Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Data Preprocessing
2.2.1. MODIS Daily Cloud-Free Snow Cover Products
2.2.2. Landsat TM
2.2.3. Other Auxiliary Data
3. Methodology
4. Results
4.1. The Accuracies of Daily Cloud-Free Snow Cover over the Whole QTP
4.2. The Accuracies of Cloud-Gap-Filled Snow Cover within Different Altitude Zones
4.3. Accuracy of Cloud-Gap-Filled Snow Cover Based on the 10 × 10 km Grid
5. Discussion
5.1. Comparison with Previous Studies
5.2. Limitations in the Determination of Cloud-Gap-Filled Snow Cover Based on Inferred Snow Lines
5.3. Impact of AMSR-E SWE on Cloud-Gap-Filled Snow-Cover Accuracy
5.4. MOYD Cloud-Removal Algorithm Deficiency and Future Prospect
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, T.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.R.; Wang, W.; et al. Third pole environment (TPE). Environ. Dev. 2012, 3, 52–64. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2018, 100, 423–444. [Google Scholar] [CrossRef]
- You, Q.; Chen, D.; Wu, F.; Pepin, N.; Cai, Z.; Ahrens, B.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth Sci. Rev. 2020, 210, 103349. [Google Scholar] [CrossRef]
- Qu, B.; Zhang, Y.; Kang, S.; Sillanpää, M. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the ‘Water Tower of Asia’. Sci. Total Environ. 2019, 649, 571–581. [Google Scholar] [CrossRef]
- Tong, Y.D.; Chen, L.; Chi, J.; Zhen, G.C.; Zhang, Q.Q.; Wang, R.N.; Yao, R.H.; Zhang, W.; Wang, X.J. Riverine nitrogen loss in the Tibetan Plateau and potential impacts of climate change. Sci. Total Environ. 2016, 553, 276–284. [Google Scholar] [CrossRef]
- Zhang, F.; Thapa, S.; Immerzeel, W.; Zhang, H.; Lutz, A. Water availability on the Third Pole: A review. Water Secur. 2019, 7, 100033. [Google Scholar] [CrossRef]
- Jayanta, B. Securing the Himalayas as the water tower of Asia: An environmental perspective. Asia Policy 2013, 16, 1–50. [Google Scholar]
- Qiu, L.; You, J.; Qiao, F.; Peng, D. Simulation of snowmelt runoff in ungauged basins based on MODIS: A case study in the Lhasa River basin. Stoch. Environ. Res. Risk Assess. 2014, 28, 1577–1585. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Bao, A.; Zhou, C.; Chen, X.; Zhang, X. Study on snowmelt runoff simulation in the Kaidu River basin. Sci. China Ser. D Earth Sci. 2007, 50, 26–35. [Google Scholar] [CrossRef]
- Archer, D.R.; Forsythe, N.; Fowler, H.J.; Shah, S.M. Sustainability of water resources management in the Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci. 2010, 14, 1669–1680. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; de Jong, S.M.D.; Bierkens, M.F.P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Barnhart, T.B.; Molotch, N.P.; Livneh, B.; Harpold, A.A.; Knowles, J.F.; Schneider, D. Snowmelt rate dictates streamflow. Geophys. Res. Lett. 2016, 43, 8006–8016. [Google Scholar] [CrossRef]
- Mahanama, S.; Livneh, B.; Koster, R.; Lettenmaier, D.; Reichle, R. Soil moisture, snow, and seasonal streamflow forecasts in the United States. J. Hydrol. Meteorol. 2012, 13, 189–203. [Google Scholar] [CrossRef]
- Koster, R.D.; Mahanama, S.P.P.; Livneh, B.; Lettenmaier, D.P.; Reichle, R.H. Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci. 2010, 3, 613–616. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes in Snowmelt Runoff Timing in Western North America under a `Business as Usual’ Climate Change Scenario. Clim. Chang. 2004, 62, 217–232. [Google Scholar] [CrossRef]
- Thapa, S.; Zhang, F.; Zhang, H.B.; Zeng, C.; Wang, L.; Xu, C.Y.; Thapa, A.; Nepal, S. Assessing the snow cover dynamics and its relationship with different hydro-climatic characteristics in Upper Ganges River basin and its sub-basins. Sci. Total Environ. 2021, 793, 148648. [Google Scholar] [CrossRef]
- Jin, H.; Ju, Q.; Yu, Z.; Hao, J.; Gu, H.; Gu, H.; Li, W. Simulation of snowmelt runoff and sensitivity analysis in the Nyang River Basin, southeastern Qinghai-Tibetan Plateau, China. Nat. Hazards 2019, 99, 931–950. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Liang, T.G.; Huang, X.D.; Wu, C.X.; Liu, X.Y.; Li, W.L.; Guo, Z.G.; Ren, J.Z. An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1514–1526. [Google Scholar] [CrossRef]
- Pu, Z.; Xu, L.; Salomonson, V.V. MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, 137–161. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Klein, A.G.; Over, T.M. A comparison of MODIS and NOHRSC snow-cover products for simulating streamflow using the Snowmelt Runoff Model. Hydrol. Process. 2005, 19, 2951–2972. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, T.; Liu, Y.; Zhao, W.; Huang, X. Assessing snow phenology over the large part of Eurasia using satellite observations from 2000 to 2016. Remote Sens. 2020, 12, 2060. [Google Scholar] [CrossRef]
- Saavedra, F.A.; Kampf, S.K.; Fassnacht, S.R.; Sibold, J.S. Changes in Andes snow cover from MODISdata,2000–2016. Cryosphere 2018, 12, 1027–1046. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.C.; Saavedra, F.A.; Kampf, S.K. Global snow zone maps and trends in snow persistence 2001–2016. Int. J. Climatol. 2018, 38, 4369–4383. [Google Scholar] [CrossRef]
- Wang, W.; Huang, X.; Deng, J.; Xie, H.; Liang, T. Spatio-temporal change of snow cover and its response to climate over the Tibetan Plateau based on an improved daily cloud-free snow cover product. Remote Sens. 2015, 7, 169–194. [Google Scholar] [CrossRef]
- Huang, X.D.; Hao, X.H.; Feng, Q.S.; Wang, W.; Liang, T.G. A new MODIS daily cloud free snow cover mapping algorithm on the Tibetan Plateau. Sci. Cold Arid Reg. 2014, 6, 116–123. [Google Scholar]
- Qiu, Y.; Guo, H.; Chu, D.; Zhang, H.; Shi, J.; Shi, L.; Zheng, Z.; Laba, Z. MODIS daily cloud-free snow cover products over Tibetan Plateau. China Sci. Data 2016, 1, 3. [Google Scholar]
- Li, Y.; Chen, Y.; Li, Z. Developing Daily Cloud-Free Snow Composite Products From MODIS and IMS for the Tienshan Mountains. Earth Space Sci. 2019, 6, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, C.; Wang, H.; Gonsamo, A.; Liu, Z. No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000–2015. Sci. Rep. 2017, 7, 14645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Liu, H.; Yu, B.; Wu, J.; Kang, E.L.; Xu, M.; Wang, S.; Klein, A.; Chen, Y. Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin. Remote Sens. Environ. 2018, 204, 568–582. [Google Scholar] [CrossRef]
- Dong, C.; Menzel, L. Producing cloud-free MODIS snow cover products with conditional probability interpolation and meteorological data. Remote Sens. Environ. 2016, 186, 439–451. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, G.; Yao, T.; Xie, H.; Zhang, H.; Ke, C.; Yao, R. Developing daily cloud-free snow composite products from MODIS Terra-Aqua and IMS for the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2171–2180. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Santoni, M.; Bruzzone, L.; Bovolo, F. Snow cover estimation underneath the clouds based on multitemporal correlation analysis in historical time-series imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5703–5714. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens. Environ. 2010, 114, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.; Zhang, X.; Xie, H.; Wu, C.; Feng, Q.; Huang, X.; Chen, Q. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sens. Environ. 2008, 112, 3750–3761. [Google Scholar] [CrossRef]
- Hao, X.; Luo, S.; Che, T.; Wang, J.; Li, H.; Dai, L.; Huang, X.; Feng, Q. Accuracy assessment of four cloud-free snow cover products over the Qinghai-Tibetan Plateau. Int. J. Digit. Earth 2019, 12, 375–393. [Google Scholar] [CrossRef]
- Hao, X.H.; Huang, G.H.; Zheng, Z.J.; Sun, X.L.; Ji, W.Z.; Zhao, H.Y.; Wang, J.; Li, H.Y.; Wang, X.Y. Development and validation of a new MODIS snow-cover-extent product over China. Hydrol. Earth Syst. Sci. 2022, 26, 1937–1952. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Zhang, G.; Che, T.; Yan, W.; Ye, M.; Ma, N. Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold. Sci. Total Environ. 2019, 651, 2712–2726. [Google Scholar] [CrossRef]
- Yu, Z. Assessing the response of subgrid hydrologic processes to atmospheric forcing with a hydrologic model system. Glob. Planet. Chang. 2000, 25, 1–17. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Ménard, C.B.; Luojus, K.; Lemmetyinen, J.; Pulliainen, J. Evaluation of snow products over the Tibetan Plateau. Hydrol. Process. 2015, 29, 3247–3260. [Google Scholar] [CrossRef]
- Li, C.; Su, F.; Yang, D.; Tong, K.; Kan, B. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001–2014. Int. J. Climatol. 2018, 38, 708–728. [Google Scholar] [CrossRef]
- Aamir, L.; Sana, I.; Zhang, Y.; Xin, Y.; Zhou, L.; Zhou, Q. Review on global change status and its impacts on the Tibetan Plateau environment. J. Plant Ecol. 2019, 6, 917–930. [Google Scholar]
- Yang, W.; Wang, Y.; Liu, X.; Zhao, H.; Shao, R.; Wang, G. Evaluation of the rescaled complementary principle in the estimation of evaporation on the Tibetan Plateau. Sci. Total Environ. 2020, 699, 134367. [Google Scholar] [CrossRef]
- Huang, X.; Deng, J.; Wang, W.; Feng, Q.; Liang, T. Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau. Remote Sens. Environ. 2017, 190, 274–288. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Ghent, D.; Tan, X.; He, K.; Li, H.Y.; Han, X.Z.; Huang, Q.T.; Peng, J. Long-term precipitation estimates generated by a downscaling-calibration procedure over the Tibetan Plateau from 1983 to 2015. Earth Space Sci. 2019, 6, 2180–2199. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Chen, J.Q.; Shao, C.L. Interdependent dynamics of LAI-albedo across the roofing landscapes: Mongolian and Tibetan Plateaus. Remote Sens. 2018, 10, 1159. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Fung, V.; Bosch, J.L.; Roberts, S.W.; Kleissl, J. Cloud shadow speed sensor. Atmos. Meas. Tech. 2014, 7, 1693–1700. [Google Scholar] [CrossRef] [Green Version]
- Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. The balanced accuracy and its posterior distribution. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 3121–3124. [Google Scholar] [CrossRef]
- Simoniello, T.; Coluzzi, R.; Guariglia, A.; Imbrenda, V.; Lanfredi, M.; Samela, C. Automatic Filtering and Classification of Low-Density Airborne Laser Scanner Clouds in Shrubland Environments. Remote Sens. 2022, 14, 5127. [Google Scholar] [CrossRef]
- Xu, L.; Snow, M. Monitoring over the Tibetan Plateau. In Proceedings of the 2nd International Conference on Earth Observation of Global Change (EOGC2009), Chengdu, China, 7 October 2009; pp. 111–124. [Google Scholar]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Zhang, P.; Tian, B.S.; Zhou, J.M.; Chen, Q. Variability of the snowline altitude in the eastern Tibetan Plateau from 1995 to 2016 using Google Earth Engine. J. Appl. Remote Sens. 2021, 15, 048505. [Google Scholar] [CrossRef]
- Tang, Z.G.; Wang, X.R.; Deng, G.; Wang, X.; Jiang, Z.L.; Sang, G.Q. Spatiotemporal variation of snowline altitude at the end of melting season across High Mountain Asia, using MODIS snow cover product. Adv. Space Res. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Tang, Z.; Jian, W.; Ji, L.; Li, C.; Xin, W. Monitoring of snow-line Altitude over the Tibetan Plateau based on MODIS Data. Remote Sens. Technol. Appl. 2015, 5, 30. [Google Scholar]
- Jiang, Z. Trend surface analysis of the existent snowline in west china. Chin. Geogr. Sci. 1991, 1, 62–69. [Google Scholar] [CrossRef]
- Ramsay, B.H. The interactive multisensor snow and ice mapping system. Hydrol. Process. 1998, 12, 1537–1546. [Google Scholar] [CrossRef]
- Wang, Y.L.; Huang, X.D.; Wang, J.S.; Zhou, M.Q.; Liang, T.G. AMSR2 snow depth downscaling algorithm based on a multifactor approach over the Tibetan Plateau, China. Remote Sens. Environ. 2019, 231, 111268. [Google Scholar] [CrossRef]
- Tsutsui, H.; Koike, T. Development of snow retrieval algorithm using AMSR-E for the BJ ground-based station on seasonally frozen ground at low altitude on the Tibetan Plateau. J. Meteorol. Soc. Jpn. 2012, 90C, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Grody, N.C.; Basist, A.N. Global identification of snowcover using SSM/I measurements. IEEE Trans. Geosci. Remote Sens. 1996, 34, 237–249. [Google Scholar] [CrossRef]
- Grody, N.C. Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res. 1991, 96, 7423–7435. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, H.; Yao, T.; Xue, C. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA. Remote Sens. Environ. 2010, 114, 1662–1675. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Digirolamo, N.E.; Román, M.O. MODIS cloud-gap filled snow-cover products: Advantages and uncertainties. Hydrol. Earth Syst. Sci. Discuss. 2019, 123, 1–23. [Google Scholar]
- Liu, Y.; Chen, X.; Hao, J.S.; Li, L.H. Snow cover estimation from MODIS and Sentinel-1 SAR data using machine learning algorithms in the western part of the Tianshan Mountains. J. Mt. Sci. 2020, 17, 884–897. [Google Scholar] [CrossRef]
- Tsai, Y.L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. A Combination of PROBA-V/MODIS-Based Products with Sentinel-1 SAR Data for Detecting Wet and Dry Snow Cover in Mountainous Areas. Remote Sens. 2019, 11, 1904. [Google Scholar] [CrossRef]
Reference | |||
---|---|---|---|
Snow | Non-Snow | ||
Map | Snow | TP | FP |
Non-snow | FN | TN |
Region ID | Altitude Range (m) | Area Percent (%) |
---|---|---|
1 | ≤3000 | 9.9 |
2 | 3000–3500 | 8.1 |
3 | 3500–4000 | 10.4 |
4 | 4000–4500 | 16.7 |
5 | 4500–5000 | 31.2 |
6 | 5000–5500 | 19.8 |
7 | ˃5500 | 4.0 |
Sky Condition for MODIS Data | Product Name | Snow Cover (%) | Non-Snow Cover (%) | BA (%) | ||||
---|---|---|---|---|---|---|---|---|
PC | RC | FS | PC | RC | FS | |||
Clean and cloudy | SC1 | 47.4 | 64.0 | 54.7 | 96.4 | 94.4 | 95.2 | 71.9 |
SC2 | 48.0 | 50.1 | 48.1 | 93.4 | 94.5 | 93.7 | 70.7 | |
SC3 | 47.8 | 57.3 | 51.4 | 95.0 | 94.4 | 94.4 | 71.4 | |
Cloudy | SC1 | 64.8 | 62.1 | 64.4 | 77.9 | 82.6 | 78.7 | 71.4 |
SC2 | 62.5 | 51.1 | 57.0 | 71.7 | 80.8 | 74.1 | 67.1 | |
SC3 | 60.3 | 56.4 | 59.1 | 78.3 | 80.6 | 78.0 | 69.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Li, B.; Gao, X.; Liu, W.; Li, Y.; Li, R. Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 5642. https://doi.org/10.3390/rs14225642
Yuan Y, Li B, Gao X, Liu W, Li Y, Li R. Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau. Remote Sensing. 2022; 14(22):5642. https://doi.org/10.3390/rs14225642
Chicago/Turabian StyleYuan, Yecheng, Baolin Li, Xizhang Gao, Wei Liu, Ying Li, and Rui Li. 2022. "Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau" Remote Sensing 14, no. 22: 5642. https://doi.org/10.3390/rs14225642
APA StyleYuan, Y., Li, B., Gao, X., Liu, W., Li, Y., & Li, R. (2022). Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau. Remote Sensing, 14(22), 5642. https://doi.org/10.3390/rs14225642