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Abstract: Timely and effective access to agricultural land-change information is of great significance
for the government when formulating agricultural policies. Due to the vast area of Shandong
Province, the current research on agricultural land use in Shandong Province is very limited. The
classification accuracy of the current classification methods also needs to be improved. In this paper,
with the support of the Google Earth Engine (GEE) platform and based on Landsat 8 time series image
data, a multiple machine learning algorithm was used to obtain the spatial variation distribution
information of agricultural land in Shandong Province from 2016 to 2020. Firstly, a high-quality cloud-
free synthetic Landsat 8 image dataset for Shandong Province from 2016 to 2020 was obtained using
GEE. Secondly, the thematic index series was calculated to obtain the phenological characteristics of
agricultural land, and the time periods with significant differences in terms of water, agricultural
land, artificial surface, woodland and bare land were selected for classification. Feature information,
such as texture features, spectral features and terrain features, was constructed, and the random forest
method was used to select and optimize the features. Thirdly, the random forest, gradient boosting
tree, decision tree and ensemble learning algorithms were used for classification, and the accuracy
of the four classifiers was compared. The information on agricultural land changes was extracted
and the causes were analyzed. The results show the following: (1) the multi-spatial index time series
method is more accurate than the single thematic index time series when obtaining phenological
characteristics; (2) the ensemble learning method is more accurate than the single classifier. The
overall classification accuracy of the five agricultural land-extraction results in Shandong Province
obtained by the ensemble learning method was above 0.9; (3) the annual decrease in agricultural land
in Shandong Province from 2016 to 2020 was related to the increase in artificial land-surface area and
urbanization rate.

Keywords: agricultural land; google earth engine; ensemble learning; random forest; vegetation index

1. Introduction

As a major agricultural province in China, Shandong’s total agricultural output value
reached USD 140.8 billion in 2020, making it the first province in China to exceed USD
137.9 billion in total agricultural output value. Located in the North China Plain, Shandong
has an agricultural land area of more than ten million hectares. More than half of the
province’s land is agricultural land, and its agricultural value-added has long ranked
first in China. Using remote sensing technology to dynamically monitor agricultural land
in Shandong Province can obtain agricultural land information in a timely and effective
way. Rich and effective information can provide guidance for agricultural development
in Shandong Province and allow for the government to carry out scientific macro-control
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according to the market economy. This is of great significance to ensure economic benefits
to farmers and improve the development of local agricultural resources.

Google Earth Engine (GEE) is a comprehensive, remote sensing, cloud-computing
platform developed by Google that integrates scientific analysis and geographic information
data visualization. The GEE platform has a very large cloud-storage capacity and powerful
cloud-computing abilities. Various Application Programming Interfaces (APIs) provided by
GEE can facilitate and quickly view, calculate and process large-scale and long-time-series
remote sensing data [1]. Processing and analyzing massive remote sensing data using the
GEE platform is an important development direction in the field of agricultural land-use
information extraction [2,3]. Relevant scholars used GEE to complete the classification
and extraction of cultivated land, crops and land use, and the classification efficiency is
significantly better than that of traditional classification methods [4–6].

With the advent of the era of big data, machine learning algorithms have become the
mainstream way to deal with big data, such as random forest, gradient lifting tree, support
vector machine, decision tree, neural network and other machine learning algorithms
that have been widely used in remote sensing classification [7–13]. However, the current
research on GEE classification is mainly based on the inherent GEE classification methods,
such as random forest and decision tree [14,15]. Classification research is carried out based
on a single classifier or a combination of multiple classifiers. Although the classification
accuracy is satisfactory, there is still room for further improvements. At the same time, due
to the spatial resolution of remote sensing images and the existence of the phenomena of
“same object with different spectrum” and “different object with the same spectrum”, many
misclassifications and missing classifications are prone to occurring, and the classification
accuracy needs to be improved [16]; therefore, improving the classification accuracy is the
key research direction of current classification research.

Some researchers show that texture features and terrain features are applied to remote
sensing classification, and the combination of various features can effectively improve
classification accuracy [17–20]. However, it is not that more features will make the classifi-
cation effect better. Sometimes, more features will make the data redundant and have a
negative effect. In addition to adding the classification features that are important to the
classification effect, method innovations based on the traditional classification method are
also a way to effectively improve classification accuracy. An increasing number of classifi-
cation methods have been proposed by researchers and have proven the effectiveness of
the classification methods [21–23]. However, at present, new classification methods based
on the GEE platform are very limited; therefore, it is necessary to innovate the algorithm
based on the inherent GEE classification method.

At present, there is little research on the land-use classification in Shandong Province,
especially research on the land-use classification of agricultural land. Gao Lin et al. [24]
studied the distribution of land-use types in Qingdao in 2005 and 2015 using a supervised
classification method. Huang Baohua [25] obtained seven periods of classified land-use
results in Shandong Province and analyzed the driving force of land-use changes through a
manual visual interpretation of Landsat images from the period 1970–2015. In the existing
research results, the majority of land-use classification studies in Shandong Province
are based on a small regional scale, and the traditional classification methods are used
to analyze the results of the studies at the Shandong Province level. There are also no
field sample points to participate in the classification and verification of relevant studies.
Therefore, the research on land-use classification and monitoring of changes in Shandong
Province needs to be further strengthened.

In view of the shortcomings of the existing research, we made changes to our own
research. We improved the classification accuracy by combining different classification
features and innovating classification methods, as mentioned above. This paper takes
Shandong Province as the research area and uses Landsat 8 OLI image dataset through the
GEE platform to study the ensemble learning method, based on multi-feature optimization
combined with manual sample points and field sample points, to extract agricultural land
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information in Shandong Province. This is then compared with machine learning methods,
including random forest, gradient lifting tree and decision tree. Using the ensemble
learning algorithm based on multi-feature optimization, information was obtained based
on agricultural land-use changes in Shandong Province from 2016 to 2020 and its driving
factors were analyzed. The results show that using multi-classification features and the
ensemble learning method to integrate the classification results of traditional classifiers can
make comprehensive use of the advantages of various classification methods, to improve
classification accuracy. The results of this study can provide technical support to the
dynamic monitoring of agricultural land and agricultural planning in Shandong Province.

2. Study Area and Datasets
2.1. Study Area

Shandong Province is a coastal province in East China, with latitude 34◦22.9′–38◦24.01′N
and 114◦47.5′–122◦42.3′E. The mountains in central Shandong are bulging, low-lying and
flat in the southwest and northwest, with slow hills in the east, and the terrain is dominated
by mountainous hills. The Shandong Peninsula is found in the east, the west and north
belong to the North China Plain, and there are mountainous hills in the south-central part.
Mountainous hills could be seen as the skeleton, and the crisscrossed landscape of the plain
basin belongs to the temperate monsoon climate.

Shandong Province is a large, traditional agricultural province and the main pro-
ducer of grain and northern fruits in China. The total land area of Shandong Province is
157,126 million hectares, accounting for about 1.63% of the country’s total area, ranking
19th in the country. There are 11.566 million hectares of agricultural land, accounting for
73.61% of the total land area and 7.515 million hectares of agricultural land, accounting
for 47.8% of the total land area. The grain output is high, and the grain crops are planted
in summer and autumn. Summer grain is mainly winter wheat; autumn grain is mainly
corn, sweet potato and small grains. Wheat, corn and sweet potato are the three main grain
crops in Shandong Province.

2.2. Data and Preprocessing

The main data used in this study include Landsat image data, Shuttle Radar Topogra-
phy Mission (SRTM) DEM data and sample point data.

2.2.1. Landsat Data

In this paper, the Landsat 8 OLI image data processed by 1C standard from 2016 to 2020
were selected as the data source. The Landsat data include Surface Reflectance (SR) data of
Landsat 8. The study area has the weather characteristics of multi-cloud cover. In order
to obtain high-quality image data, cloud removal should be carried out first. The Quality
Assessment (QA) band was added to the Landsat 8 data released by the United States
Geological Survey. The QA band represents the surface, atmosphere and sensor conditions
with unsigned shaping data, indicating whether the pixels are affected by instruments or
clouds. Cloud marking can quickly be carried out from the QA band, which provides a new
cloud recognition method for remote-sensing research, such as vegetation index calculation
and land-use change detection. The study area has cloudy weather characteristics, and
cloud processing is the primary consideration when obtaining high-quality image data.
According to different images, cloud-processing methods are divided into minimum cloud-
cover synthesis and the C Function of Mask (CFMASK) algorithm [26]. For Landsat SR
data, the CFMASK algorithm was used to complete cloud removal. In GEE, the QA band
mask was processed to obtain a cloud-free image for subsequent processing.

The main surface features in the study area can be divided into five categories: water
body, agricultural land, artificial surface, and bare land. In the statistical yearbook of
Shandong Province, agricultural land includes cultivated land, orchard and grassland.
As shown in Table 1, by calculating the Normalized Difference Vegetation Index (NDVI),
Land Surface Water Index (LSWI), Normalized Difference Built-up Index (NDBI) and
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Enhanced Vegetation Index (EVI), the corresponding spectral characteristic curves are
obtained. As is shown in Figure 1, the spectral index characteristics of different feature
categories vary greatly between June and October, so June to October can be regarded as
the best classification time period. In this paper, 945 pieces of Landsat image data from
June 1 to October 1 of each year during 2016–2020 were selected for further study.

Table 1. The vegetation indices computed in this study from Landsat 8.

Name Formula References

NDVI NDVI =NIR−R
NIR+R

Rousel et al. [27]

LSWI LSWI =NIR−SWIR
NIR+SWIR

Xiao et al. [28]

NDBI NDBI =MIR−NIR
MIR+NIR

Cha et al. [29]

EVI EVI = 2.5 NIR−R
NIR+6R−7.5B+1

Huete [30]
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2.2.2. SRTM DEM Data

In this paper, SRTM DEM data with 30 m resolution provided by NASA are used to ob-
tain topographic features in the study area. These were cut according to the administrative
boundary of Shandong Province and resampled.

2.2.3. Sample Point Data

The sample data of this study consist of manually selected data and the field sample
points. The distribution information of the sample points is shown in Figure 2. The surface
features in the study area were divided into five categories by manual sampling: water
body, agricultural land, artificial surface, woodland and bare land. The selection of samples
is based on the principle of uniformity and randomness.

The water bodies mainly include river, lake and other water-system features. Agri-
cultural land mainly includes cultivated land, orchards, etc. The artificial surface mainly
consists of buildings. Woodland mainly includes woods, forests and other land features.
Bare land mainly includes bare ground where no plants grow. Online samples were se-
lected from high-resolution images on the Google Earth platform over the years. The
sample points used in this study include the sample points collected by field measurements
from 2016 to 2020. The offline sample point data were obtained from sub-meter GPS field
measurement, and the offline sample points cover all urban areas of the province.

The sample graph of the field sample points is shown in Figure 3. We collected
hundreds of agricultural land sample points, all of which were identified as agricultural
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land. The polygon region in Figure 3 is the polygon range of the agricultural land, rather
than the crop type. The sample selection information is shown in Table 2, where the number
of sample points is the sum of manual sample points and field sample points, and the
number of sample points in parentheses is the number of field sample points.
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Table 2. Sample data information.
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3. Methods

In this study, with the support of the GEE platform, the time range of images was first
determined according to the difference in the spectral index features of ground object classes,
and then the Landsat image data with the best classification time phase were selected to
quickly complete the image cloud removal, Mosaic and clipping preprocessing. On this
basis, the spectral, texture and terrain features were constructed, and the random forest
(RF) method was introduced to optimize the features. Then, the machine learning methods,
including random forest, gradient lifting tree, classification and regression tree (CART) and
ensemble learning were used to classify the images and evaluate the classification accuracy.
Finally, the spatial distribution information of agricultural land in Shandong Province from
2016 to 2020 was obtained. The technical flow chart is shown in Figure 4.
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3.1. Feature Construction

The extraction and selection of image features have an important impact on the
subsequent image classification. In this study, spectral features, texture features and terrain
features were selected as classification features.

3.1.1. Spectral Features

A total of 945 images with the optimal temporal were obtained by preprocessing. The
distribution of image data information is shown in Table 3. Each image contains seven
original spectral bands. NDVI, EVI, LSWI, NDWI and NDBI were calculated by GEE
platform. Each spectral index obtained was added to the original spectral band as an
independent band to form 12 image spectral features and complete the construction of
spectral features. The spectral bands of Landsat 8 are shown in Table 4.

Table 3. Image data information table.

Year Number of Images

2016 161
2017 193
2018 194
2019 213
2020 184
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Table 4. Landsat image band parameters.

Satellite Band The Name of the Band Resolution (m)

B2 Blue 30
B3 Green 30
B4 Red 30

Landsat 8 B5 NIR 30
B6 SWIR1 30
B7 SWIR2 30
QA pixel_qa 30

3.1.2. Texture Features

Texture features are the regular distribution of gray value caused by the repeated ar-
rangement of ground objects on the image, which is an important feature in remote sensing
image classification. Gray-level co-occurrence Matrix (GLCM) can obtain the co-occurrence
matrix and its eigenvalues by calculating the gray image, which can reflect comprehensive
information, such as image direction, adjacent interval and change amplitude [31]. The
texture features of remote sensing images based on the gray level co-occurrence matrix
were calculated in the GEE platform, and 18 texture-feature statistics were selected to
complete the construction of texture features. The specific texture statistics are shown in
Table 5.

Table 5. GLCM texture statistics information.

Name of Statistic Description Name of Statistic Description

constant_savg The sum of the average constant_prom The clustering process
constant_shade Clustering of the shadow constant_svar The variance in the sum
constant_corr The correlation constant_dvar Differential variance

constant_imcorr1 Correlation information measure 1 constant_var The variance
constant_asm Angular second moment constant_ent entropy
constant_idm Deficit moment constant_diss The differences
constant_dent The differential entropy constant_contrast contrast
constant_sent The entropy of the sum constant_inertia Moment of inertia

constant_imcorr2 Correlation information measure 2 constant_maxcorr Maximum correlation coefficient

3.1.3. Topographic Features

The central and southern parts of Shandong Province are mountainous and hilly
areas with protruding ridges, while the eastern part contains undulating and gentle wavy
hilly areas. Therefore, topographic features are also important features regarding the
agricultural-land information extraction for the study area. Four topographic feature
components, elevation, slope, aspect and hillshade, were extracted by the GEE platform.

3.2. Feature Optimization

In this study, the spectral features, texture features and topographic features of the
images were extracted, and a total of 34 image features were obtained. If all the features
were to be used for classification, the classifier burden would be increased, unnecessary
time would be spent and the classification accuracy may have been reduced due to the
existence of redundant information; therefore, the features needed to be optimized. In this
study, we used a random forest approach for feature optimization.

3.3. Classification Method
3.3.1. Random Forest Classifier

Random forest is a supervised learning algorithm that branches each decision regres-
sion tree by selecting the optimal features from the subspace of the total feature set [23].
Compared to other classifiers, random forest classification has relatively good accuracy.
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The random forest classifier can also be applied to some large datasets. Additionally, the
random forest classifier does not require dimensionality reductions when processing the
input samples of high-dimensional features, so it can evaluate the importance of each
feature in the classification. The random forest method can also obtain good results for the
default value problem and ensure the independence and diversity of each decision tree,
which can avoid over-fitting to a certain extent.

3.3.2. Gradient Lifting Tree Classifier

The gradient lifting tree is an improvement based on the boost algorithm. It is very
different from the traditional boost algorithm [32]. The gradient lifting tree algorithm
is an improved algorithm based on the AdaBoost algorithm. Gradient promotion can
be regarded as a realization of boosting, which is also an interactive process. However,
compared with AdaBoost boosting, gradient lifting tree is a multiple-accumulative model.
The core of the gradient lifting algorithm is that each tree learns from the residuals of
all previous trees, and the negative gradient value of the loss function in the current
model is used as the approximate value of the residuals in the lifting tree algorithm to fit
a regression classification tree. This method can deal with both continuous values and
discrete values and has strong adaptability to various types of data. It has the advantages
of the flexible processing of various types of data, high estimation accuracy, the use of
loss function and strong robustness to outliers, and, therefore, can be effectively used for
regression estimation.

3.3.3. Decision Tree Classifier

The core of the decision tree is based on the study area and target variables. The core
content of the decision tree is to conduct a cyclic analysis of original datasets in the form
of a binary tree structure according to learning region variables and target variables. By
calculating the Gini coefficient, the decision tree method selects an attribute in the attribute
set as the classification attribute of the binary tree and uses this attribute to divide the set
of samples for classification into two subsets. This step should be repeated until the set of
currently classified samples reaches a leaf node. The CART decision tree algorithm has the
characteristics of assuming no statistical distribution of input data, clearly calculating the
importance of variables for classification, selecting variables related to classification, simple
implementation and a high running speed.

3.3.4. Ensemble Learning

The previous three classifiers are widely used in GEE classification research. Among
them, random forest is regarded as an excellent classification method, which is widely used
in classification research. Although the effect of random forest is better, this does not mean
that the random forest method is superior to the other two methods in all aspects. To collect
the advantages of each classifier and further improve the classification accuracy, this study
adopts the classification method of ensemble learning to further integrate the classification
results of the three classifiers.

Ensemble learning is an ensemble algorithm based on multiple classifiers [33]. The
performance of the classifier differs in different regions of the feature space, and a single
classifier can easily cause more misclassification and missing phenomena. When we use a
classifier to generate incorrect classification results, it is possible to use other classifiers to ob-
tain correct classification results. Each classifier has its own advantages and disadvantages.
Combining different classifiers can make up for the disadvantages and disadvantages
of a single classifier. In the classification work, the advantages can be combined with
other classifiers to achieve complementarity by using a comprehensive analysis of multiple
classifiers to improve the classification effect; therefore, the difference between classifiers is
the most important factor in the construction of the classifier integration algorithm.

At present, the most common classifier integration methods are mainly based on the
selection of training samples. The most common classifier integration methods are the
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bagging algorithm and boost algorithm [34,35]. The gradient lifting tree method used
above is one of the boost algorithms. Bagging is the same as random forest, where only
some of the initial training samples of each base classifier are taken for training, and then
the simple voting method is used for classification tasks and the simple average method is
used for regression tasks. Random forest uses random attribute selection on the basis of
bagging. Generally speaking, the training efficiency of random forest is better than that
of bagging.

The ensemble learning algorithm adopted in this study is a parallel ensemble classifier
algorithm. This method aims to design a single classifier independently in the parallel
integration process, and then fuse the output results of a single classifier according to a
certain strategy, train and test its classification accuracy and use this as the weight of each
classifier for decision-level integration to obtain the final classification result. The weight
voting algorithm sets different weights according to the effect of different classification
results, carries out weighted voting and classifies the categories using the maximum
number of classifiers as the pixel categories to be classified. This not only reflects the
applicability of each classifier but also reduces the probability of the same number of votes
being received by the direct voting method. The parallel ensemble learning algorithm
considers the output of the member classifier to be independent. Through decision-level
integration, we can maximize the preservation of the three classification results that are
supported by the majority of classifiers. The flow chart of the ensemble learning method is
shown in Figure 5.
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Figure 5. Flow chart of ensemble learning methods.

In this study, random forest, gradient lifting tree and decision tree were used as basic
classifiers, and weighted voting was performed using an ensemble learning algorithm
to achieve complementary advantages. In GEE, the random forest, gradient lift tree and
decision tree classification methods can all be directly used in the GEE platform, while
ensemble learning is the algorithm that we built in the GEE platform.

4. Results
4.1. Feature Optimization Results

In this study, the random forest algorithm was used to optimize the features and
obtain the importance information of each feature for classification (Figure 6). The top 15
features in the importance ranking were selected as the image classification features, and
we finally obtained the 15 best features (Table 6).
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Table 6. Original feature and optimized feature information.

Name of Characteristic The Original Features Optimized Feature

Spectral features Blue, Green, Red, NIR, SWIR1, SWIR2, pixel_qa, EVI,
NDVI, LSWI, NDWI, NDBI

NIR, Blue, Red, Green, NDVI, NDBI, EVI,
NDWI, SWIR1, SWIR2

Texture features

constant_asm, constant_contrast, constant_corr,
constant_var, constant_idm, constant_savg,
constant_svar, constant_sent, constant_ent,

constant_dvar, constant_dent, constant_imcorr1,
constant_imcorr2, constant_maxcorr, constant_prom,

constant_diss, constant_inertia, constant_shade

constant_savg, constant_shade,
constant_dvar

Terrain features Elevation, Slope, Aspect, Hillshade Elevation, Aspect

4.2. Classification Results and Accuracy Evaluation

In this study, random forest, gradient lifting tree, decision tree and ensemble learning
classifiers were used to classify the image dataset and extract the distribution information
of agricultural land in the study area.

There are two main methods of evaluating classification accuracy. One is to rely on
the experience and knowledge of experts in related fields to visually judge and evaluate
the classification results, which is a qualitative method. Although the operation of this
distribution is simple, it is limited by the subjective factors of expert judgement, and
the evaluation results vary from person to person. The other method is based on the
calculation of certain evaluation accuracy indicators, such as the overall accuracy of the
classification, producer accuracy and user accuracy obtained by the confusion matrix.
This quantitative evaluation method can objectively and directly reflect the accuracy of
classification. Therefore, in this study, while comparing the classification results with the



Remote Sens. 2022, 14, 5672 12 of 19

optical images, the accuracy evaluation is carried out by calculating the confusion matrix
based on the classification results.

According to the distribution of agricultural land in Shandong Province, we selected an
area from the classification results and compared the classification of the four classification
methods (Figure 7). The study found that the classification effect of the decision tree is
poor and there are many misclassification phenomena, while random forest and gradient
lifting tree classifications have more misclassification phenomena for agricultural land.
Samples were stratified and evaluated through cross-validation. A total of 70% of the
sample datasets of each type of ground object were classified, and 30% of the sample
datasets were used for accuracy evaluation. Each subset follows the principle of random
and uniform hierarchical sampling and the accuracy evaluation index is calculated using
the confusion matrix for accurate verification results. Among these, the accuracy evaluation
indexes included in the confusion matrix are average cartographic accuracy, average user
accuracy and average overall accuracy.
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Figure 7. Comparison of different classification methods. In the results, we marked the obvious
differences between each classification method with red boxes. (a) Winter wheat distribution map
in Shandong Province; (b) optical image; (c) results of random forest classification; (d) results of
gradient lifting tree classification; (e) results of decision tree classification; (f) results of ensemble
learning classification.
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As shown in Figure 8, the classification accuracy evaluation indexes of the four classi-
fiers for five years are counted to generate the classifier accuracy evaluation graph. The
mean value of the five years classification indexes for the four classification methods was
calculated as the accuracy evaluation result, which is shown in Figure 8. The accuracy
evaluation results and the accuracy evaluation diagram of the classifier show that the
classification accuracy of the random forest and gradient lifting tree is close, while the
classification accuracy of the decision tree is poor. Compared with the other three classifiers,
the ensemble learning classifier can significantly improve classification accuracy. Among
them, the cartographic accuracy of agricultural land category obtained by the Ensemble
Learning method is more than 0.95 in five years.
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Figure 8. Accuracy evaluation graph of classifier. (a) Classifier accuracy evaluation graph in 2016;
(b) classifier accuracy evaluation graph in 2017; (c) classifier accuracy evaluation graph in 2018;
(d) classifier accuracy evaluation graph in 2019; (e) classifier accuracy evaluation graph in 2020;
(f) average accuracy evaluation graph of classifier from 2016 to 2020.
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The classification map of agricultural land in Shandong Province obtained through the
ensemble learning method is shown in Figure 9. From the ensemble learning classification
results, it can be seen that Shandong Province is literally a “large province of agricultural
land”, with a large area of agricultural land that is mainly distributed in the hilly areas in
eastern Shandong, mountainous mountains in south-central Shandong and the northwest
plains. From the classification results, it can be concluded that the agricultural land area
of Shandong Province in 2020 was 120.08 million hectares, accounting for 76% of the total
land use area of Shandong Province. Mountain Tai is located in the middle of Shandong
Province and has more forest vegetation. As the largest lake in Shandong Province, four
southern lakes can be clearly seen in the classification map.
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Figure 9. Agricultural land classification map of Shandong Province in the last five years. (a) Land
use classification map of Shandong Province in 2016; (b) Land use classification map of Shandong
Province in 2017; (c) Land use classification map of Shandong Province in 2018; (d) Land use
classification map of Shandong Province in 2019; (e) Land use classification map of Shandong
Province in 2020.
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5. Discussion
5.1. Monitoring the Change of Agricultural Land Area

Obtaining information on agricultural land changes is an important basis of reference
for the government to formulate agricultural policies. According to the results of agricul-
tural land classification, a series of monitoring methods, such as the post-classification
comparison method and image ratio method, can be used to dynamically monitor agricul-
tural land, which can more intuitively reflect the changes in agricultural land utilization.
The transfer matrix is the conversion relationship of land-use types in the same area in
different time periods. Based on the extraction results of agricultural land in Shandong
Province from 2016 to 2020, this study used the transfer matrix method to obtain the change
information on agricultural land use in Shandong Province (Figure 10).
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Figure 10. Information on agricultural land use changes in Shandong Province, 2016–2020. (a) Moni-
toring results of agricultural land change in Shandong Province during 2016–2017; (b) Monitoring
results of agricultural land change in Shandong Province during 2017–2018; (c) Monitoring results
of agricultural land change in Shandong Province during 2018–2019; (d) Monitoring results of
agricultural land change in Shandong Province during 2019–2020.

Using the transfer matrix to obtain information on agricultural land changes, the
conversion information on agricultural land and non-agricultural land can be obtained to
understand the loss of and increases in agricultural land. Meanwhile, to verify the accuracy
of agricultural land extraction, we obtained the official statistical yearbook of Shandong
Province. The Shandong Provincial Official Statistical Yearbook includes spatial information
on land-use types in Shandong Province. By calculating the classified agricultural land area
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and comparing this with the statistical yearbook of Shandong Province, the agricultural
land area of Shandong Province is shown to be gradually decreasing (Figure 11). Due to
the lack of statistical information on agricultural land in the last two years, we can see that
our results are consistent with those in the official statistical yearbook by comparing the
information on agricultural land in the first three years. As can be seen from the figure, the
lost agricultural land was greater than the newly added agricultural land from 2016 to 2020,
showing a gradual decline.
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yearbook agricultural land area comparison.

5.2. Monitoring of Agricultural Land Area Change and Analysis of Main Driving Forces

The main reasons for changes in agricultural land include the increase in urbanization
rate, the increase in artificial surfaces, and the influence of agricultural policies. Due to
the relatively stable agricultural policies in Shandong Province in recent years, this study
explored other driving factors affecting agricultural land use, including the urbanization
rate and the increase in the artificial surface.

According to the classification results, the area of agricultural land in Shandong
Province is decreasing each year, while the area of artificial land is increasing each year.
To further study the possible direct relationship between agricultural land and artificial
land surface area, a unary linear regression model between agricultural land (X) and
artificial land surface (Y) was established (Figure 12): Y = 7.45× 102 + 0.39× X where
B1 is a constant term and B2 is the coefficient of agricultural land X. The unary linear
regression model of agricultural land (X) and artificial land surface (Y) was obtained
through regression analysis where R2 = 0.937 and Pearson correlation value was −0.968,
indicating a significant correlation between them.

In addition, relevant studies have shown that agricultural land changes are closely
related to the rate of urbanization [36,37]. This study established a unary linear regression
model between agricultural land (X) and the urbanization rate (Y) of Shandong Province,
published by the Shandong Provincial government (Figure 13): Y = 2.33× 102 − 0.14× X
where R2 = 0.773 and Pearson correlation value is −0.879, which also shows a strong
correlation. The results show that the decrease in agricultural land in Shandong Province is
closely related to the increase in labor construction and urbanization rate each year.
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6. Conclusions

Using the Google Earth Engine platform, this study quickly obtained remote sensing
images of Shandong Province from 2016 to 2020; completed preprocessing such as clipping,
mosaicking and cloud removal; and extracted a spectral index to judge the farmland
phenology that was suitable for classification. The random forest algorithm was used for
feature optimization. The random forest, gradient lifting tree, decision tree and ensemble
learning classifiers were used to classify Landsat images of Shandong Province from 2016
to 2020. The spatial location distribution information of cultivated land in Shandong
Province was obtained for the last five years, and the annual agricultural land-use area was
calculated. The main conclusions are as follows:

1. The GEE platform has unique advantages for processing large-scale data. Through
the calculation of the characteristic index, the phenology of the classified ground
objects can be understood more clearly, which is convenient for later classification.
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On the basis of the spectral features, texture features and terrain features are added,
and the random forest algorithm can be used for feature optimization to compress the
classification features and retain the most favorable features for classification, which
reduces data redundancy and improves classification accuracy.

2. Ensemble learning based on the classification results of a single classifier can greatly
improve classification accuracy. Ensemble learning is used to integrate the classifica-
tion results of three classifiers, and the overall accuracy of the classification results is
above 0.9.

3. The analysis of the main driving forces of agricultural land changes in Shandong
Province shows that there is a strong correlation between the decrease in agricultural
land area and the increase in artificial land surface and the urbanization rate in
Shandong Province in the last five years.

In this study, classification based only on Landsat images was shown to have certain
limitations. The existing research results show that the fusion of Sentinel-2 images with
higher resolution can achieve good classification results. A combination of different clas-
sifiers can also improve classification accuracy. Subsequent studies will try to combine
high-resolution images or multi-source image data and use different classifiers to combine
classification on the GEE platform in order to further improve the accuracy of agricultural
land extraction.
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