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Abstract: Dew has been considered a supplementary water resource as it constitutes an important
water supply in many ecosystems, especially in arid and semiarid areas. Remote sensing allows large-
scale surface observations, offering the possibility to estimate dew in such arid and semiarid regions.
In this study, by screening and combining different remote sensing variables, we obtained a well-
performing monthly scale dew yield estimation model based on the support vector machine (SVM)
learning method. Using daytime and nighttime land surface temperatures (LST), the normalized
difference vegetation index (NDVI), and three emissivity bands (3.929–3.989 µm, 10.780–11.280 µm,
and 11.770–12.270 µm) as the model inputs, the simulated site-scale monthly dew yield achieved a
correlation coefficient (CC) of 0.89 and a root mean square error (RMSE) of 0.30 (mm) for the training
set, and CC = 0.59 and RMSE = 0.55 (mm) for the test set. Applying the model to the Heihe River
Basin (HRB), the results showed that the annual dew yield ranged from 8.83 to 20.28 mm/year,
accounting for 2.12 to 66.88% of the total precipitation, with 74.81% of the area having an annual dew
amount of 16 to 19 mm/year. We expanded the model application to Northwest China and obtained
a dew yield of 5~30 mm/year from 2011 to 2020, indicating that dew is a non-negligible part of the
water balance in this arid area. As a non-negligible part of the water cycle, the use of remote sensing
to estimate dew can provide better support for future water resource assessment and analysis.

Keywords: dew estimation; machine learning; remote sensing; Northwest China

1. Introduction

Dew, including water vapor adsorption and dew deposition, is a frequent and natural
phenomenon [1]. It is hypothesized that studies regarding dew, both observations and
studies regarding its utilization, began in ancient times [2]. The historical record of dew
capture for the water demand dates back to the early Greeks in 600 B.C. [3]. In recent years,
dew has been considered a valuable water source in arid and semiarid areas [4] for plant
growth [5], biotic crust processes [6], and the survival of desert arthropods [7].

Dew was identified as a part of the water balance [8], but this was not initially well
recognized. In recent years, the significance of dew in the water balance has been recognized
with the development of dew measurement techniques and estimation methodologies [9–11].
Direct dew measurement techniques include the radiative dew condenser (RDC) [12,13],
the micro/mini lysimeter (ML) [14], the Hiltner dew balance (HDB) [15], and the cloth-
plate method (CPM) [16]. Among these, the RDC condensation surface is a man-made
material mainly used for dew water collection studies [17]. MLs can represent dew’s
natural form and condition, but their size, composition, and other parameters produce
substantial uncertainty among the results [18]. The HDB and CPM condensation surfaces
are metal and glass, respectively, rather than soil, thus soil water vapor adsorption, an
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important component of dew water in arid and semiarid areas [1], cannot be observed
using these methods.

The dew estimation method is mainly based on energy balance by calculating the
negative nighttime latent heat, i.e., the downward water vapor flux, which is converted
to dew yield [19]. The estimation methods typically uses the Penman–Monteith equation
(PM) [20], or eddy covariance (EC) [21,22]. The EC method is the first direct observation
of water vapor change by measuring the pulsation of vertical wind speed and water
vapor density, which has fewer theoretical assumptions and higher accuracy than the
PM method. The EC method is considered the standard in daytime latent heat flux,
i.e., evapotranspiration, and observation in the field [23]. Since observations made using
the EC method can be automated and compared with manual measurement methods
such as CPM and HDB, they can be used for long-term continuous monitoring. However,
there is no unified method for dew observation [13,18,22] or quantification, especially for
large-scale dew estimation. Such methods should be further developed [11,19,24].

Remote sensing data provides input to the large-scale estimation of many hydrological
variables, such as evapotranspiration (ET) [25], soil moisture [26], and precipitation [27].
Some studies attempted to estimate large-scale dew, for example, by using the Soil Moisture
Experiments 2005 (SMEX05) data [28] and meteorological reanalysis data [29]. However, in
areas lacking meteorological observations, the development of estimation methods directly
based on remote sensing data is a solution to the problem of large-scale dew estimation.

Machine learning provides intelligent methods by which to estimate hydrological
parameters from remotely sensed data [30]; it has also been applied to dew estimation. sup-
port vector machine (SVM) is a machine-learning algorithm proposed by Shalev-Shwartz,
et al. [31] and has been widely used for classification, regression, and other learning
tasks [32]. In particular, LIBSVM, a type of SVM software proposed in 2011 [32], has been
well applied in potential evapotranspiration (ET) (latent heat flux) estimation [25]; it was
mainly used in this study to estimate dew, also known as negative latent heat flux.

In arid and semiarid regions, it is of great interest to assess the amount of dew water
from the atmosphere. The main objective of this study was to develop and evaluate an
SVM model to (1) analyze the performance of simulated dew under different variables to
filter the optimal combination; (2) access the performance of the SVM method for different
underlying surface conditions; (3) estimate the dew yield in the study area by remote
sensing data; and (4) analyze the possible association with and relative contribution of each
remote sensing factor to dew estimation.

2. Materials and Methods
2.1. Study Area

The Heihe River Basin (HRB) is the second largest endorheic river basin in China
(37.7◦–42.7◦N, 97.1◦–102.0◦E), covering a catchment area of approximately 143,200 km2

(Figure 1). The basin has a distinctly cold and arid landscape characterized by snow/glaciers,
permafrost, alpine meadows, forests, grasslands, rivers, irrigated crops, riparian ecosys-
tems, the Gobi Desert, and deserts extending from upstream to downstream regions. The
upper reaches are in the Qilian Mountains with the snow line at a height of about 4200 m.
Over 90% of the population, grain production, and major industries are concentrated in
the midstream area [33], and this area consumes large amounts of water via a relatively
complete agricultural irrigation system. In the downstream area, the landscape consists
of sandy and gravelly deserts; natural oases dominated by Populus euphratica, Tamarix,
and other arid species; and lakes that serve as the terminus of the HRB. The mean annual
air temperatures are 0.4 ◦C, 7.3 ◦C, and 8.2 ◦C from the upstream region at an altitude
of 2000–5000 m, the midstream region at an altitude of 1000–3000 m, to the downstream
region at an altitude of 800–1700 m. The annual precipitation decreased from 322 mm/year
and 130 mm/year to 30 mm/year, while the evaporation increased from 954 mm/year and
1324 mm/year to 2248 mm/year in the three reaches, respectively [34].
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Figure 1. Location of the flux tower sites and topography of the Heihe River Basin.

2.2. Data Source
2.2.1. Eddy-Covariance Data

There are nine eco-hydrological observation stations (flux towers) in the study
basin [35–37] located in the upper, middle, and lower reaches of the HRB, respectively. The
underlying areas and locations of these stations are shown in Figure 1 and Table 1.

Table 1. EC site information in the Heihe River Basin.

Station Lon Lat Elevation (m) Observation Period Landscapes

AR 100.4643 38.0473 3033 January 2013–December 2017 Alpine grassland
HYL 101.1236 41.9928 876 January 2014–December 2015 P. euphratica
YK 100.2421 38.0142 4148 September 2015–December 2017 Alpine tundra
LD 101.1326 41.9993 878 January 2014–December 2015 Barren-land

HZZ 100.3201 38.7659 1731 June 2015–December 2017 Desert
SSW 100.4933 38.7892 1594 January 2013–April 2015 Desert
BJT 100.3042 38.9150 1562 January 2013–December 2014 Desert
HM 100.9872 42.1135 1054 May 2015–December 2017 Desert
DM 100.3722 38.8555 1556 January 2013–December 2017 Maize

Each flux observation tower has a three-dimensional sonic anemometer (CSAT-3,
Campbell Scientific) and an open-path infrared gas analyzer (LI-7500, LI−COR). The raw
10 Hz EC data were processed using EddyPro software. All the data are from the dataset
of the Heihe Integrated Observatory Network (http://heihe.westgis.ac.cn/, accessed on
18 September 2018). The data were processed using spike detection, lag correction, coor-
dinate rotation, sonic virtual temperature correction, frequency response correction, and
density fluctuation [38].

http://heihe.westgis.ac.cn/
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The EC data were averaged over 30 min time intervals. The missing data in the 1.5 h
intervals were linearly interpolated. Missing data for more than 1.5 h but less than 24 h
were interpolated using the mean diurnal variation method [21]. The negative latent heat
flux at night was considered the water vapor adsorption or dewfall appearance, collectively
known as dew in previous studies and can be estimated using the following formula [21,22]:

D = LE/L, (1)

where LE is the amount of dew in the 30 min time intervals (mm), LE is the latent heat flux,
and L is the latent heat of water vaporization.

However, the simulation of condensation water estimation at the 30 min scale is
poor [24], probably due to the large influence of changes in meteorological elements such
as wind speed and cloudiness [39]. However, the dew yield is more related to local water
vapor conditions [40], from a water resources perspective. The 30 min data were thereafter
cumulated on a monthly basis.

2.2.2. Remote Sensing Data

It has been shown that dew is correlated to the horizontal polarized brightness tem-
perature [41], the air temperature [42], and the leaf area index (LAI) [28]. Therefore, we
estimate the monthly dew amount by using the MODIS monthly normalized difference
vegetation index (NDVI) (MOD13A3) and land surface temperatures (LST) and emissivity
(MOD11C3). The NDVI monthly scale data are the average of the 16-day resolution product
MOD13A2 values from that month with a spatial resolution of 1 km; the LST and emissivity
monthly scale data are the monthly average of the daily scale data with a spatial resolution
of 0.05◦, which are resampled to 1 km. Both data sets are from the National Aeronautics
and Space Administration (NASA) (https://ladsweb.modaps.eosdis.nasa.gov, accessed on
22 May 2022). The variable descriptions are shown in Table 2.

Table 2. Remote sensing data variables.

Variable Name Description Units

NDVI Normalized Difference Vegetation Index /
LSTD Daytime Land Surface Temperature Kelvin
LSTN Nighttime Land Surface Temperature Kelvin

Emis20 Band 20 (3.660–3.840 µm) emissivity /
Emis22 Band 22 (3.929–3.989 µm) emissivity /
Emis23 Band 23 (4.020–4.080 µm) emissivity /
Emis29 Band 29 (8.400–8.700 µm) emissivity /
Emis31 Band 31 (10.780–11.280 µm) emissivity /
Emis32 Band 32 (11.770–12.270 µm) emissivity /

2.3. Methodology
2.3.1. Model Structure

The SVM model maps the sample from the original space to a higher-dimensional
feature space through the kernel function. The sample is linearly separable in this feature
space [43]. For a given training dataset (x1, y1), (x2, y2), . . . , (xm, ym), xi is the 9 remote
sensing input variables, as shown in Table 2, and yi is the target concept of the monthly
dew amount. The SVM model aims to learn a regression model shaped as in Equation (2)
to allow f (x) to be as close as possible to y.

f (x) = wT x + b, (2)

https://ladsweb.modaps.eosdis.nasa.gov
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where w is the weight vector, and b is the noise. The insensitive loss function proposed by
Vapnik [43] is defined as follows:

L∈(y, x, f (x)) =
{

0,
|y− f (x)|− ∈,

i f |y− f (x)| ≤∈
otherwise.

, (3)

The loss function ignores errors when the difference between the predicted and actual
values is smaller than a threshold ∈, as shown in Figure 2. Those outside the ∈-insensitive
are called support vectors, which contribute to the optimization solution. The generalization
of the SVM regression model is optimized by minimizing the generalization error, as
shown below.

min
w,b

1
2
‖w‖2 + C ∑m

i=1 L∈(yi, xi, f (xi)), (4)

where ‖w‖ is the Euclidean norm of the weight vector, and parameter C is the cost of
the errors.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 21 
 

 

space [43]. For a given training dataset (𝒙𝟏, 𝑦ଵ), (𝒙𝟐, 𝑦ଶ), …, (𝒙𝒎, 𝑦), 𝒙𝒊 is the 9 remote 
sensing input variables, as shown in Table 2, and 𝑦 is the target concept of the monthly 
dew amount. The SVM model aims to learn a regression model shaped as in Equation (2) 
to allow f(x) to be as close as possible to y. 𝑓(𝒙)  =  𝒘் 𝒙 +  𝑏, (2) 

where 𝒘 is the weight vector, and b is the noise. The insensitive loss function proposed 
by Vapnik [43] is defined as follows: 𝐿∈൫𝑦, 𝒙, 𝑓(𝒙)൯ = ൜ 0,|𝑦 − 𝑓(𝒙)|−∈,𝑖𝑓 |𝑦 − 𝑓(𝒙)| ≤∈𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. , (3) 

The loss function ignores errors when the difference between the predicted and ac-
tual values is smaller than a threshold ∈, as shown in Figure 2. Those outside the ∈-in-
sensitive are called support vectors, which contribute to the optimization solution. The 
generalization of the SVM regression model is optimized by minimizing the generaliza-
tion error, as shown below. min𝒘, ଵଶ ‖𝒘‖ଶ + 𝐶 ∑ 𝐿∈(𝑦, 𝒙𝒊, 𝑓(𝒙𝒊))ୀଵ , (4) 

where ‖𝒘‖ is the Euclidean norm of the weight vector, and parameter 𝐶 is the cost of 
the errors. 

The optimization problem can be solved using Lagrange multipliers. The kernel func-
tion 𝑢(𝒙, 𝒙𝒊) is introduced to bring the training data into a high dimensional feature 
space. We used the radial basis function (RBF) kernel in this study because previous stud-
ies have shown that the RBF kernel performs better than other kernels [44]. The RBF kernel 
function can be expressed as: 𝑢(𝒙, 𝒙𝒊) = exp (− ଵଶఙ ‖𝒙 − 𝒙𝒊‖ଶ), (5) 

where σ is a variance. Further details of the SVM method can be found in Vapnik [43]. 

 
Figure 2. One-dimensional linear regression with an ∈-insensitive band for the support vector 
machine (SVM) learning method. 

2.3.2. Parametric Optimization Strategy 
The SVM model has the following three parameters to be optimized: (1) ∈, the width 

of an insensitive error band is set to 0.01; (2) C, the cost of the errors; and (3) σ, the kernel 
parameters. The proposed parametric optimization strategy consists of four steps (Figure 
3). The first step is to initialize the coarse grid search for C (2−5, 2−3, …, 25) and σ (2−5, 2−3, 
…, 25). The second step is to filter out the model with the test set CC > 0.5 to obtain the 
range of parameter values. The third step is to detail the grid search for C (2min−2, 2min−1.9, 
…, 2max+2), and σ (2min−2, 2min−1.9, …, 2max+2). Finally, the optimal models with different com-
binations of input variables are filtered using the test set CC from highest to lowest. Better 
performing models can be obtained by secondary grid searching. 

Figure 2. One-dimensional linear regression with an ∈-insensitive band for the support vector
machine (SVM) learning method.

The optimization problem can be solved using Lagrange multipliers. The kernel
function u(x, xi) is introduced to bring the training data into a high dimensional feature
space. We used the radial basis function (RBF) kernel in this study because previous studies
have shown that the RBF kernel performs better than other kernels [44]. The RBF kernel
function can be expressed as:

u(x, xi) = exp
(
− 1

2σ
‖x− xi‖2

)
, (5)

where σ is a variance. Further details of the SVM method can be found in Vapnik [43].

2.3.2. Parametric Optimization Strategy

The SVM model has the following three parameters to be optimized: (1) ∈, the width
of an insensitive error band is set to 0.01; (2) C, the cost of the errors; and (3) σ, the kernel
parameters. The proposed parametric optimization strategy consists of four steps (Figure 3).
The first step is to initialize the coarse grid search for C (2−5, 2−3, . . . , 25) and σ (2−5, 2−3,
. . . , 25). The second step is to filter out the model with the test set CC > 0.5 to obtain the
range of parameter values. The third step is to detail the grid search for C (2min−2, 2min−1.9,
. . . , 2max+2), and σ (2min−2, 2min−1.9, . . . , 2max+2). Finally, the optimal models with different
combinations of input variables are filtered using the test set CC from highest to lowest.
Better performing models can be obtained by secondary grid searching.
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In order to reduce the uncertainty, five-fold cross-validation was employed in all the
model training processes. All the data were stratified into five groups, each containing
ca. 20% of the data. The SVM training was performed five times on four of the groups,
and the remaining group was tested. The mean value of the statistical index of the five
training results was taken as the performance result of the model under these input and
parameter conditions. To avoid a magnitude effect of the input variables, we scaled all the
input variables in the range of 0 to 1.

2.3.3. Contribution of Variables

For ‘black box’ models, determining the contribution of the input variables is important
in explaining the model. There are many artificial neural network (ANN)-based methods for
calculating the relative contribution degree [45], The connection weights between neurons
are the link between inputs and outputs, and the relative contribution of independent
variables to the predicted output of a neural network depends primarily on the size and
direction of the connection weights [46]. Based on the connection weights of the trained
artificial neural network, the contribution of each input variable to the output variable is
calculated using Garson’s algorithm [47]:

RCi =
∑b

j=1

(∣∣∣WijWjk

∣∣∣)
∑a

i=1 ∑b
j=1

(∣∣∣WijWjk

∣∣∣) × 100%, (6)

where RCi is the relative contributions of the ith input to the kth output; Wij is the weight
between the ith input and the jth hidden unit; Wjk is the weight between the jth hidden
unit and the kth output, and k = 1, 2, . . . , c; a, b, c represent the number of neurons in the
input, hidden, and output layers of the model, respectively.

To calculate the relative contributions of each input variable, a simple ANN model was
built using MATLAB R2019b nftool [48]. We used the default settings, including a two-layer
feed-forward network with sigmoid hidden neurons and linear output neurons trained
with the Levenberg Marquardt backpropagation algorithm. The hidden layer included
10 neurons, and the output layer included 1 neuron. A total of 70%, 15%, and 15% of the
data were randomly selected as the training set, validation set, and test set, respectively;
the rest of the parameters had the default values.
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2.3.4. Evaluation Criteria

Correlation coefficients (CC) widely used for the evaluation of dew estimation models
and for the determination of the correlation of dew with other variables [49,50]. A number
of other statistical indicators were also chosen, such as the root mean square error (RMSE),
standard deviation (SD), normalized mean bias (NMB), and adjusted R2 (adj.R2); see the
Equations (7)–(11).

CC =
∑n

i=1
(

Di − D
)(

Pi − P
)√

∑n
i=1(Di − Dmean)

2
√

∑n
i=1(Pi − Pmean)

2
(7)

RMSE =

√
∑n

i=1(Pi − Di)
2

n
, (8)

SD =

√
∑n

i=1
(

Pi − P
)2

n
(9)

NMB =
∑n

i=1(Pi − Di)

D
∗ 100% (10)

adj. R2 = 1−
(
1− R2)(n− 1)
(n− k− 1)

(11)

where n is the number of observations; Pi is the dew estimated using machine learning; Di
is the observed dew calculated by Equation (1); P is the average of the estimated dew; D is
the average amount of the observed dew; R2 is the coefficient of determination; and k is the
number of parameters.

The relationship between the RMSE, CC and SD can be described using Taylor dia-
grams [51], which may assist in evaluating the performance of the models according to the
multiple criteria. Taylor diagrams were used to assess the performance of the three best
models of different factors, selected from the CCs of the test set, from the highest to the
lowest. A Taylor diagram is a polar-style graph that includes the SD of the simulations
and the observations, the CC, and the centered RMSE. In a Taylor diagram, the SD is the
radial distance from the origin; the cosine of the azimuth angle characterizes the CC; and
the RMSE refers to the radial distance from the observed point.

3. Results
3.1. Variable Selection and Contributions

The performances of the optimal models with LSTD and LSTN as fixed variables are
given in Table 3. The measurements of the monthly dew yield using the EC method were
significantly related to the dew estimates from the models (p < 0.05), with the best models
achieving the training set and test set CCs of 0.81~0.89 and 0.55~0.64, respectively. None of
the models showed significant differences between the training and testing sets, with the
difference between the NMB training and testing sets ranging from about −7.4 to 4.4% and
the RMSE ranging from about 0.04 to 0.31.

The number of different variables had a significant impact on the simulation results.
The overall model performance tended to increase and then decrease with the number of
variables increasing. From the performance results of the optimal variable combination
model with the different number of variables (mk1), the CC and adj.R2 tended to increase
and then decrease with the number of variables. In contrast, the error indicators NMB
and RMSE tended to decrease and then increase. The adj.R2 index can well exclude the
influence of the number of variables on the results [52], and the combined performance of
the training and testing sets was considered the best simulation effect with 5-7 variables.
Treating all the variables as the inputs led to poorer results, suggesting that redundant
variables may reduce the simulation effectiveness of the SVM method.
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Table 3. The performance with the best combinations of different numbers of input variables under
the five-fold cross validation.

Model No. Variables
Training Set Test Set

CC NMB SD RMSE adj.R2 CC NMB SD RMSE adj.R2

m31 LSTD, LSTN; Emis31 0.73 6.57 0.30 0.49 0.44 0.57 6.27 0.28 0.55 0.23
m32 LSTD, LSTN; Emis32 0.66 5.25 0.47 0.50 0.42 0.54 6.53 0.45 0.56 0.20
m33 LSTD, LSTN; Emis23 0.62 7.50 0.40 0.52 0.35 0.51 8.10 0.40 0.58 0.16
m41 LSTD, LSTN; Emis23, Emis31 0.76 4.42 0.49 0.43 0.57 0.57 3.95 0.48 0.55 0.23
m42 LSTD, LSTN; NDVI, Emis22 0.74 4.28 0.46 0.44 0.53 0.56 5.16 0.44 0.55 0.22
m43 LSTD, LSTN; NDVI, Emis23 0.79 4.89 0.48 0.41 0.60 0.55 5.75 0.46 0.57 0.15
m51 LSTD, LSTN; NDVI, Emis29, Emis31 0.79 3.95 0.50 0.41 0.61 0.62 1.08 0.52 0.52 0.29
m52 LSTD, LSTN; NDVI, Emis29, Emis32 0.75 4.74 0.48 0.44 0.54 0.59 4.17 0.50 0.55 0.26
m53 LSTD, LSTN; Emis23, Emis29, Emis31 0.81 3.20 0.51 0.39 0.65 0.55 3.00 0.52 0.57 0.16
m61 LSTD, LSTN; NDVI, Emis22, Emis29, Emis31 0.88 3.21 0.53 0.30 0.77 0.64 10.60 0.59 0.61 0.28
m62 LSTD, LSTN; NDVI, Emis22, Emis31, Emis32 0.89 2.00 0.56 0.30 0.78 0.59 −2.44 0.52 0.55 0.23
m63 LSTD, LSTN; NDVI, Emis20, Emis23, Emis31 0.85 3.77 0.53 0.35 0.71 0.59 3.51 0.50 0.55 0.21
m71 LSTD, LSTN; NDVI, Emis20, Emis22, Emis29, Emis31 0.91 2.07 0.56 0.27 0.82 0.64 7.61 0.56 0.55 0.25
m72 LSTD, LSTN; NDVI, Emis20, Emis23, Emis31, Emis32 0.87 0.70 0.53 0.33 0.74 0.62 1.99 0.61 0.56 0.21
m73 LSTD, LSTN; NDVI, Emis20, Emis23, Emis29, Emis31 0.73 5.47 0.52 0.46 0.50 0.57 3.74 0.52 0.56 0.17
m81 LSTD, LSTN; NDVI, Emis20, Emis22, Emis23, Emis29, Emis31 0.80 4.50 0.51 0.39 0.62 0.61 5.15 0.50 0.53 0.23
m82 LSTD, LSTN; NDVI, Emis22, Emis23, Emis29, Emis31, Emis32 0.73 5.54 0.49 0.45 0.51 0.59 3.83 0.50 0.56 0.13
m83 LSTD, LSTN; NDVI, Emis20, Emis22, Emis23, Emis31, Emis32 0.76 5.00 0.50 0.43 0.56 0.55 4.18 0.49 0.57 0.11
m91 ALL 0.67 7.40 0.42 0.50 0.41 0.60 7.46 0.42 0.53 0.21
m92 ALL 0.67 7.14 0.42 0.49 0.41 0.59 7.39 0.41 0.53 0.20
m93 ALL 0.67 7.39 0.42 0.49 0.41 0.60 6.68 0.41 0.54 0.18

The RCs of each variable using the ANN model and Equation (6) (see Section 2.3.3) are
shown in Table 4. The highest RC was Emis31, followed by Emis23. In Table 3, it can be seen
that when the LSTD and LSTN variables were fixed, the first variable added to the optimal
SVM model was Emis31 (m31), followed by Emis23 (m41). For the m53 model with the top
three RC rankings for the added variables, the training set performed better than m51 and
m52, but the validation set performed poorly and there may have been overfitting. For
the optimal SVM models with more variables, Emis23 was gradually replaced by Emis22,
Emis29, and Emis20.

Table 4. Relative contributions (RC) of nine inputs to dew estimation.

Emis31 Emis23 Emis29 LSTN NDVI Emis22 LSTD Emis32 Emis20

Relative contribution 17.54% 11.88% 11.73% 11.37% 11.29% 10.94% 9.46% 9.36% 6.42%

3.2. Model Performance at Site-Scale

All the data collected from the EC sites were taken as the training data; the Taylor
diagrams of the simulation results are shown in Figure 4. The standard deviations of all the
models (p < 0.001) were smaller than the observed values, indicating that the simulated
values may not perform well in the simulation of the peak. The CCs of all the models
were in the range of 0.5 to 0.9, indicating that the fitting effect was good. Taking the
observation point as the center, the closer the better, that is, the lower the centered RMSE
value. The closer the distance to the observation point, the better performance of the model,
and m61, m62, and m71 models performed better. The m62 model was chosen for the
final application.

The simulation results of the optimal combination model with different numbers
of variables are shown in Figure 5. The results showed that, with six~seven variables
(Figure 5d,e), the simulation results had an obvious distribution along the 1:1 line, and the
simulations for all the types of underlying surfaces had a strong correlation. Under the
conditions of more or fewer variables, the phenomenon of overestimation of low values
and underestimation of high values was observed (Figure 5a–c,f,g).
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For the underlying maize, the monthly dew yield may be overestimated with fewer
than six variables (Figure 5a–c) or more than eight (Figure 5g). In contrast, underlying
alpine tundra and desert may be underestimated with a similar number of variables.
The characteristics of the monthly dew yield of P. euphratica can be well simulated using
5~7 variables (Figure 5c–e); in other cases, there may be an overestimation of low values
and an underestimation of high values. As for underlying bare soil and alpine grassland,
6~7 variables performed better than the other cases (Figure 5d,e).

The m62 model simulated the time series of all the sites’ mean results from 2013 to 2017,
and the results are shown in Figure 6. The monthly dew yields were reasonably simulated,
regardless of whether the overall dew production for the year was high or low. The annual
average calculation of the dew yield in each month to obtain the distribution of dew in the
year is shown in Figure 7. A clear seasonal distribution of dew yield can be seen. On the
EC site scale, the dew yield reached its highest value of 1.81 mm in July, and the average
annual dew yield was 15.82 mm/year, which was 24.46% of the total annual precipitation
(64.68 mm/year). The estimated site-scale annual dew yield (15.40 mm/year) was slightly
less than the measured value (15.82 mm/year). The simulation results showed that the
model performed better in summer and autumn, while there was some underestimation in
spring and winter.
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3.3. Watershed-Scale Simulation

Using the chosen model, m62 (see Section 3.2), we calculated the monthly dew yield in
the HRB. The basin-wide and upper and midstream monthly scale dew yields, respectively,
for 2013–2017, are given in Figure 8. It can be seen that overall the dew yields were in
the following order: downstream > upstream > midstream, from highest to lowest. In the
upper reaches, there was a clear case of a sudden decrease in dew in July. In the midstream,
there was no significant summer decrease, but the maximum did not exceed 1.5 mm/mon.
The downstream area accounts for a larger area, and the trend of dew changes was more
consistent with the results of the whole region, where there was a slight decrease in dew in
July. These patterns can be seen more clearly in the multi-year monthly averages (Figure 9).
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The distribution of the annual dew yield estimated by the m62 model in the HRB is
shown in Figure 10. The annual dew yield across the HRB was found to range from 8.83 to
20.28 mm, with less dew in the upstream and midstream regions, along the river, and in
the downstream tailrace. The lower reaches were found to have relatively high dew levels.
The average annual dew in the HRB was 16.65 mm/year. High-altitude, riverine, and crop
areas have relatively low amounts of dew, while large areas of bare land downstream have
relatively high amounts of annual dew.
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Figure 10. Basin-scale average amounts of dew per month for 2013–2017 estimated using the
SVM model.

A histogram of the statistical distribution of the annual dew yields in the HRB was
made, as shown in Figure 11. Most of the area of the HRB had an annual dew yield between
16 and 19 mm/year, accounting for 74.81%, with the highest percentage of the interval
being 17~18 mm (39.4%), mainly in the downstream area.
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4. Discussion
4.1. Variable Screening for Dew Simulation

Air temperature is an important factor influencing dew formation [39,42]. Surface
temperature is one of the most important indirect indicators of soil water content and is
widely used not only in reference to evapotranspiration estimation [25,53–55] but also in
dew water estimation [20]. Therefore, we chose daytime and nighttime remote sensing
land surface temperatures (LSTD and LSTN) as fixed variables, and other variables were
combined with these as input variables for simulation.

As for the different surface band emissivities, bands 20, 22, and 23 are in the atmo-
spheric window in the 3.5–4.2 µm medium-wavelength range, and bands 29–32 are in the
8–13 µm atmospheric window. Since the major absorber in bands 23 and 29 is water vapor,
this could be the reason for their high relative contribution.

NDVI is an indicator that responds to the level of surface vegetation cover, and
the leaf area index (LAI), which is similar to NDVI, has been used in the simulation of
dew [28]. The effect of vegetation cover on dew reflects on shading, which is usually caused
by surrounding objects such as plants, which may delay the condensation progress [56].
Specifically, the density and height of the canopy affects dew formation [57].

There are also some other studies regarding the effects of dew and other sensing
data, such as visible, near-infrared, and thermal infrared sensors [58]; active microwave
sensors [59]; and passive microwave sensors [41]. Using other band combinations or
satellite products in the future may improve the fitting results somewhat, and the required
factors may change for the non-arid sub-surfaces.

4.2. Distribution Characteristics of Dew in the HRB

The seasonal variation in dew yield was found to vary among the upper, middle,
and lower reaches of the HRB. The dew yield may decrease a little in the summer months
upstream and downstream (Figure 9). This phenomenon occurs in the Mu Us desert domi-
nated by a mixture of deciduous shrub species [22], the Gurbantunggut Desert dominated
by biological soil crusts [60] and the Badain Jaran Desert dominated by H. ammodendron [42],
both in Northwest China. Diurnal temperature differences and water vapor supply are
thought to be responsible for the differences between the dew yields in the wet and dry
seasons [60,61]. Precipitation also affects the amount of dew by increasing soil moisture
and thus reducing the water vapor adsorption capacity of the soil [62]. More summer
precipitation in the upper reaches [63] may be the reason for the significant reduction of
summer dew in this area compared to the lower reaches.

4.3. Contribution of Dew to Water Balance

Currently, dewfall is barely considered in water balance studies because the amounts
are assumed to be very small. The annual precipitation and evaporation in the HRB range
from 30~550 mm/year and 50~1000 mm/year, respectively, and evaporation is higher than
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precipitation in the midstream and downstream areas [64]. The ratios of the annual dew
yield to precipitation (https://www.resdc.cn/Default.aspx, accessed on 1 June 2021) and to
evapotranspiration in the HRB yields, which were calculated using the GLDAS data product
with the REDREW model [65] (unpublished results), are shown in Figure 12. Dew was
found to account for 2.12~66.88% of precipitation and 1.02~55.11% of evapotranspiration
in the HRB. Higher ratios were found in the downstream region. Rivers and irrigated areas
had a smaller ratio due to high evaporation. In general, dew is a key element of the regional
water balance.
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Many studies in arid and semiarid zones have shown the non-negligible character of
the dew [21,61]. For example, in a closed desert valley in northeastern Nevada, USA, where
precipitation is the only source of water, the cumulative amount of evapotranspiration
(160 mm) during the water year 1993–1994 was greater than that of precipitation (131 mm),
with dew contributing about 14 mm to the annual water balance [8]. During 2016, in a
desert station in the HRB with no irrigation and no surface water replenishment channels,
the dew amount (14.82 mm/year) filled the gap between precipitation (36.1 mm/year)
and evapotranspiration (51.42 mm/year) [9]. In irrigated areas taking irrigation water into
account, there is still a deficit that dew water can fill [10]. Under long-term observation,
dew was found to reduce a deficit of 19~78 mm considerably, to between two and 41 mm,
playing a more important role in dry years [61].

4.4. Model Applications in Northwest China

The m62 model was applied to Northwest China, and the amount of dew was esti-
mated from 2011 to 2020 using remote sensing data. The annual-scale dew variation in
several important northwestern watersheds is shown in Figure 13. All the basins showed
significantly (p < 0.05) increasing trends in the annual dew yield to varying degrees, with
similar increasing trends in precipitation [66].
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The multi-year average northwest regional dew distribution is shown in Figure 14.
The low-value areas in the HRB, Shiyang River Basin, and Shule River Basin are mainly
agricultural land. Research in the Taklimakan Desert, China (N40.4572◦, E87.8575◦), us-
ing the open-path eddy covariance system observation method, showed that the average
dewfall amount during the summer half-year (June–October 2011) was 17.2 mm [21].
This point shows a multi-year average dew amount of 18.32 mm/year in the simulation
results of our model. Since the precipitation in this area is mainly concentrated in sum-
mer, and since dew itself is less abundant in spring and winter, we can assume that the
model simulation results are like the actual measurements. Research in Shapotou Desert,
China (N37.45◦, E104.95◦), using closed- or open-bottom cylindrical PVC containers under
different cover types, showed an average dew yield of 12.15 mm in a one-year period
(September 2013–August 2014) [56], which is similar to our model simulation result of
14.74 mm.
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making dew an integral part of the water balance of the region. The model was also ap-
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numbers of combinations of surface emissivity in bands 20, 22, 23, 29, 31, and 32 to sim-
ulate the monthly scale dew under different underlying surface conditions in arid areas
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five to 30 mm/year. Several important northwest basins showed a trend of increasing
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