An Investigation of the Lower Stratospheric Gravity Wave Activity in Tibetan Plateau Based on Multi-GNSS RO Dry Temperature Observations
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Multi-GNSS RO Observations
2.2. The Wind Datasets
2.3. The Extraction of GW Ep
3. Results and Discussion
3.1. Time-Altitude Distribution of GW Ep
3.2. Spatial Distribution of GW Ep and Background Wind
3.3. Correlation between GW Ep and Topography
3.4. Periodic Variation of the GW Ep in the Lower Stratosphere
3.5. Relationship between GW Ep and Background Wind and Zonal Wind
3.6. Reconstruction of GW Ep in Lower Stratosphere
3.7. General Process of Topography Wave Excitation and Propagation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindzen, R.S. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. Ocean. 1981, 86, 9707–9714. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R. The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci. 1982, 39, 791–799. [Google Scholar] [CrossRef]
- Holton, J.R. The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci. 1983, 40, 2497–2507. [Google Scholar] [CrossRef]
- Garcia, R.R.; Solomon, S. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res. Atmos. 1985, 90, 3850–3868. [Google Scholar] [CrossRef]
- Fritts, D.C.; Nastrom, G.D. Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci. 1992, 49, 111–127. [Google Scholar] [CrossRef]
- Alexander, M.J.; Vincent, R.A. Gravity waves in the tropical lower stratosphere: A model study of seasonal and interannual variability. J. Geophys. Res. Atmos. 2000, 105, 17983–17993. [Google Scholar] [CrossRef]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, L.; Xue, X.; Alexander, M.J. A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. J. Geophys. Res. Atmos. 2013, 118, 416–434. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.Y.; Xue, X.H.; Dou, X.K.; Liang, C.; Jia, M.J. COSMIC GPS observations of topographic gravity waves in the stratosphere around the Tibetan Plateau. Sci. China Earth Sci. 2017, 60, 188–197. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Klaassen, G.P. Parameterization of gravity wave momentum deposition based on nonlinear wave interactions: Basic formulation and sensitivity tests. J. Atmos. Sol.-Terr. Phys. 2000, 62, 1015–1033. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, T.; Liu, H.L. Large-scale gravity wave perturbations in the mesopause region above Northern Hemisphere midlatitudes during autumnal equinox: A joint study by the USU Na lidar and Whole Atmosphere Community Climate Model. Ann. Geophys. 2017, 35, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.S.; Pan, C.J.; Das, U. Investigating the Spatio-Temporal Distribution of Gravity Wave Potential Energy over the Equatorial Region Using the ERA5 Reanalysis Data. Atmosphere 2021, 12, 311. [Google Scholar] [CrossRef]
- Baumgarten, K.; Gerding, M.; Baumgarten, G.; Lübken, F.-J. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding. Atmos. Chem. Phys. 2018, 18, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.H.; Guo, J.C.; Luo, J. Analysis of the active characteristics of stratosphere gravity waves over the Qinghai-Tibetan Plateau using COSMIC radio occultation data. Chin. J. Geophys. 2016, 59, 1199–1210. (In Chinese) [Google Scholar] [CrossRef]
- Wei, D.; Tian, W.S.; Chen, Z.Y.; Zhang, J.K.; Xu, P.P.; Huang, Q.; Wei, Y.Y.; Zhang, J. Upward transport of air mass during a generation of orographic waves in the UTLS over the Tibetan Plateau. Chin. J. Geophys. 2016, 59, 791–802. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Alexander, M.J. Global estimates of gravity wave parameters from GPS radio occultation temperature data. J. Geophys. Res. Atmos. 2010, 115, D21122. [Google Scholar] [CrossRef]
- Xu, X.H.; Guo, J.C.; Luo, J. Analysis of the Global Distribution of the Atmospheric Gravity Wave Parameters Using COSMIC Radio Occultation Data. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 1493–1498. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Hei, H.; Tsuda, T.; Hirooka, T. Characteristics of atmospheric gravity wave activity in the polar regions revealed by GPS radio occultation data with CHAMP. J. Geophys. Res. 2008, 113, D04107. [Google Scholar] [CrossRef]
- Liang, C.; Xu, X.H.; Chen, T.D. An investigation of the global morphology of stratosphere gravity waves based on COSMIC observations. Chin. J. Geophys. 2014, 57, 3668–3678. (In Chinese) [Google Scholar] [CrossRef]
- Khan, A.; Jin, S.G. Effect of gravity waves on the tropopause temperature, height and water vapor in Tibet from COSMIC GPS Radio Occultation observations. J. Atmos. Sol.-Terr. Phys. 2016, 138, 23–31. [Google Scholar] [CrossRef]
- Luo, J.; Chen, Z.P.; Xu, X.H. Specific humidity response in the troposphere and lower stratosphere to ONI revealed by COS-MIC observations. Chin. J. Geophys. 2018, 61, 466–476. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Z.P.; Li, J.C.; Luo, J.; Cao, X.Y. A New Strategy for Extracting ENSO Related Signals in the Troposphere and Lower Stratosphere from GNSS RO Specific Humidity Observations. Remote Sens. 2018, 10, 503. [Google Scholar] [CrossRef] [Green Version]
- Horinouchi, T.; Tsuda, T. Spatial structures and statistics of atmospheric gravity waves derived using a heuristic vertical cross-section extraction from COSMIC GPS radio occultation data. J. Geophys. Res. 2009, 114, D16110. [Google Scholar] [CrossRef] [Green Version]
- Hindley, N.P.; Wright, C.J.; Smith, N.D.; Mitchell, N.J. The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmos. Chem. Phys. 2015, 15, 7797–7818. [Google Scholar] [CrossRef] [Green Version]
- Sam-Khaniani, A. Long-term evaluation of temperature profiles derived from space-based GPS meteorology with radiosonde measurements over Iran. Earth Obs. Geomat. Eng. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Šácha, P.; Kuchař, A.; Jacobi, C.; Pišoft, P. Enhanced internal gravity wave activity and breaking over the northeastern Pacific–eastern Asian region. Atmos. Chem. Phys. 2015, 15, 13097–13112. [Google Scholar] [CrossRef] [Green Version]
- Leroy, S.S.; Ao, C.O.; Verkhoglyadova, O.P. Temperature trends and anomalies in modern satellite data: Infrared sounding and GPS radio occultation. J. Geophys. Res. Atmos. 2018, 123, 11431–11444. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wang, X.; Xue, Z.G.; Du, X.Y.; Yan, W. Method of GPS-LEO Occultation Measurements of the Atmosphere. GNSS World China 2002, 27, 14–20. [Google Scholar] [CrossRef]
- Hu, X.; Zeng, Z.; Zhang, X.X.; Zhang, D.Y.; Xiao, C.Y. Atmospheric inversion methods of GPS radio occultation. Chin. J. Geophys. 2005, 48, 768–774. (In Chinese) [Google Scholar] [CrossRef]
- Ern, M.; Preusse, P.; Alexander, M.J.; Warner, C.D. Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res. Atmos. 2004, 109, D20103. [Google Scholar] [CrossRef] [Green Version]
- Ratnam, M.V.; Tetzlaff, G.; Jacobi, C. Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite. J. Atmos. Sci. 2004, 61, 1610–1620. [Google Scholar] [CrossRef]
- Xu, X.; Yu, D.; Luo, J. The spatial and temporal variability of global stratospheric gravity waves and their activity during sudden stratospheric warming revealed by COSMIC measurements. Adv. Atmos. Sci. 2018, 35, 1533–1546. [Google Scholar] [CrossRef]
- Xu, X.; Yu, D.; Luo, J. Seasonal variations of global stratospheric gravity wave activity revealed by COSMIC RO data. In 2017 Forum on Cooperative Positioning and Service (CPGPS); IEEE: New York, NY, USA, 2017; pp. 85–89. [Google Scholar] [CrossRef]
- Miyahara, S.; Hayashi, Y.; Mahlman, J.D. Interactions between gravity waves and planetary-scale flow simulated by the GFDL “SKYHI” general circulation model. J. Atmos. Sci. 1986, 43, 1844–1861. [Google Scholar] [CrossRef]
- Yu, D.C. The Climatology and Variability of Stratospheric Gravity Waves Based on COSMIC Radio Occultation Observations. Master’s Thesis, Wuhan University, Wuhan, China, 2018. [Google Scholar]
- Khaykin, S.M.; Hauchecorne, A.; Mzé, N.; Keckhut, P. Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations. Geophys. Res. Lett. 2015, 42, 1251–1258. [Google Scholar] [CrossRef]
- Steiner, A.K.; Kirchengast, G.; Lackner, B.C.; Pirscher, B.; Borsche, M.; Foelsche, U. Atmospheric temperature change detection with GPS radio occultation 1995 to 2008. Geophys. Res. Lett. 2009, 36, L18702. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.; Wickert, J.; Haser, A. Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures. Adv. Space Res. 2010, 46, 150–161. [Google Scholar] [CrossRef]
Time Interval | Satellite |
---|---|
August 2006 (213)~February 2008 (060) | COSMIC |
March 2008 (061)~January 2013 (031) | COSMIC, METOP-A |
February 2013 (032)~April 2018 (120) | COSMIC, METOP-A, METOP-B |
May 2018 (121)~July 2019 (212) | METOP-A, METOP-B |
August 2019 (213)~June 2020 (182) | METOP-A, METOP-B, METOP-C |
July 2020 (183)~August 2020 (246) | METOP-B, METOP-C |
September 2020 (247)~September 2020 (274) | METOP-C |
Time (Month) | Zonal | Meridional | ||
---|---|---|---|---|
Change | Rate of Change | Change | Rate of Change | |
March | 0.230 | 0.538 | 0.245 | 0.264 |
April | 0.062 | 0.271 | 0.162 | 0.222 |
May | 0.060 | 0.490 | 0.548 | 0.177 |
June | −0.136 | 0.043 | 0.290 | −0.113 |
July | −0.494 | −0.728 | 0.152 | 0.147 |
August | −0.442 | −0.778 | 0.384 | −0.044 |
September | −0.376 | −0.396 | 0.583 | 0.281 |
October | 0.673 | 0.847 | 0.835 | 0.539 |
November | 0.497 | 0.760 | 0.480 | 0.519 |
December | 0.465 | 0.553 | 0.536 | 0.737 |
January | 0.405 | 0.553 | 0.305 | 0.223 |
February | 0.318 | 0.608 | 0.512 | 0.457 |
Region | Regional Scope | Characteristic | Correlation Coefficient | |
---|---|---|---|---|
GW Ep and Background Wind | GW Ep and Zonal Wind | |||
1 | Latitude: 36–38°N Longitude: 69–71°E | Weak background wind | 0.422 | 0.315 |
2 | Latitude: 27–29°N Longitude: 85–87°E | Strong background wind | 0.621 | 0.605 |
3 | Latitude: 36–38°N Longitude: 79–83°E | Weak background wind | 0.766 | 0.737 |
4 | Latitude: 39–41°N Longitude: 94–98°E | Small GW Ep | 0.575 | 0.563 |
5 | Latitude: 26–28°N Longitude: 98–100°E | Large GW Ep | 0.774 | 0.736 |
6 | Latitude: 30–32°N Longitude: 99–101°E | Low topography | 0.828 | 0.838 |
7 | Latitude: 33–35°N Longitude: 81–83°E | High topography | 0.822 | 0.782 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Gao, Y.; Li, L.; He, X.; Yang, W.; Luo, H.; Gong, X.; Lv, K. An Investigation of the Lower Stratospheric Gravity Wave Activity in Tibetan Plateau Based on Multi-GNSS RO Dry Temperature Observations. Remote Sens. 2022, 14, 5671. https://doi.org/10.3390/rs14225671
Chen Z, Gao Y, Li L, He X, Yang W, Luo H, Gong X, Lv K. An Investigation of the Lower Stratospheric Gravity Wave Activity in Tibetan Plateau Based on Multi-GNSS RO Dry Temperature Observations. Remote Sensing. 2022; 14(22):5671. https://doi.org/10.3390/rs14225671
Chicago/Turabian StyleChen, Zhiping, Yu Gao, Li Li, Xiaoxing He, Weifeng Yang, Haowen Luo, Xunqiang Gong, and Kaiyun Lv. 2022. "An Investigation of the Lower Stratospheric Gravity Wave Activity in Tibetan Plateau Based on Multi-GNSS RO Dry Temperature Observations" Remote Sensing 14, no. 22: 5671. https://doi.org/10.3390/rs14225671
APA StyleChen, Z., Gao, Y., Li, L., He, X., Yang, W., Luo, H., Gong, X., & Lv, K. (2022). An Investigation of the Lower Stratospheric Gravity Wave Activity in Tibetan Plateau Based on Multi-GNSS RO Dry Temperature Observations. Remote Sensing, 14(22), 5671. https://doi.org/10.3390/rs14225671