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Abstract: To better understand the mechanisms of the hydro-ecological cycle in the changing environ-
ments of the Yangtze River Basin (YZRB), it is valuable to investigate vegetation dynamics and their
response to climate change. This study explored the spatial patterns of vegetation dynamics and the
essential triggers of regional differences by analyzing vegetation variations in the 1982–2015 period
at different time scales and the interannual variability of vegetation sensitivity to climate variability.
The results showed that the normalized difference vegetation index (NDVI) increased significantly
in the last three decades, but vegetation displayed great spatiotemporal variations at different time
scales. The vegetation in the central part of the YZRB dominated by forests and shrublands was
more sensitive to climate variability than vegetation in the source region of the YZRB, which was
dominated by alpine meadows and tundra (AMT). The contribution of climate variables to the
vegetation sensitivity index (VSI) had large spatial differences, but solar radiation and temperature
were the dominant factors. Furthermore, 57.9% of the YZRB had increasing VSIs, especially in the
south-central part. Consistent with the distributions of elevation and vegetation types, vegetation
dynamics in the YZRB were divided into five spatial patterns, with the largest increasing NDVI
trend in Region III and the largest VSI in Region IV. Moreover, the VSI exhibited fairly consistent
dynamics in all subregions, but the contributions of climate variables to the VSI varied greatly among
the different regions.

Keywords: vegetation dynamics; climate variability; vegetation sensitivity index; regionalization;
regional patterns; Yangtze River Basin

1. Introduction

Vegetation, which plays an essential role in carbon balance, energy exchange, and
water cycles, has served as an indicator of terrestrial environmental changes [1–4]. Thus,
understanding vegetation changes at regional and global scales is crucial for stakeholders
(e.g., policymakers and natural resource managers) to evaluate environmental conditions
and cope with future ecosystem challenges [5]. As space remote sensing technology
has developed, satellite-derived vegetation indices, such as the normalized difference
vegetation index (NDVI), the enhanced vegetation index (EVI), and the leaf area index
(LAI), have become powerful tools with which to monitor vegetation activities and their
response to natural environmental changes and human interventions at regional and global
scales [6–10]. Zhu et al. [11] reported that global LAI showed greening trends in most
regions and that CO2 fertilization effects explained 70% of these trends. Liu et al. [12]
reported that anthropogenic effects had varied impacts on global NDVI across continents,
and significant positive effects were found in Asia, Africa, and Europe. Moreover, Jiang
et al. [13] distinguished the effects of climatic change and human activities on vegetation
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dynamics in Central Asia through residual trend analysis and highlighted the degradation
in vegetation triggered by human activities. However, Ge et al. [14] revealed that both
climate change and human activities had favorable effects on vegetation growth in China
from 2001 to 2016.

In general, studies have pointed out that vegetation has changed due to ongoing
global climate changes and an increase in associated extreme events [15–17]. Tempera-
ture alters the phenology of vegetation due to the close association between temperature
and the initiation, termination, and performance of photosynthetic activities [18–20], and
precipitation controls the water deficit of vegetation [21,22]. Additionally, solar radiation
provides energy for photosynthesis in vegetation [23,24]. In addition to vegetation be-
coming more vulnerable to the substantial effects of climate change, vegetation changes
can reflect and regulate climate through biophysical processes, such as modifying liv-
ing conditions [3,25,26]. The response of vegetation to climate change exhibits nonlinear,
nonstationary, and complex processes; however, previous studies on climate–vegetation
interactions have focused mainly on mean climate states and have typically considered
correlations or linear relationships [4,5,27–29]. Recently, a new metric, the vegetation
sensitivity index (VSI), was proposed by Seddon et al. [30] to explore the vulnerability
of ecosystems to external variability. This index has become a new favorite metric when
assessing the responses of vegetation to climatic variability [31–35]. For example, Zhu
et al. [32] evaluated the effects of climatic variations on vegetation based on the VSI in the
desert region of northern China. Li et al. [31] revised the VSI approach on the Qinghai–Tibet
Plateau and found that the sensitivity of alpine grasslands to climate variability increased
along an elevational gradient. Combined with a 15-year moving window, Jiang et al. [33]
used the VSI to investigate interannual variability in the sensitivity of vegetation to climate
in China over the last three decades.

Numerous studies have also found that vegetation activities and their reactions to
climate variations are complex and spatially heterogeneous because water–heat mech-
anisms and eco-environmental conditions exhibit dramatic diversity among different
regions [36–39]. For example, vegetation has been greening in Europe, eastern America,
western and southern Australia, India, and China but browning in southern Africa, South
America, and Southeast Asia [40–43]. Extended drought has killed trees and altered the
composition of species in the Amazon rainforest [30,36], but an increase in solar radiation
has led to an increase in net primary production (NPP) in parts of the Amazon [11,37,44].
Additionally, the prolonged growing season caused by the warming climate has been
confirmed as the main factor promoting grassland growth on the Tibetan Plateau [20,45].
In contrast, vegetation changes in grasslands have shown consistent variations in tem-
perature and precipitation in semi-arid and arid regions [46] such as the Inner Mongolia
grasslands [32,47]. However, many studies on vegetation dynamics and their association
with climate change are based on pixels or regional averaging scales, making it difficult
to explore the essential triggers of spatial heterogeneity at a regional scale. Thus, cluster
analysis can group objects into several homogeneous subsets based on certain attributions,
providing an effective way of addressing spatial heterogeneity, and has been widely used
in studies of climatology and hydrology [48–50].

Variations in vegetation can alter hydrological processes and lead to fluctuations in
the rainfall–runoff relationship and runoff dynamics [51,52]. As an essential barrier to
sustaining ecological balance, the Yangtze River Basin (YZRB) is susceptible to climate
change because it straddles various climatic zones [53,54]. Investigating vegetation changes
and their climatic response in the YZRB is valuable for understanding the mechanisms of
the hydro-ecological cycle in changing environments. Many studies have been conducted to
analyze vegetation dynamics and their attributions in the YZRB [54–56] to better understand
the mechanisms of the hydro-ecological cycle in changing environments. However, as
with studies in other regions, these studies in the YZRB only briefly analyzed vegetation
responses on long-term mean climate states; the climate–vegetation interactions in short-
term climate variability remain poorly understood. Moreover, due to spatial heterogeneity,



Remote Sens. 2022, 14, 5623 3 of 20

it is difficult to explore the essential triggers of regional differences in vegetation dynamics
and their association with climate in the YZRB when simply investigating them with pixel
or regional averaging scales. Thus, vegetation sensitivity to climate variability, variations
in vegetation sensitivity to climate variability, the spatial patterns of vegetation dynamics,
and the essential triggers of regional differences in the YZRB still need further exploration.

To address the problems mentioned above, this study concentrated on the regional
patterns of vegetation dynamics and their sensitivity to climate variability in the YZRB.
This study (1) analyzed the spatiotemporal variations in vegetation at different time scales;
(2) quantified the VSI and its variations in the YZRB, together with the contributions of
climate variables (precipitation, temperature, and solar radiation) to the VSI; (3) detected
the spatial patterns of vegetation dynamics; and (4) explored vegetation dynamics and their
sensitivity at a regional scale. This study will help to better understand the mechanisms
of the hydro-ecological cycle in the changing environments in the YZRB and provides a
foundation for predicting future vegetation dynamics under changing climate conditions.

2. Materials and Methods
2.1. Study Area

The YZRB (24◦27′–35◦54′N and 90◦33′–122◦19′E) originates in the eastern part of
the Tibetan Plateau, flows through eleven provinces (including Qinghai, Tibet, Yunnan,
Sichuan, Chongqing, Hubei, Hunan, Jiangxi, Anhui, Suzhou, and Shanghai), and terminates
at the East China Sea in Shanghai. It covers an area of 1.8 million km2 (accounting for
approximately one fifth of China’s total land area) and spans China’s three major economic
regions. Due to its advantageous geographical location and unique natural conditions, the
YZRB plays an important role in socioeconomic development. The complex topography
of the YZRB has the shape of a three-stage ladder, with high terrain in the west and low
terrain in the east (Figure 1a). The entire YZRB can be divided into 12 subbasins (Figure 1b),
including the Jinsha River, Min River, Jialing River, Wu River, Han River, Dongting Lake,
Poyang Lake, Taihu Lake, and the mainstream of the Yangtze River. The YZRB has a
plateau mountain climate and a typical subtropical monsoon climate, with an uneven
distribution of annual precipitation and temperature that decreases from the southeast to
the northwest [54,57]. As shown in Figure 1c, this basin also has abundant forest resources.
Alpine meadows and tundra (AMT) and grasslands predominate in the source region and
upper reaches of the YZRB, while the dominant vegetation types in the middle reach of
the YZRB are forests and shrublands. Moreover, the middle and lower plains of the YZRB
consist of abundant cropland.
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2.2. Data Sources

The datasets used in this study contain NDVI data, gridded climate data, and vege-
tation type data. The NDVI dataset was obtained from the Global Inventory Monitoring
and Modeling Studies (GIMMS) group (http://ecocast.arc.nasa.gov/data/pub/gimms
(accessed on 12 February 2020)), with a spatial resolution of 1/12◦ for the data from 1981 to
2015. To reduce the influence of clouds and aerosols in the atmosphere, biweekly NDVI
data were synthesized into monthly series using the maximum value composite (MVC)
technique [58]. Moreover, pixels with mean growing season NDVI (GS-NDVI) values of
less than 0.1 were classified as bare ground and removed.

The China Meteorological Forcing Dataset (CMFD), with a spatial resolution of
0.1◦ × 0.1◦ and covering the period from 1979 to 2018, provided the grid monthly mean
temperature, precipitation, and solar radiation used in this study (http://data.tpdc.ac.cn
(accessed on 20 February 2020)). The dataset was developed by merging remote sensing
products, reanalysis datasets, and in situ observation datasets from meteorological sta-
tions [59,60]. This dataset has been used to investigate vegetation growth reactions to
climatic changes because of its comparatively high reliability and precision [31,61,62]. To
match the NDVI data, the study period was defined as 1982–2015, and the gridded climate
data were resampled from a spatial resolution of 0.1◦ to 1/12◦ using bilinear interpolation.

The spatial distribution of vegetation types was determined using a digitized vege-
tation map of China at a scale of 1:1,000,000, which was obtained from the Resource and
Environment Science and Data Center [63,64] (RESDC, https://www.resdc.cn (accessed on
8 March 2020)). Eight vegetation types were recognized, including broadleaf forests (BF),
broadleaf and mixed forests (MF), needleleaf forests (NF), shrublands, grasslands, alpine
meadows and tundra (AMT), croplands, and swamps.

2.3. Methods
2.3.1. Trend Analysis

In this study, the linear least squares regression method was utilized to investigate
multiple time scale linear trends of the NDVI at pixel and regional scales [56]. The Theil–
Sen median analysis combined with the Mann–Kendall test, which has been extensively
used to analyze long-term sequences of vegetation in previous studies [5,65,66], was also
chosen to determine the statistical significance of vegetation changes. On the basis of
previous studies [13,65] and the real conditions in the YZRB, the statistically significant
results were categorized into five types: significantly improved (SNDVI ≥ 0.0005, Z ≥ 1.96),
slightly improved (SNDVI ≥ 0.0005, −1.96 ≤ Z ≤ 1.96), stable (−0.0005 ≤ SNDVI ≤ 0.0005),
slightly degraded (SNDVI ≤ -0.0005, −1.96 ≤ Z ≤ 1.96), and significantly degraded (SNDVI
≤ −0.0005, Z ≤ −1.96).

2.3.2. Vegetation Sensitivity Index

The VSI, developed by Seddon et al. [30], was used to investigate vegetation sensitivity
to climate variability while taking the complexity of the ecosystem’s response to climate
into account. Here, the NDVI and three main climate drivers (TEM, PRE, and RAD) were
chosen to calculate the VSI in the YZRB. The expression is as follows:

VSI = ∑ (TEMwei × TEMsen + PREwei × PREsen + RADwei × RADsen)

CONTEM = TEMwei×TEMsen
VSI

CONPRE = PREwei×PREsen
VSI

CONRAD = RADwei×RADsen
VSI

(1)

where TEMwei, PREwei, and RADwei are the relative importance of the temperature, precip-
itation, and solar radiation on vegetation changes (climate weights), respectively. TEMsen,
PREsen, and RADsen are the sensitivities of the NDVI to the climate variables. CONTEM,
CONPRE, and CONRAD are the contributions of climate variables to the VSI. For the method-
ological details, see Seddon et al. [30].

http://ecocast.arc.nasa.gov/data/pub/gimms
http://data.tpdc.ac.cn
https://www.resdc.cn


Remote Sens. 2022, 14, 5623 5 of 20

Additionally, to investigate the interannual variations in vegetation sensitivity to
climate, a 15-year moving window approach was applied to the NDVI and climate variable
time series [33] from 1982 to 2015. Thus, a VSI was calculated for a specific 15-year time
series, and the result was assigned to the middle year of the moving window. For example,
the VSI in 1989 represented the result calculated from the NDVI and climate variables
for the first 15-year period (1982–1996). Moreover, the Theil–Sen median analysis and
the Mann–Kendall test were combined to investigate the trends and significance of the
variability in vegetation sensitivity to climate. VSI slope trends greater than 0 indicated an
increase in vegetation sensitivity, while |Z| > 1.96 was considered as statistically significant.

2.3.3. K-Means Clustering Analysis

For a better understanding of the regional patterns of vegetation dynamics and their
sensitivity to climate change, K-means clustering analysis was used to determine the
homogeneous subregions in the YZRB with certain attributions at the pixel scale. Compared
to other clustering methods, K-means clustering analysis is one of the simplest and most
flexible unsupervised learning algorithms, especially for large-volume datasets [67]. It
divides the sampling set into K clusters, making points within a cluster as close as possible
and distances between clusters as large as possible. In other words, the squared errors
within a cluster and the sum of squared errors in all clusters are minimized:

J(Ck) = ∑xi∈ck
‖ xi − µk‖2 (2)

J(C) = ∑K
k=1 ∑xi∈ck

‖ xi − µk‖2 (3)

where xi are the parameters (i.e., vegetation variability, vegetation sensitivity) in pixel i.
X = {xi}, i = 1, 2, . . . , n, pixels with different parameters are clustered into K clusters. µk is
the mean value of cluster Ck. J(Ck) is the squared error of cluster Ck. J(C) is the sum of the
squared error in all K clusters.

In this paper, the average and linear NDVI trends during the growing season (GS) and
four seasons were selected as vegetation variability properties. Additionally, VSI, climate
variable contribution, and their trends were taken as vegetation sensitivity properties.
Latitude, longitude, and elevation were regarded as spatial properties. All data mentioned
above were taken as attributions involved in the K-means clustering analysis.

3. Results
3.1. Spatiotemporal Variations in Vegetation

The spatiotemporal variations in vegetation in the YZRB at different time scales were
investigated. Note that the GS in this study was defined as from April to October [64], and
the four seasons were spring (March to May), summer (June to August), autumn (September
to November), and winter (December to February). Figure 2 shows the NDVI interannual
variations in the YZRB. The NDVI showed increasing trends during the 1982–2015 period
at all time scales. The GS-NDVI values in the YZRB fluctuated between 0.58 and 0.65 and
increased significantly at a rate of 1.01 × 10−3/yr. The seasonal NDVI values were ranked
as summer > autumn > spring > winter. Vegetation showed significant greening trends
(p < 0.05) in spring, autumn, and winter and a slight upward trend in summer. The seasonal
NDVI trends were in the order of spring (1.98× 10−3/yr), winter (1.18× 10−3/yr), autumn
(0.89 × 10−3/yr), and summer (0.34 × 10−3/yr).



Remote Sens. 2022, 14, 5623 6 of 20

Remote Sens. 2022, 14, 5623 6 of 20 
 

 

3. Results 
3.1. Spatiotemporal Variations in Vegetation 

The spatiotemporal variations in vegetation in the YZRB at different time scales were 
investigated. Note that the GS in this study was defined as from April to October [64], and 
the four seasons were spring (March to May), summer (June to August), autumn (Septem-
ber to November), and winter (December to February). Figure 2 shows the NDVI interan-
nual variations in the YZRB. The NDVI showed increasing trends during the 1982–2015 
period at all time scales. The GS-NDVI values in the YZRB fluctuated between 0.58 and 
0.65 and increased significantly at a rate of 1.01 ×  10ିଷ/yr. The seasonal NDVI values 
were ranked as summer > autumn > spring > winter. Vegetation showed significant green-
ing trends (p < 0.05) in spring, autumn, and winter and a slight upward trend in summer. 
The seasonal NDVI trends were in the order of spring (1.98 × 10ିଷ /yr), winter (1.18 × 10ିଷ/yr), autumn (0.89 × 10ିଷ/yr), and summer (0.34 × 10ିଷ/yr). 

 
Figure 2. Interannual variations in the GS and seasonal NDVI in the YZRB from 1982 to 2015. 

The spatial distributions of the GS-NDVI variations in the YZRB are shown in Figure 
3. Overall, the GS-NDVI values in the YZRB were relatively low in the west and high in 
the center (Figure 3a) with a mean GS-NDVI of 0.62, and more than 85% of the areas had 
mean NDVI values greater than 0.5. Areas with mean NDVI values greater than 0.7 ac-
counted for 31% and were mainly distributed in the hilly areas covered with forests, 
shrublands, and grasslands around the Sichuan Basin. However, areas with mean NDVI 
values less than 0.5 were mainly located in the upper Jinsha River Basin and the Taiho 
Lake Basin. The GS-NDVI trends in the YZRB mainly increased linearly (Figure 3b), ac-
counting for 81% of the YZRB. In particular, 21.3% of the areas with increasing rates 
greater than 2 × 10−3/yr were mainly distributed in the central part of the YZRB. However, 
areas with linearly decreasing trends accounted for only 19% and were located in the 
western and eastern parts of the YZRB. In particular, vegetation in western Sichuan, the 
Taiho Lake Basin, and the Yangtze River Delta was severely degraded. The spatial distri-
bution of the types of GS-NDVI change in the YZRB was similar to that of linear trends 
(Figure 3c), with significantly improved vegetation mainly in the central region and de-
graded vegetation in the western and eastern parts. The main types of vegetation changes 
in the YZRB were stable and significantly improved, occupying 24% and 53.1%, respec-
tively. However, areas with significantly degraded vegetation accounted for only a small 
proportion (4.5%). 
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The spatial distributions of the GS-NDVI variations in the YZRB are shown in Figure 3.
Overall, the GS-NDVI values in the YZRB were relatively low in the west and high in
the center (Figure 3a) with a mean GS-NDVI of 0.62, and more than 85% of the areas
had mean NDVI values greater than 0.5. Areas with mean NDVI values greater than 0.7
accounted for 31% and were mainly distributed in the hilly areas covered with forests,
shrublands, and grasslands around the Sichuan Basin. However, areas with mean NDVI
values less than 0.5 were mainly located in the upper Jinsha River Basin and the Taiho Lake
Basin. The GS-NDVI trends in the YZRB mainly increased linearly (Figure 3b), accounting
for 81% of the YZRB. In particular, 21.3% of the areas with increasing rates greater than
2 × 10−3/yr were mainly distributed in the central part of the YZRB. However, areas with
linearly decreasing trends accounted for only 19% and were located in the western and
eastern parts of the YZRB. In particular, vegetation in western Sichuan, the Taiho Lake
Basin, and the Yangtze River Delta was severely degraded. The spatial distribution of the
types of GS-NDVI change in the YZRB was similar to that of linear trends (Figure 3c), with
significantly improved vegetation mainly in the central region and degraded vegetation
in the western and eastern parts. The main types of vegetation changes in the YZRB were
stable and significantly improved, occupying 24% and 53.1%, respectively. However, areas
with significantly degraded vegetation accounted for only a small proportion (4.5%).
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The spatial distributions of seasonal NDVI variations are illustrated in Figures S1–S3.
Vegetation changes in the YZRB displayed spatiotemporal differences in different seasons.
The seasonal mean NDVI in the YZRB was the highest in summer with a value of 0.67, fol-
lowed by autumn (0.57) and spring (0.51); winter (0.46) had the lowest vegetation coverage
(Figure S1). In addition, the differences in the seasonal mean NDVI in the source region
of the YZRB were smaller than those in other areas of the YZRB. The spatial distributions
of the linear NDVI trends were dominated by linear increases in all seasons (Figure S2).
The percentage of pixels with linearly increasing trends greater than 2 × 10−3/yr was the
largest in spring (50%) but the lowest in summer (8.3%). However, the largest percentage
of areas with decreasing trends, accounting for 36.6%, was observed in the Hengduan
Mountains and the lower reaches of the YZRB in summer. The major type of NDVI change
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in spring, autumn, and winter was significantly improved (Figure S3), accounting for 63.1%,
46.1%, and 46.1%, respectively. In contrast, the main type of vegetation change in summer
was stable, with a percentage of 30.2%.

3.2. Vegetation Sensitivity to Climate Variability

To recognize the comprehensive effect of climate on vegetation dynamics, the VSI was
used to quantify the sensitivity of vegetation to climate variability. The spatial distribution
of the VSI exhibited obvious spatial heterogeneity in the YZRB (Figure 4). The VSI of AMT
in the source region of the YZRB was low and most values were less than 40, indicating
more stable feedback of vegetation to climate variability. In contrast, areas with high VSIs
were mainly located in the central part of the YZRB, which was dominated by forests and
shrublands.
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The contribution of climate variables to the VSI in the YZRB is shown in Figure 5. The
contribution of precipitation to the VSI was comparatively smaller than that of temperature
and solar radiation. Spatially, the contribution of precipitation to the VSI was less than
30% in most regions in the YZRB, while only a few areas in the source region of the YZRB
had a greater contribution from precipitation. Temperature had a great contribution to the
VSI, with a mean value of 37.5%. In the source region of the YZRB, Sichuan Basin, and
the middle-lower Yangtze Plain, the contribution of temperature to the VSI was greater
than 50% in most pixels. Moreover, solar radiation had a great contribution to the VSI in
the southern part of the YZRB, which is dominated by forests and shrublands. According
to the spatial distribution of the primary drivers controlling the VSI in Figure 4d, solar
radiation was the dominant factor for the VSI in the YZRB for the largest number of areas
(49.2%), while 42.6% of the areas had temperature as the dominant factor for the VSI. In
contrast, there were few areas where precipitation was the primary driver of the VSI (8.2%).
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(b) temperature (TEM), (c) solar radiation (RAD), and (d) the primary drivers controlling the VSI.

The VSI time series were calculated by using a 15-year moving window approach,
and the spatial distributions of the variability in the VSI are displayed in Figure 6. The
VSI trends in the YZRB ranged from −4 to 3.46, and most of the areas fluctuated between
−1 and 1. Based on the Mann–Kendall test, the VSI trends were classified into four types:
significantly increased, slightly increased, significantly decreased, and slightly decreased.
The percentages of increasing and decreasing VSIs in the YZRB were 57.9% and 42.1%,
respectively. The areas with significantly increased VSI trends accounted for 22.6% and
were mainly concentrated in the south-central part of the YZRB, while only 12.7% of the
areas had significantly decreased VSI trends and were sporadically distributed.
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Figure 6. Spatial distributions of (a) trends, (b) trend types, and (c) the percentage of trend types in
the VSI.

This study also investigated the trends relating to the contribution of climate variables
to the VSI (Figure S4). The spatial distribution of the precipitation contribution trends was
dispersed, and the percentages of precipitation contributions with significantly increasing
and decreasing trends were 13.4% and 18%, respectively. The areas with significantly
increased temperature contributions were mainly concentrated in the source region of the
YZRB and Poyang Lake. Furthermore, 50.1% of the areas showed increasing trends for the
contribution of solar radiation, and these areas were primarily located in the central part of
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the YZRB. Generally, the trends for the contributions of climate variables were spatially
heterogeneous. For example, the precipitation and solar radiation contributions in the
source region of the YZRB were decreasing, but a temperature contrast was observed.

3.3. Vegetation Dynamics and Their Sensitivity at a Regional Scale
3.3.1. Regionalization of Vegetation Changes

To explore essential triggers of spatial heterogeneity on vegetation dynamics and their
response to climate, K-means clustering analysis was used to divide the YZRB into several
homogeneous subregions. To reduce the heterogeneity and discontinuity within the subre-
gions, some subjective adjustments [68] were conducted after obtaining K-means clustering
results based on the different types of properties. The adjustments included moving pixels
from one subregion to another, deleting some pixels from a subregion, subdividing a subre-
gion, eliminating a subregion, and combining two or more subregions (Figure S5). These
adjustments have been used in many other regionalization studies with a large number
of stations or grids [69,70]. Eventually, a more reasonable and consistent regionalization
result was obtained and the YZRB was divided into five subregions (Figure 7), covering
the source region of the YZRB (Region I), the Hengduan Mountains (Region II), the north-
central YZRB (Region III), the south-central YZRB (Region IV) and the northeastern YZRB
(Region V).
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The elevation ranges and the percentages of vegetation types in different subregions
shown in Figure 8 indicate that the subregion divisions and the distributions of elevation
and vegetation types were consistent. The elevation in Region I was the highest among
all subregions, with a mean value of 4650 m. The elevation values had a concentrated
normal distribution, with a range of 4000–5300 m. In Region II, the mean elevation was
3400 m, and the distribution of elevation was leftward and discrete, ranging from 950 m
to 4950 m. Regions III and IV both exhibited rightward distributions of elevation with
a similar dispersion, while Region V had the lowest and most concentrated elevation
with a mean value of 70 m. According to the percentage of different vegetation types in
different subregions (Figure 7b), the vegetation in Region I was dominated by AMT (92%),
whereas Region II was dominated by shrublands (40%) and complemented by forests (31%).
However, vegetation in Regions III and IV was interspersed with croplands, shrublands,
and forests, while 82% of the vegetation in Region V was croplands.
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In summary, the elevation and vegetation types in the YZRB were consistent within
a subregion but varied greatly among subregions. Region I was a high-elevation area
dominated by AMT, Region II was a middle-elevation area dominated by shrubland and
forest, Regions III and IV were low-elevation areas and had mixed vegetation types, and
Region V was a plain area dominated by cropland. Nevertheless, despite the similarities in
elevation and vegetation types, Regions III and IV were still divided into two subregions,
indicating that vegetation changes and their sensitivity to climate variability in the YZRB
were regionally different. Therefore, the following sections identify the differences among
subregions.

3.3.2. Regional Vegetation Dynamics

To investigate the vegetation changes in the YZRB at a regional scale, the linear
trends and types of NDVI changes were compared in different subregions. Figure 9
shows the boxplots for the linear trends of the NDVI in each subregion during the GS and
the four seasons. The linear trends of the GS and seasonal NDVI had distinct regional
features, with smaller average rates of change in Regions I and II than in the other sub-
regions and the largest average rate of change in Region III. For example, the average
rates of change in the NDVI during the GS were Region II (0.01 × 10−3/yr) < Region I
(0.22 × 10−3/yr) < Region V (0.69 × 10−3/yr) < Region IV (1.31 × 10−3/yr) < Region III
(1.97 × 10−3/yr). Generally, the linear trends in all subregions displayed normal distri-
butions, although the degrees of dispersion in different subregions and at different time
scales were different. The dispersion degree of the trends in Region I was the smallest
among all subregions during the GS and the four seasons, and the dispersion degree in
Region V was the largest. Nevertheless, the dispersion degrees of the NDVI trends in the
same subregion varied greatly at different time scales. Taking Region II as an example,
the dispersion degrees of the NDVI trends were large in summer and winter, with ranges
of −3.70 × 10−3/yr to 2.61 × 10−3/yr and −2.95 × 10−3/yr to 3.62 × 10−3/yr, respec-
tively, followed by ranges of −2.12 × 10−3/yr to 3.84 × 10−3/yr and −2.77 × 10−3/yr to
3.17 × 10−3/yr in spring and autumn. The NDVI trends in the GS were more concentrated,
ranging from −2.33 × 10−3/yr to 2.36 × 10−3/yr.
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Figure S6 depicts the percentage of regional types of NDVI changes in the YZRB.
The types of NDVI changes in Region I were fairly simple and consistent during the GS
and four seasons, all of which were dominated by stable trends. In contrast, the types
of NDVI changes in Region II were more complex and varied widely on different time
scales, with the largest percentage of degraded vegetation among all subregions. The
vegetation changes in Region III were dominated by significant increases in all seasons
other than summer, and the percentage of significant increase in vegetation exceeded 85%
in the GS and spring. For Regions IV and V, vegetation in the GS, spring, and winter mainly
significantly increased, while the types of vegetation changes in summer and autumn were
more complex.

3.3.3. Regional Vegetation Sensitivity

The climate conditions and vegetation sensitivity to climate in subregions are summa-
rized in Table 1, with pronounced regional discrepancies. Among all subregions, Region I
was the most arid, the coldest, and had the highest solar radiation. The VSI in Region I was
the lowest, and the contribution of temperature to the VSI in this subregion was higher than
the other climate variables. Despite the different climate conditions, Regions II, III, and IV
had higher VSIs. The difference was that the VSIs in Regions II and III were determined
by the combination of air temperature and solar radiation, while the contribution of solar
radiation to the VSI was the greatest in Region IV. In the wetter and warmer Region V, the
VSI was slightly larger than that in Region I, with the largest contribution of temperature
to the VSI. However, precipitation contributed the least to the VSI in all regions.
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Table 1. Mean climate variables and vegetation sensitivity to climate in subregions.

Mean Climate Variables
VSI

Contribution of Climate Variables

PRE
(mm)

TEM
(◦C)

RAD
(W/m2) PRE TEM RAD

Region I 460.1 −3.9 216.2 28.6 26% 45% 29%
Region II 796.3 4.8 188.6 40.0 28% 35% 37%
Region III 1025.9 13.6 135.8 39.9 23% 39% 38%
Region IV 1344.9 15.9 142.3 40.5 23% 34% 43%
Region V 1338.4 16.9 149.2 33.3 25% 41% 34%

The variabilities in the regional VSI and the contribution of climate variables were
also investigated in this study. Figure S7f–j shows that the VSI exhibited fairly consistent
dynamics in different subregions, with the VSI increasing sharply from 1994 to 1999 and
then decreasing gradually. By combining the dynamics of climate variables (Figure S7a–e),
the dominant climate factors affecting the VSI did not change, but the contribution of each
climate variable to the VSI and its relationship with climate change varied greatly among
different regions. As the weakest influencing factor, the contribution of precipitation to
the VSI showed no clear changes with the interannual variations in precipitation, except
in Region I where the contribution first decreased and then increased as precipitation
increased. Nevertheless, as temperature increased during the 1982–2015 period, the con-
tribution of temperature to the VSI first increased and then decreased in Regions I and II,
whereas the contribution of temperature to the VSI decreased slightly in Regions III and
V and increased gradually in Region IV. Moreover, the contribution of solar radiation to
the VSI was positively associated with the interannual solar radiation variations, and the
contribution of solar radiation to the VSI was great in all subregions except Regions I and V.

4. Discussion
4.1. Vegetation Dynamics and Their Sensitivity to Climate Variability

In accordance with previous studies [4,56,71], the distribution of the mean NDVI in the
YZRB was spatially heterogeneous, with lower vegetation coverage in the western part and
higher vegetation coverage in the central part. This study reported that vegetation coverage
has gradually increased in the YZRB in the last three decades, and it has significantly
improved in most areas, especially in the central part of the YZRB. Zhang et al. [4] confirmed
these findings and explained that the significantly increased vegetation in the central part of
the YZRB might result from the combined effects of climate changes and the implementation
of the Yangtze River Shelterbelt Program. Moreover, there were some areas with linearly
decreasing trends in the YZRB, which were mainly located in the Jinsha River Basin and the
Yangtze River Delta. Li et al. [72] and Cao et al. [55] explained that the construction of the
Three Gorges Dam in the Jinsha River Basin, rapid urbanization, and population expansion
in the Yangtze River Delta were the main reasons for vegetation deterioration. However,
previous studies on vegetation changes in the YZRB were mainly conducted on annual
or growing season scales and did not monitor vegetation dynamics in multiple temporal
dimensions (such as seasonal variations). In this study, vegetation dynamics revealed
obvious seasonal characteristics in the YZRB (Figures S1–S3). For example, the greening
trend in spring was the most obvious, while the percentage of areas with decreasing trends
was largest in summer. The apparent greening of the YZRB in spring was possibly caused
by the earlier beginning of the growing season, which has been confirmed by research in
Central Europe [73]. Nevertheless, in those areas that experience extensive browning in
summer, sufficient water–heat supplements caused vegetation to be almost saturated under
natural conditions, thus the growth of vegetation would be limited if climate changed
dramatically.

This study demonstrated that vegetation in the central part of the YZRB, which is
dominated by forests and shrublands, displayed higher VSIs than grasslands in the source
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region, which is in agreement with recent conclusions that the sensitivity of vegetation to
climate varies with vegetation type [32,33]. Solar radiation was the most essential element
for vegetation sensitivity in the YZRB, followed by temperature, which has also been
found in previous research in China [30,33,74]. However, other studies in the YZRB have
indicated that temperature plays a dominant role in vegetation changes [4,75] because
these studies considered only temperature and precipitation as influencing factors and
ignored the effect of solar radiation. In addition, in agreement with the results in this
study, Qu et al. [56] observed that the impact of precipitation on vegetation dynamics in the
YZRB was weak due to adequate water supply from dense rivers. This study showed that
vegetation sensitivity to climate variability had large fluctuations and exhibited consistent
dynamics in all subregions, with the VSI increasing sharply from 1994 to 1999 and then
decreasing gradually. This phenomenon was also found by Jiang et al. [33], who claimed
that this was caused by the frequent climate variability in the early 1990s.

4.2. Changes and Sensitivity of Regional Vegetation

After dividing the YZRB into five subregions based on K-means clustering analysis,
the distributions of the elevation and vegetation types showed great consistency with sub-
region divisions. First, the distributions of climate variables were latitudinally dependent,
with temperature and solar radiation decreasing gradually with decreasing latitude [76].
Second, as mentioned above, different vegetation types had diverse responses to climate
change [30,64,77]. In that case, the spatial patterns of vegetation dynamics and their sensi-
tivity to climate variability were influenced by the geographic location, terrain, vegetation
types, etc., which has also been discussed in many other studies [4,31,56,78,79]. For ex-
ample, Chen et al. [78] reported that the correlation between vegetation and precipitation
was closely related to the vegetation type and elevation. Research on vegetation dynamics
on the Tibetan Plateau conducted by Liu et al. [79] and Li et al. [31] showed that the in-
creasing rates of vegetation changes decreased as the elevation increased, while vegetation
sensitivity to climate increased as the elevation increased.

Thus, regional vegetation changes and their sensitivity were analyzed in this study.
Taking Region I as an example, no significant vegetation changes were observed in this
subregion, and temperature was the dominant climate factor controlling the VSI due to
the cold–dry climate conditions. However, as a warming–wetting trend occurred, the
contribution of temperature to the VSI first increased as the contribution of precipitation
decreased in Region I, and the contribution of temperature then decreased as the increasing
contribution of precipitation increased. Qu et al. [56] explained that, in temperature-limited
regions such as the Tibetan Plateau, a warmer climate could extend the growing season,
which would thus promote vegetation growth; however, with continual temperature
increases, the increasing evapotranspiration would result in drought and inhibit vegetation
growth, leaving precipitation with an important role to play. Moreover, enhanced solar
radiation could promote photorespiration and encourage vegetation growth, thus the
contribution of solar radiation to the VSI was positively associated with the interannual
solar radiation variations in all subregions. However, although solar radiation was the
most crucial component for vegetation sensitivity in the YZRB, it had a modest effect on
the VSI in Region I. Because sufficient sunlight resources satisfied the basic requirements
of vegetation growth in this region, the changes in solar radiation had less impact on
vegetation. This explanation is also supported by the research into vegetation changes
in the Three-River Source Region of China conducted by Zhang et al. [80]. Generally,
these findings regarding regional vegetation–climate interactions support the projection of
vegetation responses to future climate changes.

4.3. Anthropogenic Factors Influencing Vegetation

Anthropogenic factors are also critical factors that influence vegetation dynamics,
and the impact of anthropogenic factors is both positive and negative [4,10,13,14]. As
overgrazing and land reclamation has severely damaged the ecological system, the Chinese
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government has implemented the nationwide Grain for Green Program (GTGP) since 1999,
which has made a great contribution to vegetation restoration [14,66,81]. In addition, rapid
economic expansion and a massive rising population have resulted in the degradation of
vegetation surrounding cities [55,82]. As illustrated in Section 4.3, anthropogenic factors
were the main factors contributing to the decreasing trends of the NDVI in the YZRB, while
significant vegetation growth in the central part of the YZRB resulted from the combined
effects of climate changes and anthropogenic factors. Qu et al. [54] also reported that
the contributions of climate change and anthropogenic factors to vegetation dynamics in
the YZRB were 70.37% and 29.63%, respectively. However, whether vegetation’s sensitiv-
ity to climate variability and spatial patterns of vegetation dynamics can be affected by
anthropogenic factors needs more discussion.

Jiang et al. [33] analyzed the variability of the VSI in China and reported that areas with
decreased VSIs in China coincided with the locations where ecological restoration projects
(such as the Three-North Shelterbelt Program, the Yellow River Shelterbelt Program, and
the Beijing-Tianjin Sandstorm Source Control Program) have been conducted. Stanimirova
et al. [83] also proposed that effective livestock management could improve the resilience
of vegetation productivity to climate variations. These studies indicated that anthropogenic
factors could intensify vegetation resistance to climate variability and lead to low vegetation
sensitivity to climate. However, in our study, VSIs showed increasing trends in some areas
where the Yangtze River Shelterbelt Program was carried out, which is contrary to the
previous statements. Chi et al. [84] explained that this might be due to the particular
vulnerability of mountain needle-leaved forests to climate variability in southwestern
China. Thus, vegetation is highly sensitive to climate despite experiencing considerable
human activities, and this has also been confirmed by Zhang et al. [4] and Qu et al. [54]
who found that climate change is still considered a dominant factor affecting vegetation
dynamics in the YZRB. In general, vegetation sensitivity to climate variability is also
influenced by anthropogenic factors, but the effectiveness of the influence depends on
different environmental conditions.

On the other hand, it is well documented that the effects of anthropogenic factors on
vegetation changes are spatially heterogeneous. Li et al. [85] concluded that the effective-
ness of afforestation projects was influenced by elevation and slope gradients on China’s
Loess Plateau. Qu et al. [54] explained that areas where croplands were converted to
forests were primarily distributed below 1500 m with slopes less than 20◦, while large-scale
afforestation policies were difficult to conduct in high-elevation areas due to the complex to-
pography and sparse population. Moreover, the effect of rapid economic development and
population expansion on vegetation is spatially different, and more developed plain regions
(such as the Yangtze River Delta) are more affected by human activities than high-elevation
cities with lower economic levels [4]. These findings further elucidate how anthropogenic
factors shape the spatial patterns of vegetation dynamics and support that the distribution
of elevation is consistent with the regionalization results in our study.

4.4. Limitations and Uncertainties

Although the analysis of regional patterns of vegetation dynamics and their sensitivity
to climate variability helps to better understand the mechanisms of the hydro-ecological
cycle in the changing environments in the YZRB, there are still great limitations and
uncertainties in this study that cannot be ignored. First, vegetation sensitivity to climate
variability, as evaluated by the VSI in this study, overlooked time-lag and cumulative
effects of climate factors on vegetation growth. As the significance of the time-lag and
the cumulative effects has been confirmed in many studies [5,86,87], ignoring these effects
leads to uncertainties in the contributions of climate variables to the VSI. Second, the
spatiotemporal vegetation variations in the YZRB were analyzed at different time scales,
while the investigation of variations in the VSI was limited to a single time scale (monthly).
However, because of the seasonal non-uniformity in climate change, it is valuable to
comprehensively consider whether variations in the VSI differ at finer temporal scales (i.e.,
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seasonally). In addition, other potential mechanisms could affect the spatial patterns of
vegetation dynamics, such as CO2 fertilization [11], extreme climatic events [88], snow
cover conditions, and human activities [13]. However, due to the deficiencies in data and
methodology, this study mainly focused on the effect of climate factors without considering
other relevant indicators, which contributes to the uncertainties in the regionalization
results. Thus, further studies are needed to address the limitations mentioned above by
establishing a more comprehensive framework to explore the spatial patterns of vegetation
dynamics at regional or global scales in the future.

5. Conclusions

In this study, the spatiotemporal vegetation variations in the YZRB were analyzed
at different time scales during the 1982–2015 period, and vegetation sensitivity to climate
variability was quantified using the VSI. Moreover, K-means clustering analysis was used
to reveal the spatial patterns of vegetation changes, and vegetation dynamics and their
sensitivity at a regional scale were then studied to explore the essential triggers of regional
differences. Based on the above analysis and discussion, the following conclusions can be
drawn:

(1) The GS-NDVI has increased significantly in the last three decades, and areas of
vegetation with significantly increasing trends during the GS were mainly located in the
central part of the YZRB, accounting for 53.1%. However, vegetation variations had great
spatiotemporal differences in different seasons, with the greening trends most obvious in
spring but most stable in summer.

(2) Vegetation in the central part of the YZRB, which is dominated by forests and
shrublands, was more sensitive to climate variability than vegetation in the source region
of the YZRB, which is dominated by AMT. Solar radiation was the dominant factor for
vegetation sensitivity to climate variability in the southern YZRB. However, in the source
region of the YZRB, the Sichuan Basin, and the middle-lower Yangtze Plain, temperature
made great contributions to the VSI. Based on a 15-year moving window approach, 57.9% of
the areas had increasing VSIs, especially in the south-central part of the YZRB. Nevertheless,
the trends for the contributions of climate variables to the VSI were widely dispersed.

(3) Based on certain attributes, vegetation dynamics in the YZRB were divided into
five spatial patterns, which showed great consistency with the distributions of elevation
and vegetation types. Distinct regional features were observed in vegetation dynamics and
their sensitivity on regional scales. Comparatively, the increasing NDVI trends were the
smallest in Region I but the largest in Region III, while the VSI in Region IV was markedly
larger than in Regions I and V. Moreover, the VSI exhibited fairly consistent dynamics in all
subregions, though variations in the contribution of climate variables to the VSI and their
relationships with climate changes varied greatly among different regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14215623/s1, Figure S1: Spatial distributions of the seasonal
mean NDVI from 1982 to 2015: (a) spring, (b) summer, (c) autumn, and (d) winter; Figure S2:
Spatial distributions of the seasonal NDVI linear trends from 1982 to 2015: (a) spring, (b) summer,
(c) autumn, and (d) winter; Figure S3: Spatial distributions of types of seasonal NDVI changes
(statistical significance) from 1982 to 2015: (a) spring, (b) summer, (c) autumn, and (d) winter;
Figure S4: Spatial distributions of trend types in the contribution of climate variables to VSI: (a) PRE,
(b) TEM, and (c) RAD; Figure S5: Schematic of subjective adjustments for the K-means clustering
analysis result; Figure S6: Percentage of types of GS and seasonal NDVI changes in subregions:
(a) GS, (b) spring, (c) summer, (d) autumn, and (e) winter; Figure S7: Interannual variations in climate
variables (a–e, blue solid lines are the regional PRE variations, red solid lines are the regional TEM
variations, yellow solid lines are the regional RAD variations) and vegetation sensitivity to climate in
subregions (f–j, black dashed lines are the regional VSI variations, blue solid lines are the regional
variations in PRE contribution to VSI, red solid lines are the regional variations in TEM contribution
to VSI, yellow solid lines are regional variations in RAD contribution to VSI).
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