures were calculated from NDVI and LAI for each ecosystem
category. Area-averaged (AAy,p) values were derived for each year y and period p based on
the selected pixels (n) of the given ecosystem category (Equation (1)).

AAp,y =
∑n

i=1 Indexi,p,y

n
, Index ∈ {NDVI, LAI} (1)

Multiannual mean NDVI and LAI curves (MAMp,i) were calculated separately for
each pixel i and each period p (Equation (2)) and also at the level of ecosystem categories
(MAMp, Equation (3)) as the average of all pixel-level multiannual means for each 8-day
period and for the 21 years:

MAMi,p =
∑21

y=1 Indexi,p,y

21
, Index ∈ {NDVI, LAI} (2)

MAMp =
∑n

i=1 MAMi,p

n
=

∑21
y=1 AAp,y

21
, (3)

The interannual variability (IAVp) for every period p was defined by Equation (4) as
the standard deviation (σAAp,y ) of the yearly country averaged mean values (AAp,y):

IAVp = σAAp,y =

√
∑21

y=1
(

AAp,y −MAMp
)2

21− 1
, (4)

The standard error of the MAMp values (SEMAMp ) were also determined (Equation
(5)) at the period level based on the standard deviations (σMAMp ) of the yearly country-
averaged mean value (AAp,y) to indicate the interannual variability in each period for each
ecosystem category:

SEMAMp =
σAAp,y√

21
, (5)

Spatial variability (SVp) for every period p was defined (Equation (6)) as the standard
deviation (σMAMi,p ) of the pixel-level MAMi,p values:

SVp = σMAMi,p =

√
∑n

i=1
(

MAMi,p −MAMp
)2

n− 1
, (6)

We tested the difference in the MAM values between the different ecosystem categories
at each period during the year through a one-way analysis of variance (ANOVA).

2.6. Critical Climate Period Analysis

Plant physiology is strongly influenced by environmental conditions, and also by
the timing and intensity of human intervention (i.e., management). Figure 2 presents
a conceptual view of the Central European ecosystems in terms of the typical effects of
environmental conditions and management during the phenophases of broad-leaved forests
and grasslands. The environmental conditions presumably affect the particular parts of the
phenological cycle differently, which must be considered during the interpretation.
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Figure 2. Conceptual figure of illustrative phenological profiles of broad-leaved forests (Sessile oak
with hornbeam) and grasslands (Grassland on saline soil), with the indication of the most important
phenophases. Phenological profiles are presented for the multiannual means (MAM) and for two
selected years.

To quantify the effects of the environmental conditions on vegetation state (NDVI
and LAI), statistical analysis was performed using moving-window correlation analysis at
8-day temporal resolution. The same analysis was performed for NDVI and LAI separately.
For simplicity, hereafter we refer only to NDVI. For each period in a year, a 32-day (four
periods) moving mean area-averaged NDVI along with climate data anomaly values were
calculated consecutively. The 32-day-long area-averaging proved to be a robust method for
the identification of relationships at large spatial scales [13]. After that, linear correlation
coefficient (Pearson’s R) values were calculated between the obtained 32-day mean area-
averaged anomaly values of NDVI and the 32-day mean climate variables, similarly to
previous studies [6,14,18,20].

Since the vegetation state is affected by preceding environmental conditions, we used
different lags between them to identify the most influential climate periods. For each 8-day
period, five distinct R-values were calculated using five different time lags between the
32-day mean of NDVI and the 32-day mean of a given climate variable, where the time lag
is the difference between the starting day of the climate variable and the starting day of
the vegetation state interval (Figure 3). The first R-value corresponds to a time lag of three
periods (24 days) with one period (8 days) overlap between the vegetation state and the
climate variable. The additional four R-values were calculated by incrementally increasing
the time lag by two periods to capture any possible lag effect, with a maximum time lag of
almost three months (Figure 3). Since the study focused on the short-term effects, larger
time lags (i.e., carry-over effects spanning many months and one or more years) were not
included in the analysis. A significant R-value (at p ≤ 0.01 or p ≤ 0.05) indicates that the
vegetation state co-varies with the environmental conditions of the corresponding previous
time interval. This represents a statistical relationship, but does not necessarily indicate
causality (it might be a statistical by-product caused by the co-linearity of the climate
data variability).



Remote Sens. 2022, 14, 5621 8 of 27

Figure 3. Methodology of the critical climate period analysis based on moving-window correlation.
An example of the five R-curves used based on five different time lags is presented on the left. The
different intervals of the climate variables relative to the interval of the vegetation state and the
corresponding time lags between them are shown in the top right corner. One period is an 8-day
long interval.

The most influential 8-day climate period for a given ecosystem category was iden-
tified as the period with the highest number of instances when the 32-day mean climate
variable (overlapping that 8-day period and for any of the five predetermined lags) and
the corresponding 32-day mean vegetation state correlated significantly (at p ≤ 0.01 or
p ≤ 0.05, see Figure 3). The importance of a given climate period increases with the number
of significant correlation instances, i.e., with the significant correlation frequency (SCF)
(Figure 3). Periods with high SCF likely have a determinant role in the upcoming ecosystem
dynamics, thus they could be considered influential or even critical climate periods, as
described in the literature [11,12,24,25]. In our case, the maximum number of instances
when a period could be influential is 20 (except during the start and the end of the year),
due to the five different lags and four periods (32 days) used in the correlation calculation.

The average time lag between the NDVI and a given climate variable for each ecosys-
tem category was calculated in the following way. For every 8-day period, the time lag
associated with the largest significant correlation coefficient was identified. In case none
of the correlations was significant, no time lag was identified. The mean time lag was
calculated as the mean of the identified time lags during the year.

To quantify the relative effects of climate variables on the state of the vegetation (NDVI
and LAI), the relative effect (REp) values were calculated (Equation (7)) for every ecosystem
category and for every period based on the first R-curve (time lag of 24 days):

REp = Sp ∗
f

MAMp
∗ 100, (7)

where Sp is the slope of the linear regression for a given period p in the years 2000–2020
between the 32-day long area-averaged NDVI values of the following 32 days (starting
at the period p) and the area-averaged climate variable in the preceding 32 days (starting
at the period p-3, where 3 is the lag expressed in the number of 8-day periods), MAMp is
the multiannual mean of the 32-day area-averaged NDVIp starting at the period p, and f
is a factor depending on the climate variable used to express the relative effect in percent
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within a sensible physical range. The value of f was set as 1 ◦C, 1 ◦C, 5 mm, 0.01 m3 m−3,
10 W m−2 and 50 Pa for Tmin, Tmax, Prec, SWC2, Rad and VPD, respectively. Therefore, the
calculated relative effect is the normalized slope (normalized by the mean NDVIp value),
expressing the sensitivity of the given ecosystem category to the investigated climate
variable. The calculated value of the relative effect (Equation (7)) is the percent change of
NDVI for a predefined unit change in a given environmental condition (when other effects
are not considered).

2.7. Model Construction

The relative effect of a climate variable on NDVI (Equation (7)) does not take into
account the interactions and possible co-linearity between different climate variables. This
may mask the true effects of that climate variable [13,58]. In order to further analyze the
effects of the climate fluctuations on NDVI anomalies in a selected period of interest (PI),
multiple linear regression models were constructed for the mean NDVI and LAI, using
climate variables during 2000–2020 as predictors. For the exact timing of the PI, the late
summer was selected based on the magnitude of the NDVI variability (see Section 3.1). The
models were built based on area-averaged values for each ecosystem category separately.
The general form of the considered model to estimate mean NDVI (NDVIPI) and in the
PI was:

NDVIPI = ∑AP(αAP·TmaxAP + βAP·TminAP + γAP·PrecAP + δAP·SWC2AP+
εAP·RadAP + ζAP·VPDAP) + η·Year + constant,

(8)

where TminAP, TmaxAP, PrecAP, SWC2AP, RadAP, and VPDAP, are the minimum and max-
imum temperature, precipitation, soil water content, radiation, and VPD for a given
averaging period (AP) before the PI, respectively; Year is the calendar year of the obser-
vation accounting for a possible trend in the NDVIPI; constant is the constant term of the
fit; and αAP, βAP, γAP, δAP, εAP, ζAP, and η are model coefficients. The time lags (i.e., cli-
mate variables of the previous periods) were introduced to account for possible short-term
lag effects.

To reduce the large number of independent variables in the model (Equation (8)), the
Boruta method [59] was used to select the climate variables in which the five former periods
considered had relevant roles in affecting the vegetation state during the predefined period.
The Boruta method quantifies the importance of the driving climate variables using random
forest classification. In our case, Boruta was used with the six mean climate variables
averaged over 32 days for the same five periods with different time lags, similarly to the
earlier described R-curves (Section 2.6).

The constructed models were calibrated and then validated by the application of the
leave out one year (LOOY) cross-validation technique [60]. In the LOOY validation, the
model was calibrated with a dataset from which one calendar year of the data was omitted
year by year. Model predictions were then tested against the observations in the year that
was left out, and the procedure was repeated for all years of the validation dataset.

Processing of all the datasets for the present study and execution of the calculations
were performed using the Interactive Data Language (IDL) version 8.6 (Harris Geospatial
Solutions, USA, Broomfield, CO), STATA 14.2 (StataCorp., USA, College Station, TX, USA)
and R [61].

3. Results
3.1. Multiannual Mean (MAM) and Interannual Variability (IAV) Curves

Based on the MAM curves of the investigated ecosystem categories (Figure 4) the
category Beech has the highest MAM. The category Black locust dominated plantation shows
a much slower green-up during the spring, due to its long-lasting flowering. In the case
of herbaceous vegetation, the category Open sandy grassland shows very similar MAM to
the Grassland on saline soil during the growing season, but not during the spring green-up.
The ranges showing the standard error (SE) of the MAM indicate much higher interannual
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variability for all grasslands than for forests. The ranges of the ±1.96 SE (corresponding to
a 95% confidence interval) are also shown for all periods. The ANOVA-based results of the
assessments for the differences between the MAM curves (not shown) were in agreement
with the periods when the error ranges of the individual MAM curves overlapped. For
forests, those overlapping periods primarily corresponded to the spring green-up and
autumn senescence of the vegetation.

Figure 4. Multiannual mean (MAM) and interannual variability (IAV) curves of each ecosystem cate-
gory based on NDVI and LAI, derived from the selected pixels. The range of the ±1.96 SEMAM based
on the yearly country averaged curves are also shown for the MAM curves. Pink rectangles/columns
indicate the period of interest (PI) in late summer (DOY 225–256, 13 August–13 September).

In the case of forests, the IAV shows two peaks corresponding to the overall timing of
the green-up and senescence (Figure 4) in accordance with our earlier study [30], where the
mean start and end of the green-up were at DOY 100 and DOY 123, respectively. Those
variabilities were much higher (even up to 3–4 times) than the variability at any other
time during the growing season. On the contrary, for the grasslands, the IAV was higher
during the late summer–early autumn periods (the highest occurred typically between DOYs
210–270) than in the transitional periods, which was especially striking in comparison to forests.
The highest variabilities were associated with the category Grassland on saline soil (Figure 4).

Based on the results, we focused on a 32-day-long period of interest during the late
summer (DOY 225–256, 13 August–13 September), when the effects of forest green-up and
senescence were not present and the investigated grassland categories showed the highest
interannual variability in their NDVI-based vegetation state. During the selected period of
interest (PI), the observed interannual NDVI variability of the investigated forest categories,
albeit comparatively small, was likely linked to climate effects. This PI served for model
constructions (see Sections 3.4 and 3.5).
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3.2. Relationships between the NDVI/LAI and the Climate Variables

Based on the annual curves of the Pearson’s R-values, it is clear that Tmin and Tmax
have different effects on the vegetation state of different ecosystem categories described by
NDVI (Figure 5) and LAI (Figure S3), demonstrating the importance of their joint application.

Figure 5. Pearson’s R-values between the area-averaged NDVI (after the indicated period) and the
area-averaged climate variables (before the indicated period) separately (a–f). Both the NDVI and the
climate variables refer to 32-day-long intervals, with an 8-day overlap. Pink rectangles indicate the
period of interest (PI) in late summer.

Tmin was important for all investigated ecosystem categories during the green-up (as
higher daily Tmin seemed to promote the green-up), while for forests it was also important
during the senescence (as higher daily Tmin values contributed to a prolonged and longer
senescence). In the case of the grasslands during the summer and early autumn, significant
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negative R-values were found for Tmax, while no significant relationships were found for
the forests. The unambiguous role of the SWC2 for grasslands was obvious, as indicated
by the stable and high positive R-values during the whole growing season starting from
May. Weaker but also positive SWC2-related correlation was present during the summer
for the category Black locust dominated plantation, while for forests, no significant positive
relationships were found in the same period. The significant negative R-values of the forests
in May imply a determinant role of SWC2 in leaf development, but this could also be the
effect of co-linearity between SWC2 and other climate variables. That is, due to the likely
high SWC2 and its comparatively slow temporal change in spring, SWC2 probably better
represented the overall environmental conditions. The R-values representing the correlation
between NDVI and Prec and NDVI and SWC2 showed a similar pattern, although for Prec,
a stronger variability was present, probably due to the sporadic nature of precipitation
(timing and amount). R-curves for VPD were similar to those for Tmax. In the case of Rad,
the R-values were mostly negative, but generally not significant. Only the forest ecosystem
categories were associated with significant positive R-values during the spring green-up,
and only the Beech during the autumn senescence, while for grasslands, the negative R-
value was significant during parts of summer. The maximum and minimum values of the
significant R-values of the first R-curve (time lag of 24 days) during the year are presented
in Table 2 for NDVI (Table S1 for LAI) for each climate variable and ecosystem category, in
accordance with Figure 5. For LAI, the R-curves were similar to those made with NDVI,
with some differences (Figure S3), mostly affecting the non-significant values. Hereafter,
we focus primarily on NDVI, which is the most common vegetation-related characteristic
in the literature.

Table 2. Maximum and minimum significant (p≤ 0.01) R-values representing the correlation between
NDVI and the climate variables used during the year, based on the first R-curve (see also Figure 5).
The months associated with the maximum and minimum significant R-values are also indicated,
referring to the 32-day long period of the investigated vegetation state. The R-value with the greatest
absolute value of each climate variable is marked in bold. In the case of no significant correlation
(p > 0.01), the R-values are not indicated.

Ecosystem Categories Tmin Tmax Precipitation SWC2 Radiation VPD

R Month R Month R Month R Month R Month R Month

Positive correlation with NDVI

Open sandy grassland 0.68 III - - 0.76 IX 0.83 VII–
VIII - - - -

Grassland on saline soil 0.72 III 0.71 II–III 0.83 VIII-
IX 0.88 VII - - 0.61 II–III

Closed grassland on hard m. ground 0.76 II–III 0.72 II–III 0.85 IX 0.91 IX–X - - 0.55 III–IV
Beech 0.80 X 0.81 X - - - - 0.67 IV–V 0.75 IV–V
Sessile oak with hornbeam 0.78 X 0.81 IV–V 0.58 X–XI - - 0.62 IV–V 0.84 IV–V
Turkey oak 0.71 X 0.81 IV–V - - - - 0.65 IV–V 0.81 IV–V
Black locust dominated plantation 0.78 II–III 0.73 II–III 0.68 IX 0.66 IX–X - - 0.61 III
All pedunculate oak 0.78 III–IV 0.72 III - - - - - - 0.67 IV–V

Negative correlation with NDVI

Open sandy grassland - - −0.75 VIII–
IX - - - - −0.66 VI–

VII −0.83 VIII–
IX

Grassland on saline soil - - −0.80 VIII–
IX - - - - −0.69 VIII–

IX −0.83 VIII–
IX

Closed grassland on hard m. ground - - −0.71 V–VI - - - - −0.59 VIII–
IX −0.73 V–VI

Beech - - - - −0.77 V −0.72 V–VI - - - -
Sessile oak with hornbeam - - - - −0.75 V −0.60 V–VI −0.68 XII - -
Turkey oak - - - - −0.76 V −0.60 V–VI - - - -
Black locust dominated plantation - - - - - - - - −0.61 II–III −0.63 IX
All pedunculate oak - - - - - - - - - - - -

The annual courses of the R-values referring to different time lags separately for each
ecosystem category clearly show that the application of longer time lags can provide a
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similar or even greater correlation (Figures S4–S9). For example, considering Tmin/Tmax
and VPD for the category of Black locust dominated plantation, the NDVI anomalies in
late July–early August were not affected by the temperatures of the directly antecedent
period, but were more affected by the earlier temperatures, with a time lag of three months
(i.e., temperatures in May). The number of cases when the first R-curve did not have
the highest (absolute) R-value (implying a longer lagged effect) was small. These figures
also show the situation when the state of the vegetation was influenced not only by the
immediately preceding conditions but also by the earlier ones. For grasslands, the strongest
influential period of SWC2 was always the one just before the investigated period, but the
SWC2 of the earlier periods also contributed to the NDVI anomaly of the investigated period
(Figure S6). On the other hand, in the case of the forests, the category Beech showed the
strongest negative correlation during the spring (April–May), with effects that could be long-
lasting, even in June (Figure S7). This may be important, considering that climate change
will likely affect precipitation amounts and patterns, and consequently also spring SWC2.

3.3. Critical Climate Periods

A graphical overview of the distribution of significant correlation frequencies at
different periods during the year between NDVI and a given climate variable enables easy
identification of critical climate periods (Figure 6). In the case of NDVI and Tmin, a high
frequency of positive correlations can be observed before the spring green-up for all of the
studied ecosystem classes, and in the case of forests, also before the autumn senescence
(Figure 6a). A similar pattern can be observed also for NDVI and Tmax (Figure 6b), but
somewhat less pronounced before the spring leaf unfolding. Additionally, for forests, the
distribution was somewhat prolonged (positively skewed), likely reflecting the importance
of higher temperatures during the entire green-up period. A high frequency of significant
(at p ≤ 0.01) negative correlation of NDVI and Tmax was visible for grasslands and the
Black locust dominated plantation, with peaks in May and August. In grasslands, the critical
periods of the Prec and SWC2 (Figure 6c,d) were somewhat similar and very long. The very
strong and long-lasting positive correlation between NDVI and Prec (and SWC2) reflects
the importance of precipitation for grasslands and their productivity during the summer.
For the forests, the negative effects of increased precipitation were present in April. The
results for Black locust dominated plantation present an interesting mixture of the results for
grasslands and forests for all climate variables. The difference in behavior of the black
locust is interesting, especially considering the fact that this species is not native to Europe
and was introduced to Hungary in the early 18th century [62]. In the cases of NDVI and Rad,
periods with negative correlations were mostly detected, albeit with weaker significance
(with p ≤ 0.05 as opposed to p ≤ 0.01; Figure 6e) for forests. Not surprisingly, the most
frequent and highly significant (p ≤ 0.01) negative correlation was found in summer for
Grassland on saline soil. The exception to this was the green-up period of the forests, when
NDVI and Rad showed a positive correlation. For NDVI and VPD (Figure 6f), the critical
periods were similar to those obtained with Tmax, though there were no relevant critical
periods during the winter (January–February). The critical climate periods for LAI are
presented in Figure S10.
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Figure 6. Critical climate periods within the year, when Tmin (a), Tmax (b), Prec (c), SWC2 (d), Rad (e),
and VPD (f) significantly influenced the state of the vegetation (NDVI). The significant correlation
frequency (i.e., the numbers of the instances, maximum 20; five time lags & four 8-day periods;
see methods) associated with significant R is shown for all 8-day periods during the year. Periods
corresponding to positive R-values are indicated with green, while those with negative R-values are
indicated with red color. Significant values at p ≤ 0.01 are shown in darker shades, while those with
p ≤ 0.05 are shown in lighter shades.
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The average time lags between the observed change in the NDVI of each ecosystem
category and the climate variables used are presented in Table 3 (and for LAI in Table S2),
with the highly significant (p ≤ 0.01) positive and negative correlations shown separately.
The share of time with significant correlation (STSC) between the NDVI and the climate
variable for the period from 25 Jan to 10 Dec (forty 8-day periods; the peak of the winter
was discarded to minimize the snow effects) is also presented separately based on the sign
of the correlation. The highest STSC was present in the case of the SWC2 and Prec for
grasslands, where ~70% of the time the correlation between NDVI and Prec or SWC2 was
significantly positive. Interestingly, this was not the case for forest categories, where NDVI
and those climate variables appeared to have a more ambiguous relationship and were
significantly correlated during a relatively short period (STSC ≤ 25%). The next highest
STSC values were present for the herbaceous ecosystem categories and the Black locust
dominated plantation, with correlations with both signs of NDVI and Tmax and of NDVI
and VPD.

Table 3. The average length of the time lags (lag, expressed in a number of days) between NDVI and
the used climate variables for the time lags with the most significant R and the share of time between
25 Jan and 10 Dec (forty 8-day periods; the peak of the winter was discarded to minimize the snow
effects) when the correlation was highly significant (p ≤ 0.01; STSC–share of time with significant
correlation), according to the sign of the correlation.

Ecosystem
Categories Correlation Tmin Tmax Precipitation SWC2 Radiation VPD

Lag
(Days) STSC Lag

(Days) STSC Lag
(Days) STSC Lag

(Days) STSC Lag
(Days) STSC Lag

(Days) STSC

Open sandy
grassland

negative - 0% 42.5 32% - 0% - 0% 34.3 34% 38.4 49%
positive 28.4 28% - 0% 26.9 55% 24.0 68% - 0% - 0%

Grassland on saline
soil

negative - 0% 36.0 40% - 0% - 0% 41.3 30% 27.4 53%
positive 30.4 13% 28.0 10% 36.0 70% 24.6 73% - 0% 32.0 5%

Closed grassland on
hard m. ground

negative - 0% 37.3 30% - 0% - 0% 40.7 38% 12.6 35%
positive 26.0 20% 30.4 13% 37.7 70% 26.9 70% - 0% 24.0 3%

Beech
negative - 0% - 0% 44.8 25% 42.3 18% 80.0 5% - 0%
positive 34.7 45% 35.0 40% - 0% - 0% 32.0 10% 35.7 38%

Sessile oak with
hornbeam

negative - 0% - 0% 29.3 15% 24.0 5% 40.0 18% - 0%
positive 29.8 28% 28.9 33% 40.0 8% 50.7 8% 32.0 5% 24.0 23%

Turkey oak negative - 0% - 0% 46.0 20% 24.0 3% 88.0 3% - 0%
positive 28.8 25% 25.8 23% - 0% 40.0 3% 52.0 10% 42.4 33%

Black locust
dominated plantation

negative 82.7 8% 80.0 15% - 0% - 0% 53.7 18% 76.8 25%
positive 30.1 53% 43.6 23% 33.1 18% 38.4 25% - 0% 32.0 5%

All pedunculate oak negative - 0% - 0% 72 5% 56 13% 64.0 10% - 0%
positive 40 40% 25.8 23% - 0% - 0% - 0% 24.0 13%

3.4. Relative Effects of the Climate Variables on Each Dominant Ecosystem

While the significant R-values identify periods during the year when the vegetation
state was sensitive to the environmental conditions (correlation is significant), they do
not provide complete information on the magnitude of NDVI/LAI change caused by the
change in the climate variable (assuming all other climate variables are constant). Based on
the relative effects (see Section 2.6) of the climate variables on NDVI, there are noticeable
differences in the size of the responses of the investigated ecosystem categories (Figure 7).
Although in the case of Tmax and VPD, the R-values of the herbaceous ecosystem categories
had similar magnitude during late summer (period 30, referring to DOY 233–264 in the
state of vegetation), Grassland on saline soil stood out, as it showed notably higher relative
change (8.5% vs. −5.8% and −3.6% vs. −2.7%, respectively) for the same unit change in
climate variables in comparison to other herbaceous types.
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Figure 7. Relative effects of Tmin (a), Tmax (b), Prec (c), SWC2 (d), Rad (e) and VPD (f) for the
investigated ecosystem groups based on NDVI and the first R-curves with a time lag of 24 days. It
expresses what percentage change the NDVI showed for one reference unit change of the climate
variable, where the reference units were 1 ◦C, 1 ◦C, 5 mm, 0.01 m3 m−3, 10 W m−2, and 50 Pa in the
case of Tmin, Tmax, Prec, SWC2, Rad, and VPD, respectively. Pink rectangles indicate the period of
interest (PI) in late summer.

Similarly to the R-curves (Section 3.5), the relative effect curves for LAI are similar to
the ones based on NDVI (Figure S11).
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3.5. Important Climatic Variables during the Selected Period of the Year

Climatic control of the vegetation state was further analyzed for the selected period
(PI) during the late summer (see Figure 4). The Boruta method enabled the identification of
the periods when a given climate variable was important for explaining the observed late
summer NDVI (Figure 8) and LAI variability (Figure S12). It should be emphasized that in
this case, by using Boruta, the effects of all six of the climate variables used were considered
(unlike in the case of the relative effect calculation, when only one variable was considered,
with all others assumed constant).

Figure 8. Relevant climate variables affecting the vegetation state (described by NDVI) during the
13 August–13 September period based on the results of the Boruta method. The colors express the
“importance” value as the result of the Boruta feature selection. The * and the following colored
rectangles indicate that in the case of the given ecosystem category, the Year variable was also found
to be relevant, indicating the existence of a trend.

Considering the identified important periods for a given climate variable, the results
are in very good agreement with the previously presented R-curves (Figures S4–S9). In
the case of herbaceous vegetation, generally, the period directly before the investigated
late summer period has the highest importance. SWC2 had a determinant effect even in
the earlier periods, emphasizing its prominent role in the overall state of the herbaceous
vegetation. For forests, earlier periods (i.e., those with longer time lags) might have a
stronger effect in determining the state of the vegetation, in line with the observed higher
R-values.
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Beyond the timing, the results of the Boruta method also provide information about
the relative importance of the different climate variables relative to each other for the
vegetation state during PI (Figure 8). For example, for the selected late summer period,
the important role of SWC2 was clear for almost all the studied ecosystem categories. In
the case of the herbaceous vegetation, an additional role of the VPD and/or Tmax was
also visible. Contrastingly, for forests, the considered climate variables were less important
during the late summer, or, for the category Turkey oak, not determinant at all. For the
categories Beech, Turkey oak, and All pedunculate oak, the variable Year also had an important
role (with “importance” values of 6, 11.57, and 4.73, respectively), implying the existence of
a trend in the NDVI dataset.

3.6. Modeling NDVI and LAI in the Selected Late Summer Period

Based on the LOOY cross-validation, the constructed NDVI models explained 65–87%
and 32–40% of the observed NDVI variability for grasslands and forests, respectively
(Table 4 and Figure S13). In the case of the modeled LAI, the explained variances of the
forests with significant R were higher (33–50%) than for the modeled NDVI. Generally,
the category Grassland on saline soil had the highest explained variance (81–87%) in the
variability of the NDVI and LAI. For forests, the variability of the NDVI was not captured
at a significant p level. For the category All pedunculate oak, the variability was not explained
by any of the corresponding models.

Table 4. The performance metrics of the cross-validation modeling NDVI and LAI in the selected late
summer period (13 August–13 September, period 29–32).

NDVI LAI

Ecosystem Categories R2 p RMSE bias R2 p RMSE bias

Open sandy grassland 0.65 * 0.000 0.046 −0.001 0.58 * 0.000 0.188 0.000
Grassland on saline soil 0.87 * 0.000 0.036 −0.001 0.81 * 0.000 0.154 −0.002
Closed grassland on hard m. g. 0.76 * 0.000 0.037 0.000 0.77* 0.000 0.151 0.000
Beech 0.36 * 0.004 0.008 0.000 #
Sessile oak with hornbeam 0.10 0.161 0.015 −0.001 0.43 * 0.001 0.177 0.006
Turkey oak 0.40 * 0.002 0.013 0.000 0.50 * 0.000 0.176 −0.001
Black locust dominated p. 0.32 * 0.007 0.032 −0.000 0.33 * 0.006 0.470 0.006
All pedunculate oak 0.02 0.528 0.015 0.001 #

* Significant correlation coefficient (at p ≤ 0.01) of the multiple linear regression model. # In the case of LAI for
category Beech and All pedunculate oak, the Boruta method did not identify any variable as important.

4. Discussion
4.1. Methodological Aspects

The present study was based on area-averaged NDVI, LAI, and climate data during
2000–2020 for eight different ecosystem categories, with the aim of gaining insight into
the overall behavior of ecosystems in one specific biogeographical region (namely in the
relatively small Pannonian BGR). The area-averaging approach used in the study is justified
by the fact that the investigated ecosystems were close to natural and grew in areas with
similar environmental conditions (Figure S1). The climatic gradients in the study area were
relatively small, without any pronounced geographical or high elevation gradients, which
additionally supported the approach used in our analysis.

The area-averaging approach proved to be a robust method in the identification of
relationships at large spatial scales in our earlier studies [13,30,63]. Area-averaged vegeta-
tion indices were used in some studies [18,28], even at a continental scale [64]. The present
research aimed to identify periods when a given climate variable most notably affected
an ecosystem in general (i.e., we were seeking for robust responses). We did not focus
on the possible individual, pixel-level responses where the local micro-conditions could
confound the apparent response of the ecosystem. Such confounding effects at fine spatial
scales can arise from the issues associated with the driving environmental data (such as
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the uncertainty of the climate data used, especially in the cases of minimum temperature,
convective precipitation, and reanalysis-based SWC); local topography (elevation, aspect,
slope, etc.) and soil properties [58,65,66]; management [3,67,68]; species composition [69];
longer-lagged effects [22,23]; recovery of previous disturbances; and other disturbances,
such as insects or diseases [31]. The confounding effects of human intervention (man-
agement) are also relevant, especially for grasslands. A large fraction of the Hungarian
grasslands is affected by regular mowing and/or grazing, which cause a change in the
foliar mass. This might result in false attribution of the observed changes to environmental
conditions. However, since the management throughout the study period did not change
much, the general pattern of the average management effects for the whole area might be
similar from year to year. This again speaks in favor of the area-averaging approach.

The presented area-averaged MAM curves (Figure 4) can be considered as “finger-
prints” characterizing the investigated ecosystem categories during the 2000–2020 time
period and can provide a reference for future studies. MAM curves for a studied ecosystem
group were shown in some other studies based on one or more vegetation-related charac-
teristics [28,66], but for more species or ecosystem groups, they are rarely compared. In
the case of grasslands, the drop in the value of the vegetation index shown in the MAM
curves around DOY 200 might be due to the combined effects of human management (e.g.,
mowing) and natural processes (e.g., drought).

4.2. Moving-Window Correlation Analysis and Critical Climate Periods

To quantify the relationship between the climate variables and the foliar state or
annual productivity, Pearson’s, Spearman’s, partial correlation coefficients [6,14,18,20,26],
partial least squares regression [11,12], and forward stepwise regression [24] were used.
The studies differ in terms of temporal resolution of the detected critical periods, ranging
from daily to seasonal scale, where the lengths of the applied time lags were highly
variable [6,18].

The applied moving-window correlation analysis of the present study provided an
easy and intuitive tool to quantify the relationship between the vegetation state and the
climate variables. The R-curves used were calculated for six climate variables, with a
maximum time lag of almost three months, which enabled us to obtain distributions of
frequency of significant correlations between NDVI/LAI and selected climate variables
(Figure 6 and Figure S10). Such distribution provided a clear overview of the direction
(positive/negative), importance (magnitude of the frequency), timing, and duration of
critical climate periods for the vegetation state of a given ecosystem category.

Analysis of climatic control based on vegetation indices derived from remote sensing
data is common in the literature. Most studies rely only on mean temperature, precipitation,
and occasionally radiation [6,11,12,18,28] as the most important climatic drivers of plant
growth and senescence. Here, we also used SWC and VPD, since many plant processes
are essentially governed by the available water in the soil [25,70,71], and also depend on
atmospheric drought [70,72]. SWC is an important environmental variable in ecosystems
prone to summer drought, such as those in the Pannonian BGR. We also considered
the possibility of the different biophysical effects of Tmin and Tmax, governing different
processes during plant growth [13,73,74]. The need for their joint application is emphasized
by the fact that seasonal differences exist in the vegetation response to different daytime
and night-time warming [75,76].

Based on the presented NDVI-based R-curves (with a time lag of 24 days, Figure 5),
the strongest positive correlations were associated with SWC2 and Prec during the late
summer for the category of Closed grassland on hard mountainous ground and Grassland on
saline soil (see also Table 2). The strongest negative correlation was found also for grasslands
between NDVI and Tmax, and also between NDVI and VPD during the summer, implying
a strong dependence of NDVI on the antecedent environmental conditions. In contrast,
forests showed the strongest relationships during the green-up and the autumn senescence,
indicated by a moderately positive correlation with Tmin, Tmax, Rad, and VPD, and by
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a negative correlation in the case of Prec and SWC2. The latter result is interesting, as
it points to the possible role of the increase in soil thermal capacity (due to increase in
SWC caused by Prec) along with a likely decrease in the available soil oxygen (due to soil
pores being more filled with water) in slowing down forest greening in spring. However,
during the summer, some of the forest categories were also affected primarily positively by
Prec and SWC2 (Sessile oak with hornbeam and Black locust dominated plantation), although
not always at the significance level of p ≤ 0.01. We assume that the weaker R-values of
the grasslands in July (Figure 5) might also be attributed to other effects (management
and drought consequences), as discussed above (Section 4.1), also affecting the calculated
critical climate periods.

The presented critical climate periods were determined based on the short-term
response of the foliar state (in contrast to the overall yearly photosynthetic production)
using 32-day-long moving-windows. According to the present study, the dominant climate
variables from the short-term antecedent period influencing the foliar state of the vegetation
state during the summer in the Pannonian BGR were primarily the SWC and the Prec. These
results are in accordance with other studies using NDVI, both at the regional scale, such as
Zhang et al. [77] for China, or at the global scale [12]. In the case of the grasslands, Tmax
and VPD had also a significant role, as demonstrated in previous remote-sensing-based
studies, as well for other regions [72,78].

The results reveal a difference in the importance of late-summer meteorology be-
tween grasslands and forest ecosystems, which is indicative of the inherent difference in
the approach to dealing with drought stress (“strong resilience” approach–grasslands vs.
“strong resistance” approach–forests) [79]. However, according to the projected climate
changes in the region, an increase in drought frequency/duration and heat stress should
be expected, which will lead to an increased frequency of carbon starvation (depletions of
the non-structural carbohydrates) and hydraulic failure in trees, thus putting the strong
resistance approach in forests to the test.

These findings and the identified critical climate periods are in agreement with pre-
vious studies focusing on the productivity or foliar development of temperate vegeta-
tion [11,12], emphasizing the existence of climatic key periods in relation to production
and also to plant functioning in the diversity of the ecosystem types [80]. Our study does
not address the issue of the effects of the extreme years and trends in environmental vari-
ables due to climate change. However, the critical periods and the relative effects of the
environmental variables on NDVI and LAI identified in this study can provide an insight
into the intrinsic traits of the investigated ecosystem categories and streamline efforts in
future studies.

4.3. Modeling

The identified critical climate periods and the associated relationships between NDVI
(LAI) and environmental drivers inspire the use of simple, multivariate linear models.
Process-based models, such as Biome-BGC or its variants [81,82], are excruciatingly com-
plex, frequently calibrated for whole biomes or only for certain ecosystems, and as such
are not adequate for studies such as the present one. Therefore, (multiple) linear models,
with all of their limitations, are still frequently in use [13,14]. In this study, we focused
on the part of the vegetation season (13 August – 13 September) that is a sensitive time
interval for Hungarian grassland/herbaceous ecosystems [83], but outside of the periods
of leaf-unfolding or senescence, in order to investigate the effects of climate variables on
ecosystem categories during periods of fully developed foliage and possible drought.

Models containing a large number of predictors in various periods are neither practical
nor explanatory. The selection of the independent variables based exclusively on R-curves
might not be justifiable, due to the possible co-linearity between the climate variables.
The application of the Boruta method in selecting the important variables enabled the
construction of linear regression models with only a few variables that were statistically
the most relevant [59]. The timings of the climate variables indicated by the Boruta method
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corresponded to the periods of the highest R-value of the five R-curves (Figure 5). Building
more sophisticated models was out of the scope of the present paper, as we only addressed
the causes behind the interannual variability of the vegetation state during the late summer
using climate variables.

Based on our results for grasslands, the NDVI models performed the best (with an
explained variance of 65–87% of the observed NDVI variability), while for forests, the
models constructed to simulate LAI variability were the best (33–50% of explained variance,
see Table 4). According to the work of Kern et al. [31], modeling the NDVI of the oak
forests in the same late summer period gave similar results (with a maximum R2 of 0.51),
but in those models, the NDVI of the preceding period was also used as a proxy variable.
Verbesselt et al. [84] also reported similar results (R2 = 0.48) during their model evaluation
to forecast insect-induced tree mortality, based on MODIS and long-term daily climate
data averages.

Our results corroborated the important effects that environmental conditions have
on the state of the grasslands directly before the investigated period. Both for forests and
grasslands, the longer-term lagged effects are well-known [3,22,23]; they lead to a delayed
reaction and a lag before the change in the foliar state after the change in the environmental
conditions. However, in the case of forests, the length of the time lag was found to be shorter
when investigated by remote-sensing-based datasets at the ecosystem-level compared to
the in situ tree-ring studies, due to the complex physiological processes related to the post-
drought upregulation of photosynthesis and repair of canopy damage [85,86]. Despite the
well-known existence of the time lag, the investigation of short-term effects (by neglecting
the longer-term legacy effects) is common in the literature [6,18,20]. In our study, we used
time lags of a maximum of three months; therefore, our models did not account for possible
effects with longer time lags, such as the depletion of the non-structural carbohydrate
storage [87] or the occurrence of hydraulic failure in trees [88].

4.4. Uncertainty Issues: The Importance of the Land Cover Dataset

Differences between the ecosystem categories regarding their MAM (Figure 4) and
their relationships with the antecedent environmental conditions (Figures 5–8) confirmed
the importance of distinguishing between different ecosystem categories.

Our work was based on pixels with a high share (>90%) of the given ecosystem
categories within the pixels, but also within the side-neighboring pixels (>60%), similarly
to the criterion applied by e.g., de Beurs and Townsend [89] and Kern et al. [31], which
guaranteed that our results were not significantly affected by other land cover types. In
addition, we used only those pixels that were free from any significant land cover change
according to the NÖSZTÉP and CLC datasets. Furthermore, in the case of forests, only
pixels with stable yearly growing season phenological curves were used, similarly to the
work of Kern et al. [31]. While the maximum-allowed share of 10% of the other ecosystem
categories in a pixel might contribute to uncertainties in our results, its significance was
small due to the low mean share of the non-target ecosystem categories within a pixel (<5%,
Table 1). The NÖSZTÉP land cover dataset [36] with its fine spatial resolution enabled the
unique and accurate categorization of the ecosystem categories in every MODIS pixel.

The differences in the results for different ecosystem categories show not only the
diversity in behaviors and responses of different ecosystems, but also emphasize the
importance of knowledge of the exact type of vegetation and mixture of species present
within an area.

4.5. Uncertainty Issues: Trends

The issue of trends in remotely sensed vegetation indices and productivity during
longer timescales is well known [4,27,90–92], although its sign and magnitude depend not
only on the time of year, ecosystem type, geographical location, pixel size, and investigated
period, but also on the applied methodology for detecting long term changes and break-
points [93,94]. Therefore, trend analysis is a sensitive and challenging scientific topic, where
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several methods have been elaborated during the last decades [94–97]. Despite the existing
knowledge and ongoing efforts, the trend in the remotely sensed vegetation indices is still
a matter of debate and the subject of investigation [10,71]. Compared to the interannual
variability, the magnitude of the NDVI trend is generally small (globally 0.0013 yr−1 based
on the period 1982–2011 [2], or 0.001 yr−1 based on the period 2001–2015 [98]).

It is worth noting that during the selection of the predictors during the construction of
the NDVI model, the input dataset of the Boruta method also contained the calendar Year
as a variable, serving as the proxy variable for a trend. The Year variable was identified
as an important driver only in the case of forests, but the trends were relatively small.
Consequently, even if a trend exists, such a small trend in the dataset does not modify our
critical climate period results significantly, but probably leads to a minor amplification or
dampening of the signals.

5. Conclusions

In this work, the ecosystem-specific responses of the Pannonian biogeographical
region’s vegetation were studied with respect to the climate variables during 2000–2020,
based on MODIS, NDVI, and LAI. The presented novel method, using the moving-window
correlation analysis and time lags between the NDVI/LAI and climate variables of interest
of up to three months, proved to be an easy and intuitive tool supporting the identification,
timing and duration of the critical climate periods. Forests showed a pronounced positive
correlation with spring and autumn temperatures, but a negative correlation with May
precipitation, while for grassland ecosystems, the strongest positive correlations were
associated with soil water content and precipitation during the late summer, and negative
correlations were associated with radiation.

By using multivariate statistical modeling in combination with the Boruta method for
the selection of the most important climate variables, it was possible to estimate the response
of NDVI/LAI for different ecosystem categories to the changes in climate variables during
late summer. Results reveal a difference in the importance of late summer meteorology
between grasslands and forest ecosystems, which is indicative of the inherent difference in
the approach to dealing with drought stress.

The present study provides insight into the behavior and key periods relevant to
the functioning of ecosystems in the Pannonian biogeographical region. The presented
methodology can easily be applied in other geographical regions under markedly different
climates. The results could be relevant for areas where increases in the frequency and
severity of summer drought and heat are expected due to climate change.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14215621/s1. Figure S1: Thermopluviogram of the investigated
ecosystem categories in Hungary; Figure S2: Geographical location of all grasslands and forests of
the studied categories from the NÖSZTÉP ecosystem map dataset in Hungary, based on the native
dataset with 20 m × 20 m resolution; Figure S3: Pearson’s R values between the area-averaged LAI
and the area-averaged climate variables during 2000–2020; Figure S4: Pearson’s R values between
the NDVI and the climate variables (temperatures) for grasslands; Figure S5: Pearson’s R values
between the NDVI and the climate variables (temperatures) for woody vegetation (forests); Figure
S6: Pearson’s R values between the NDVI and the climate variables (precipitation and SWC) for
grasslands; Figure S7: Pearson’s R values between the NDVI and the climate variables (precipitation
and SWC) for woody vegetation (forests); Figure S8: Pearson’s R values between the NDVI and the
climate variables (radiation and VPD) for grasslands; Figure S9: Pearson’s R values between the
NDVI and the climate variables (radiation and VPD) woody vegetation (forests); Figure S10: Critical
climate periods within the year, when Tmin, Tmax, Prec, SWC2, Rad, and VPD significantly influence
the state of the vegetation (LAI); Figure S11: Relative effects of Tmin, Tmax, Prec, SWC2, Rad, and VPD
on the investigated ecosystem groups based on LAI; Figure S12: Relevant climate variables affecting
the vegetation state (expressed by LAI) during the PI based on the results of the Boruta algorithm;
Table S1: Maximum and minimum significant (p ≤ 0.01) R values representing correlation between
LAI and the climate variables used during the year, based on the first R-curve; Table S2: The average
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length of the time lags (lag, expressed in number of days) between LAI and the climate variables for
the time lags with the greatest significant R.
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