Remote Sensing Extraction of Agricultural Land in Shandong Province, China, from 2016 to 2020 Based on Google Earth Engine
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Landsat Data
2.2.2. SRTM DEM Data
2.2.3. Sample Point Data
3. Methods
3.1. Feature Construction
3.1.1. Spectral Features
3.1.2. Texture Features
3.1.3. Topographic Features
3.2. Feature Optimization
3.3. Classification Method
3.3.1. Random Forest Classifier
3.3.2. Gradient Lifting Tree Classifier
3.3.3. Decision Tree Classifier
3.3.4. Ensemble Learning
4. Results
4.1. Feature Optimization Results
4.2. Classification Results and Accuracy Evaluation
5. Discussion
5.1. Monitoring the Change of Agricultural Land Area
5.2. Monitoring of Agricultural Land Area Change and Analysis of Main Driving Forces
6. Conclusions
- The GEE platform has unique advantages for processing large-scale data. Through the calculation of the characteristic index, the phenology of the classified ground objects can be understood more clearly, which is convenient for later classification. On the basis of the spectral features, texture features and terrain features are added, and the random forest algorithm can be used for feature optimization to compress the classification features and retain the most favorable features for classification, which reduces data redundancy and improves classification accuracy.
- Ensemble learning based on the classification results of a single classifier can greatly improve classification accuracy. Ensemble learning is used to integrate the classification results of three classifiers, and the overall accuracy of the classification results is above 0.9.
- The analysis of the main driving forces of agricultural land changes in Shandong Province shows that there is a strong correlation between the decrease in agricultural land area and the increase in artificial land surface and the urbanization rate in Shandong Province in the last five years.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Wu, W.; Huang, J.; You, N.; He, Y.; Yan, H. Research progress and prospect of remote sensing information extraction for agricultural land use. J. Geo-Inf. Sci. 2020, 22, 772–783. [Google Scholar]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Tyler, A. Erickson. A summary of the special issue on remote sensing of land change science with Google earth engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Buchner, J.; Yin, H.; Frantz, D.; Kuemmerle, T.; Askerov, E.; Bakuradze, T.; Bleyhl, B.; Elizbarashvili, N.; Komarova, A.; Lewińska, K.E.; et al. Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites. Remote Sens. Environ. 2020, 248, 111967. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Magidi, J.; Nhamo, L.; Mpandeli, S.; Mabhaudhi, T. Application of the Random Forest Classifier to Map Irrigated Areas Using Google Earth Engine. Remote Sens. 2021, 13, 876. [Google Scholar] [CrossRef]
- McCarty, D.A.; Kim, H.W.; Lee, H.K. Evaluation of Light Gradient Boosted Machine Learning Technique in Large Scale Land Use and Land Cover Classification. Environments 2020, 7, 84. [Google Scholar] [CrossRef]
- Tassi, A.; Gigante, D.; Modica, G.; Di Martino, L.; Vizzari, M. Pixel- vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park. Remote Sens. 2021, 13, 2299. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
- Sefrin, O.; Riese, F.M.; Keller, S. Deep Learning for Land Cover Change Detection. Remote Sens. 2020, 13, 78. [Google Scholar] [CrossRef]
- Yu, J.; Zeng, P.; Yu, Y.; Yu, H.; Huang, L.; Zhou, D. A Combined Convolutional Neural Network for Urban Land-Use Classification with GIS Data. Remote Sens. 2022, 14, 1128. [Google Scholar] [CrossRef]
- Cipta Ramadhan Kete, S.; Darma Tarigan, S.; Effendi, H. Land use classification based on object and pixel using Landsat 8 OLI in Kendari City, Southeast Sulawesi Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 284, 012019. [Google Scholar] [CrossRef]
- Simón Sánchez, A.-M.; González-Piqueras, J.; de la Ossa, L.; Calera, A. Convolutional Neural Networks for Agricultural Land Use Classification from Sentinel-2 Image Time Series. Remote Sens. 2022, 14, 5373. [Google Scholar] [CrossRef]
- Cherif, E.; Hell, M.; Brandmeier, M. DeepForest: Novel Deep Learning Models for Land Use and Land Cover Classification Using Multi-Temporal and -Modal Sentinel Data of the Amazon Basin. Remote Sens. 2022, 14, 5000. [Google Scholar] [CrossRef]
- Zhang, A.; Jiang, W.; Zhang, Y.; Qian, Z. Remote sensing image change detection based on adaptive interval type 2 fuzzy clustering. J. Surv. Mapp. Sci. Technol. 2018, 35, 376–382. [Google Scholar]
- Matarira, D.; Mutanga, O.; Naidu, M. Google Earth Engine for Informal Settlement Mapping: A Random Forest Classification Using Spectral and Textural Information. Remote Sens. 2022, 14, 5130. [Google Scholar] [CrossRef]
- Saboori, M.; Homayouni, S.; Shah-Hosseini, R.; Zhang, Y. Optimum Feature and Classifier Selection for Accurate Urban Land Use/Cover Mapping from Very High Resolution Satellite Imagery. Remote Sens. 2022, 14, 2097. [Google Scholar] [CrossRef]
- Lu, R.; Wang, N.; Zhang, Y.; Lin, Y.; Wu, W.; Shi, Z. Extraction of Agricultural Fields via DASFNet with Dual Attention Mechanism and Multi-scale Feature Fusion in South Xinjiang, China. Remote Sens. 2022, 14, 2253. [Google Scholar] [CrossRef]
- Zhaoxin, H.; Zhang, M.; Bing-Fang, W.; Qiang, X. Remote sensing Extraction of summer harvest Crops in Jiangsu Province based on Google Earth Engine. J. Geo-Inf. Sci. 2019, 21, 752–766. [Google Scholar]
- Li, X.; Zhang, D.; Jiang, C.; Zhao, Y.; Li, H.; Lu, D.; Qin, K.; Chen, D.; Liu, Y.; Sun, Y.; et al. Comparison of Lake Area Extraction Algorithms in Qinghai Tibet Plateau Leveraging Google Earth Engine and Landsat-9 Data. Remote Sens. 2022, 14, 4612. [Google Scholar] [CrossRef]
- Feng, S.; Li, W.; Xu, J.; Liang, T.; Ma, X.; Wang, W.; Yu, H. Land Use/Land Cover Mapping Based on GEE for the Monitoring of Changes in Ecosystem Types in the Upper Yellow River Basin over the Tibetan Plateau. Remote Sens. 2022, 14, 5361. [Google Scholar] [CrossRef]
- Dubertret, F.; Le Tourneau, F.-M.; Villarreal, M.L.; Norman, L.M. Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020). Remote Sens. 2022, 14, 2127. [Google Scholar] [CrossRef]
- Lin, G.; Qinghai, D.; Xuexin, G.; Hu, S.; Li, H. Study on dynamic change of urban land use in Qingdao based on remote sensing. Shandong Land Resour. 2017, 33, 86–91. [Google Scholar]
- Huang, B.H. Spatial-temporal change and driving forces of land use in Shandong Province based on remote sensing. Chin. J. Agric. Sci. 2021, 11, 62–67. [Google Scholar]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Rousel, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with Erts; NASA Special Publications; NASA: Washington, DC, USA, 1974; p. 351. [Google Scholar]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2004, 95, 480–492. [Google Scholar] [CrossRef]
- Zha, Y.; Ni, S.X.; Yang, S. An effective method to automatically extract urban land Use information from TM images. J. Remote Sens. 2003, 1, 37–40+82. [Google Scholar]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Mohammadpour, P.; Viegas, D.X.; Viegas, C. Vegetation Mapping with Random Forest Using Sentinel 2 and GLCM Texture Feature—A Case Study for Lousã Region, Portugal. Remote Sens. 2022, 14, 4585. [Google Scholar] [CrossRef]
- Cheng, Q.; Xu, H.; Fei, S.; Li, Z.; Chen, Z. Estimation model of summer Maize Cover based on Stacking Ensemble Learning. Trans. Chin. Soc. Agric. Mach. 2021, 52, 195–202. [Google Scholar]
- Huang, Z.; Qi, H.; Kang, C.; Su, Y.; Liu, Y. A rapid extraction method of urban new construction land based on ensemble learning. Environ. Monit. Early Warn. 2019, 11, 39–45. [Google Scholar]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R.E. Experiments with a new Boosting algorithm. Mach. Learn. Proc. Int. Conf. 1996, 96, 148–156. [Google Scholar]
- Si, R. Study on the relationship between urbanization level and cultivated land area change: A case study of Shandong Province. Hubei Agric. Sci. 2019, 58, 146–149. [Google Scholar]
- Zhao, Z.; Peng, P.; Zhang, F.; Wang, J.; Li, H. The Impact of the Urbanization Process on Agricultural Technical Efficiency in Northeast China. Sustainability 2022, 14, 12144. [Google Scholar] [CrossRef]
Class Code | Interpretation Signs | Class Name | Number of Samples of 2016 | Number of Samples of 2017 | Number of Samples of 2018 | Number of Samples of 2019 | Number of Samples of 2020 |
---|---|---|---|---|---|---|---|
0 | water | 745 (124) | 769 (132) | 862 (128) | 834 (126) | 796 (135) | |
1 | Agricultural land | 3001 (264) | 3241 (262) | 3562 (274) | 3620 (272) | 3224 (266) | |
2 | Artificial surface | 1595 | 1689 | 1728 | 1590 | 1602 | |
3 | Woodland | 1416 (138) | 1588 (132) | 1486 (140) | 1564 (136) | 1544 (130) | |
4 | Bare land | 640 (53) | 524 (50) | 664 (48) | 652 (46) | 684 (44) |
Year | Number of Images |
---|---|
2016 | 161 |
2017 | 193 |
2018 | 194 |
2019 | 213 |
2020 | 184 |
Satellite | Band | The Name of the Band | Resolution (m) |
---|---|---|---|
B2 | Blue | 30 | |
B3 | Green | 30 | |
B4 | Red | 30 | |
Landsat 8 | B5 | NIR | 30 |
B6 | SWIR1 | 30 | |
B7 | SWIR2 | 30 | |
QA | pixel_qa | 30 |
Name of Statistic | Description | Name of Statistic | Description |
---|---|---|---|
constant_savg | The sum of the average | constant_prom | The clustering process |
constant_shade | Clustering of the shadow | constant_svar | The variance in the sum |
constant_corr | The correlation | constant_dvar | Differential variance |
constant_imcorr1 | Correlation information measure 1 | constant_var | The variance |
constant_asm | Angular second moment | constant_ent | entropy |
constant_idm | Deficit moment | constant_diss | The differences |
constant_dent | The differential entropy | constant_contrast | contrast |
constant_sent | The entropy of the sum | constant_inertia | Moment of inertia |
constant_imcorr2 | Correlation information measure 2 | constant_maxcorr | Maximum correlation coefficient |
Name of Characteristic | The Original Features | Optimized Feature |
---|---|---|
Spectral features | Blue, Green, Red, NIR, SWIR1, SWIR2, pixel_qa, EVI, NDVI, LSWI, NDWI, NDBI | NIR, Blue, Red, Green, NDVI, NDBI, EVI, NDWI, SWIR1, SWIR2 |
Texture features | constant_asm, constant_contrast, constant_corr, constant_var, constant_idm, constant_savg, constant_svar, constant_sent, constant_ent, constant_dvar, constant_dent, constant_imcorr1, constant_imcorr2, constant_maxcorr, constant_prom, constant_diss, constant_inertia, constant_shade | constant_savg, constant_shade, constant_dvar |
Terrain features | Elevation, Slope, Aspect, Hillshade | Elevation, Aspect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Chen, M.; Chen, H.; Li, Y.; Xie, C.; Tian, B.; Wang, C.; Ge, P. Remote Sensing Extraction of Agricultural Land in Shandong Province, China, from 2016 to 2020 Based on Google Earth Engine. Remote Sens. 2022, 14, 5672. https://doi.org/10.3390/rs14225672
Liu H, Chen M, Chen H, Li Y, Xie C, Tian B, Wang C, Ge P. Remote Sensing Extraction of Agricultural Land in Shandong Province, China, from 2016 to 2020 Based on Google Earth Engine. Remote Sensing. 2022; 14(22):5672. https://doi.org/10.3390/rs14225672
Chicago/Turabian StyleLiu, Hui, Mi Chen, Huixuan Chen, Yu Li, Chou Xie, Bangsen Tian, Chu Wang, and Pengfei Ge. 2022. "Remote Sensing Extraction of Agricultural Land in Shandong Province, China, from 2016 to 2020 Based on Google Earth Engine" Remote Sensing 14, no. 22: 5672. https://doi.org/10.3390/rs14225672
APA StyleLiu, H., Chen, M., Chen, H., Li, Y., Xie, C., Tian, B., Wang, C., & Ge, P. (2022). Remote Sensing Extraction of Agricultural Land in Shandong Province, China, from 2016 to 2020 Based on Google Earth Engine. Remote Sensing, 14(22), 5672. https://doi.org/10.3390/rs14225672