Prediction of Future Spatial and Temporal Evolution Trends of Reference Evapotranspiration in the Yellow River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Ground-Based Observation Data
2.2.2. Reference Data on Downscaling
2.2.3. Future Climate Data
2.3. Research Methodology
2.3.1. Delta Statistical Downscaling
2.3.2. Climate Model Accuracy Assessment and Multi-Model Ensemble
2.3.3. ET0 Calculation Model
2.3.4. Methods for Spatial and Temporal Trend Analysis
3. Results
3.1. Simulation Accuracy Assessment of Regional Temperatures and Multi-Model Ensemble
3.2. Simulation Accuracy Assessment of Regional ET0
3.3. Temporal Trends and Cyclic Characteristics of ET0
3.4. Spatial Evolution Characteristics of ET0
4. Discussion
4.1. Influence of the ET0 Model
4.2. Spatial and Temporal Variations in Future ET0
4.3. Climate Model Uncertainty Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nooni, I.K.; Hagan, D.F.T.; Wang, G.; Ullah, W.; Lu, J.; Li, S.; Dzakpasu, M.; Prempeh, N.A.; Lim Kam Sian, K.T.C. Future Changes in Simulated Evapotranspiration across Continental Africa Based on CMIP6 CNRM-CM6. Int. J. Environ. Res. Public Health. 2021, 18, 6760. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global data assessment and analysis of drought characteristics based on CMIP6. J. Hydrol. 2021, 596, 126091. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, B.; Feng, X.; Pan, N. Response of Ecohydrological Variables to Meteorological Drought under Climate Change. Remote Sens. 2022, 14, 1920. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Liu, Y.; Yue, Q.; Wang, Q.; Yu, J.; Zheng, Y.; Yao, X.; Xu, S. A Framework for Actual Evapotranspiration Assessment and Projection Based on Meteorological, Vegetation and Hydrological Remote Sensing Products. Remote Sens. 2021, 13, 3643. [Google Scholar] [CrossRef]
- Kundu, S.; Mondal, A.; Khare, D.; Hain, C.; Lakshmi, V. Projecting Climate and Land Use Change Impacts on Actual Evap-otranspiration for the Narmada River Basin in Central India in the Future. Remote Sens. 2018, 10, 578. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Feng, P.; Wang, B.; Liu, D.L.; Zhang, H.; Liu, J.; Yu, Q. Assessing future runoff changes with different potential evapotranspiration inputs based on multi-model ensemble of CMIP5 projections. J. Hydrol. 2022, 612, 128042. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.; Liu, Y.; Feng, H.; Zhang, R.; Che, Y. Changes of potential evapotranspiration and its sensitivity across China under future climate scenarios. Atmos. Res. 2021, 261, 105763. [Google Scholar] [CrossRef]
- Guo, D.; Westra, S.; Maier, H.R. Sensitivity of potential evapotranspiration to changes in climate variables for different Aus-tralian climatic zones. Hydrol. Earth Syst. Sci. 2017, 21, 2107–2126. [Google Scholar] [CrossRef] [Green Version]
- Jhajharia, D.; Dinpashoh, Y.; Kahya, E.; Singh, V.P.; Fakheri-Fard, A. Trends in reference evapotranspiration in the humid region of northeast India. Hydrol. Process. 2012, 26, 421–435. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- PascoliniCampbell, M.; Reager, J.T.; Chandanpurkar, H.A.; Rodell, M. Retraction Note: A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 2022, 604, 202. [Google Scholar] [CrossRef] [PubMed]
- She, D.; Xia, J.; Zhang, Y. Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China. Sci. Total Environ. 2017, 607–608, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Yagob, D.; Deepak, J.; Ahmad, F.; Vijay, P.S.; Ercan, K. Trends in reference crop evapotranspiration over Iran. J. Hydrol. 2011, 399, 422–433. [Google Scholar]
- Huang, J.; Zhai, J.; Jiang, T.; Wang, Y.; Li, X.; Wang, R.; Xiong, M.; Su, B.; Fischer, T. Analysis of future drought characteristics in China using the regional climate model CCLM. Clim. Dyn. 2018, 50, 507–525. [Google Scholar] [CrossRef]
- Torres, R.R.; Marengo, J.A. Climate change hotspots over South America: From CMIP3 to CMIP5 multi-model datasets. Theor. Appl. Climatol. 2014, 117, 579–587. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Xiong, W.; Guo, S.; Xu, C. Downscaling GCMs using the Smooth Support Vector Machine method to predict daily precipitation in the Hanjiang Basin. Adv. Atmos. Sci. 2010, 27, 274–284. [Google Scholar] [CrossRef]
- Harding, K.J.; Snyder, P.K. Examining future changes in the character of Central U.S. warm-season precipitation using dynamical downscaling. J. Geophys. Res.-Atmos. 2014, 119, 13116–13136. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Mearns, L.O. Approaches to the simulation of regional climate change: A review. Rev. Geophys. 1991, 29, 191–216. [Google Scholar] [CrossRef]
- Benestad, R.E. A comparison between two empirical downscaling strategies. Int. J. Climatol. 2001, 21, 1645–1668. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Gao, Y.; Chen, D.; Xiao, L.; Ou, T. Evaluation of global climate models for downscaling applications centred over the Tibetan Plateau. Int. J. Climatol. 2017, 37, 657–671. [Google Scholar] [CrossRef]
- Dosio, A.; Panitz, H.; Schubert-Frisius, M.; Lüthi, D. Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: Evaluation over the present climate and analysis of the added value. Clim. Dyn. 2015, 44, 2637–2661. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int. J. Climatol. 2014, 34, 2059–2078. [Google Scholar] [CrossRef]
- Ahmadi, H.; Baaghideh, M. Assessment of anomalies and effects of climate change on reference evapotranspiration and water requirement in pistachio cultivation areas in Iran. Arab. J. Geosci. 2020, 13, 332. [Google Scholar] [CrossRef]
- Das, S.; Datta, P.; Sharma, D.; Goswami, K. Trends in Temperature, Precipitation, Potential Evapotranspiration, and Water Availability across the Teesta River Basin under 1.5 and 2 °C Temperature Rise Scenarios of CMIP6. Atmosphere. 2022, 13, 941. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Peng, S.; Yu, Z.; Yong, B.; Taylor, J. Changes of reference evapotranspiration in the Haihe River Basin: Present observations and future projection from climatic variables through multi-model ensemble. Glob. Planet. Change 2014, 115, 1–15. [Google Scholar] [CrossRef]
- Liu, X.; Li, C.; Zhao, T.; Han, L. Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmos. Ocean. Sci. Lett. 2020, 13, 568–575. [Google Scholar] [CrossRef]
- Nistor, M.; Mîndrescu, M.; Petrea, D.; Nicula, A.; Rai, P.K.; Benzaghta, M.A.; Dezsi, Ş.; Hognogi, G.; Porumb-Ghiurco, C.G. Climate change impact on crop evapotranspiration in Turkey during the 21st Century. Meteorol. Appl. 2019, 26, 442–453. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, Z.; Shi, P.; Singh, V.P.; Gu, X. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China. Glob. Planet. Change 2018, 160, 61–74. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal change and attribution of potential evapotranspiration over China from 1901 to 2100. Theor. Appl. Climatol. 2021, 145, 79–94. [Google Scholar] [CrossRef]
- Pan, S.; Xu, Y.; Xuan, W.; Gu, H.; Bai, Z. Appropriateness of Potential Evapotranspiration Models for Climate Change Impact Analysis in Yarlung Zangbo River Basin, China. Atmosphere 2019, 10, 453. [Google Scholar] [CrossRef]
- Zhu, Y.; Chang, J.; Huang, S.; Huang, Q. Characteristics of integrated droughts based on a nonparametric standardized drought index in the Yellow River Basin, China. Hydrol. Res. 2016, 47, 454–467. [Google Scholar] [CrossRef]
- Sheng, X.Y.; Wang, J.K.; Cui, Q.T.; Zhang, W.; Zhu, X.F. A feasible biochar derived from biogas residue and its application in the efficient adsorption of tetracycline from an aqueous solution. Environ. Res. 2022, 207, 112175. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Feng, X.; Fu, B.; Wang, S.; Wang, X.; Chen, Y.; Tao, F.; Hu, J. A coupled human-natural system analysis of water yield in the Yellow River basin, China. Sci. Total Environ. 2021, 762, 143141. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Ma, S.; Wu, Y.; Qiu, L.; Wang, W.; Lian, Y.; Chen, J.; Sivakumar, B. The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China. Agric. For. Meteorol. 2022, 316, 108842. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.H.; Deng, S.F.; Zhao, Q.D.; Zhang, S.Q.; Zhang, X.W. Projected glacier meltwater and river run-off changes in the Upper Reach of the Shule River Basin, north-eastern edge of the Tibetan Plateau. Hydrol. Process. 2019, 33, 1059–1074. [Google Scholar] [CrossRef]
- Hay, L.E.; Wilby, R.; Leavesley, G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Jiang, Z.; Song, J.; Li, L.; Chen, W.; Wang, Z.; Wang, J. Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim. Change 2012, 110, 385–401. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, Z.; Li, L. Probabilistic Projections of Climate Change over China under the SRES A1B Scenario Using 28 AOGCMs. J. Clim. 2011, 24, 4741–4756. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Wang, H.; Lang, X. Evaluation of East Asian Climatology as Simulated by Seven Coupled Models. Adv. Atmos. Sci. 2005, 22, 479–495. [Google Scholar]
- Ma, Z.; Sun, P.; Zhang, Q.; Zou, Y.; Lv, Y.; Li, H.; Chen, D. The Characteristics and Evaluation of Future Droughts across China through the CMIP6 Multi-Model Ensemble. Remote Sens. 2022, 14, 1097. [Google Scholar] [CrossRef]
- Pelosi, A.; Medina, H.; Villani, P.; Urso, D.G.; Chirico, G.B. Probabilistic forecasting of reference evapotranspiration with a limited area ensemble prediction system. Agric. Water Manag. 2016, 178, 106–118. [Google Scholar] [CrossRef]
- Yan, X.; Mohammadian, A. Estimating future daily pan evaporation for Qatar using the Hargreaves model and statistically downscaled global climate model projections under RCP climate change scenarios. Arab. J. Geosci. 2020, 13, 938. [Google Scholar] [CrossRef]
- Hargreaves, G.H. Moisture Availability and Crop Production. Trans. ASAE 1975, 18, 980–0984. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating Potential Evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 2, 96–99. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Jia, L.; Wu, Y.; Xie, M. Runoff Characteristics of the Nen River Basin and its Cause. J. Mt. Sci. 2014, 11, 110–118. [Google Scholar] [CrossRef]
- Naren, A.; Maity, R. Modeling of local sea level rise and its future projection under climate change using regional information through EOF analysis. Theor. Appl. Climatol. 2018, 134, 1269–1285. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling Errors in the Estimation of Empirical Orthogonal Functions. Am. Meteorol. Soc. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Singh, V.P.; Xu, C.Y. Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrol. Process. 1997, 3, 311–323. [Google Scholar] [CrossRef]
- Blaney, H.F.; Criddle, W.D. Determining Consumptive Use and Irrigation Water Requirements. Tech. Bull. 1962, 4, 369–373. [Google Scholar]
- Rohwer, C. Evaporation from a Free Water Surface; US Department of Agriculture: Washington, DC, USA, 1931.
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Jensen, M.E.; Haise, H.R. Estimating Evapotranspiration from Solar Radiation. J. Irrig. Drain. Div. 1963, 89, 15–41. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Khabba, S.; Simonneaux, V.; Jarlan, L.; Ouldbba, A.; Rodriguez, J.C.; Allen, R. Assessment of reference evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground meteorological parameters? J. Arid. Environ. 2010, 74, 1587–1596. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Nan, Z.; Feng, Z. GIS-assisted spatially distributed modeling of the potential evapotranspiration in semi-arid climate of the Chinese Loess Plateau. J. Arid. Environ. 2004, 58, 387–403. [Google Scholar]
- Bourletsikas, A.; Argyrokastritis, I.; Proutsos, N. Comparative evaluation of 24 reference evapotranspiration equations applied on an evergreen-broadleaved forest. Hydrol. Res. 2018, 49, 1028–1041. [Google Scholar] [CrossRef]
- Lang, D.; Zheng, J.; Shi, J.; Liao, F.; Ma, X.; Wang, W.; Chen, X.; Zhang, M. A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman–Monteith Method in Southwestern China. Water 2017, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Mohammadian, A. Forecasting daily reference evapotranspiration for Canada using the Penman-Monteith model and statistically downscaled global climate model projections. Alex. Eng. J. 2020, 59, 883–891. [Google Scholar] [CrossRef]
- Omer, A.; Elagib, N.A.; Ma, Z.; Saleem, F.; Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 2020, 749, 141446. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, Z.; Zhang, S.; Liao, C.; Hu, Z.; Cao, R.; Wu, H. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin. J. Environ. Manag. 2020, 262, 110310. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. The cause of decreased pan evaporation over the past 50 years. Science 2002, 298, 1410–1411. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, F.; Liu, W. Spatiotemporal characteristics of reference evapotranspiration during 1961–2009 and its projected changes during 2011–2099 on the Loess Plateau of China. Agric. For. Meteorol. 2012, 154–155, 147–155. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Peng, S.; Xing, W.; Yang, T.; Luo, Y.; Yong, B.; Xu, J. Reference evapotranspiration change and the causes across the Yellow River Basin during 1957-2008 and their spatial and seasonal differences. Water Resour. Res. 2012, 48, 113–122. [Google Scholar] [CrossRef]
- Cook, P.A.; Black, E.C.L.; Verhoef, A.; Macdonald, D.M.J.; Sorensen, J.P.R. Projected increases in potential groundwater recharge and reduced evapotranspiration under future climate conditions in West Africa. J. Hydrol. Reg. Stud. 2022, 41, 101076. [Google Scholar] [CrossRef]
- Gharbia, S.S.; Smullen, T.; Gill, L.; Johnston, P.; Pilla, F. Spatially distributed potential evapotranspiration modeling and climate projections. Sci. Total Environ. 2018, 633, 571–592. [Google Scholar] [CrossRef] [PubMed]
- Dallaire, G.; Poulin, A.; Arsenault, R.; Brissette, F. Uncertainty of potential evapotranspiration modelling in climate change impact studies on low flows in North America. Hydrol. Sci. J. 2021, 66, 689–702. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. How Well Do CMIP6 Models Simulate the Greening of the Tibetan Plateau? Remote Sens. 2022, 14, 4633. [Google Scholar] [CrossRef]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 Scientific Gaps and Recommendations for CMIP6. Bull. Amer. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
- Le, T.; Bae, D. Response of global evaporation to major climate modes in historical and future Coupled Model Intercomparison Project Phase 5 simulations. Hydrol. Earth Syst. Sci. 2020, 24, 1131–1143. [Google Scholar] [CrossRef]
- Gao, C.; Booij, M.J.; Xu, Y. Assessment of extreme flows and uncertainty under climate change: Disentangling the uncertainty contribution of representative concentration pathways, global climate models and internal climate variability. Hydrol. Earth Syst. Sci. 2020, 24, 3251–3269. [Google Scholar] [CrossRef]
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef]
Serial Number | Climate Models | Variables | Research Institution, Country | Spatial Resolution |
---|---|---|---|---|
1 | ACCESS-CM2 | tasmax, tasmin | ACCESS, Australia | 1.9° × 1.3° |
2 | ACCESS-ESM1-5 | tas, tasmax, tasmin | ACCESS, Australia | 1.9° × 1.3° |
3 | AWI-CM-1-1-MR | tas, tasmin | AWI, Germany | 0.9° × 0.9° |
4 | AWI-ESM-1-1-LR | tasmax, tasmin | AWI, Germany | 1.9° × 1.9° |
5 | BCC-CSM2-MR | tas, tasmax, tasmin | BBC, CMA, China | 1.125° × 1.125° |
6 | BCC-ESM1 | tasmax, tasmin | BBC, CMA, China | 2.8° × 2.8° |
7 | CanESM5 | tas, tasmax, tasmin | CCCMA, Canada | 2.8125° × 2.8125° |
8 | CMCC-CM2-SR5 | tas | CMCC, Italy | 1.250° × 0.938° |
9 | CMCC-ESM2 | tas, tasmin | CMCC, Italy | 1.25° × 0.9375° |
10 | E3SM-1-0 | tas | LLNL, ANL, LANL, LBNL, ORNL, PNNL, SNL, U.S.A | 1° × 1° |
11 | EC-Earth3 | tas, tasmax, tasmin | EC-Earth, 10 European countries | 0.7° × 0.7° |
12 | EC-Earth3-Veg | tas, tasmax, tasmin | EC-Earth, 10 European countries | 0.703° × 0.703° |
13 | FGOALS-f3-L | tas | IAP, CAS, China | 1° × 1.25° |
14 | FIO-ESM-2-0 | tas, tasmax, tasmin | FIO, China | 0.9424° × 1.25° |
15 | GFDL-ESM4 | tas, tasmax, tasmin | GFDL, U.S.A | 1° × 1.25° |
16 | GISS-E2-1-G | tas, tasmax, tasmin | NASA-GISS, U.S.A | 1° × 1.25° |
17 | INM-CM5-0 | tas, tasmax, tasmin | INM, Russia | 2° × 1.5° |
18 | IPSL-CM6A-LR | tas, tasmax, tasmin | IPSL, France | 1.2676° × 2.5° |
19 | MIROC6 | tas, tasmax, tasmin | MIROC, Japan | 1.389° × 1.406° |
20 | MPI-ESM-1-2-HAM | tas, tasmax, tasmin | MPI, Germany | 1.865° × 1.875° |
21 | MPI-ESM1-2-HR | tas, tasmax, tasmin | MPI, Germany | 0.9375° × 0.9375° |
22 | MPI-ESM1-2-LR | tas, tasmax, tasmin | MPI, Germany | 1.875° × 1.875° |
23 | MRI-ESM2-0 | tas, tasmax, tasmin | MRI, Japan | 1.124° × 1.125° |
24 | NESM3 | tas, tasmax, tasmin | NUIST, China | 1.865° × 1.875° |
Climate Scenarios | Corresponding Modes | Variance Contribution | Cumulative Variance Contribution | North Test |
---|---|---|---|---|
SSP126 | EOF1 | 68.12% | 68.12% | pass |
EOF2 | 13.51% | 81.63% | pass | |
EOF3 | 7.05% | 88.68% | pass | |
SSP245 | EOF1 | 81.75% | 81.75% | pass |
EOF2 | 8.43% | 90.18% | pass | |
SSP370 | EOF1 | 89.85% | 89.85% | pass |
EOF2 | 4.47% | 94.32% | pass | |
SSP585 | EOF1 | 93.55% | 93.55% | pass |
Models | Tas | Tasmax | Tasmin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MAE | S | SS | TS | MAE | S | SS | TS | MAE | S | SS | TS | |
ACCESS-CM2 | \ | \ | \ | \ | 2.675489 | 0.999877 | 0.889805 | 1.94 × 10−6 | 2.338917 | 0.997536 | 0.915941 | 0.001035 |
ACCESS-ESM1-5 | 2.196449 | 0.984745 | 0.926681 | 0.001749 | 2.497431 | 0.974297 | 0.901489 | 0.000464 | 2.295015 | 0.963689 | 0.917158 | 0.004465 |
AWI-CM-1-1-MR | 2.442822 | 0.999548 | 0.909236 | 0.00021 | \ | \ | \ | \ | 2.837847 | 0.965667 | 0.881039 | 0.003347 |
AWI-ESM-1-1-LR | \ | \ | \ | \ | 2.789143 | 0.987086 | 0.876886 | 0.00268 | 2.470842 | 0.990019 | 0.907696 | 0.000134 |
BCC-CSM2-MR | 2.548259 | 0.986199 | 0.904698 | 7.59 × 10−6 | 2.886012 | 0.979498 | 0.871659 | 0.000229 | 2.65175 | 0.985043 | 0.89462 | 0.00095 |
BCC-ESM1 | \ | \ | \ | \ | 2.810414 | 0.954278 | 0.876325 | 0.00136 | 2.617258 | 0.98485 | 0.898064 | 0.005105 |
CanESM5 | 2.553748 | 0.965738 | 0.900803 | 0.002406 | 2.909749 | 0.980601 | 0.867035 | 0.007883 | 2.572498 | 0.970803 | 0.898088 | 0.000166 |
CMCC-CM2-SR5 | 2.273762 | 0.99501 | 0.920346 | 2.77 × 10−6 | \ | \ | \ | \ | \ | \ | \ | \ |
CMCC-ESM2 | 2.393424 | 0.990247 | 0.912677 | 0.001578 | \ | \ | \ | \ | 2.496331 | 0.99373 | 0.905089 | 0.003913 |
E3SM-1-0 | 2.264877 | 0.990943 | 0.921241 | 0.000168 | \ | \ | \ | \ | \ | \ | \ | \ |
EC-Earth3 | 2.345391 | 0.986413 | 0.91518 | 0.001221 | 2.630697 | 0.98709 | 0.887931 | 0.005839 | 2.45174 | 0.980805 | 0.905882 | 3.75 × 10−5 |
EC-Earth3-Veg | 2.518135 | 0.980041 | 0.901782 | 0.000944 | 2.760198 | 0.9801 | 0.877507 | 5.90 × 10−7 | 2.653931 | 0.976477 | 0.887252 | 0.005208 |
FGOALS-f3-L | 2.392895 | 0.982742 | 0.912669 | 9.79 × 10−8 | \ | \ | \ | \ | \ | \ | \ | \ |
FIO-ESM-2-0 | 2.39042 | 0.986034 | 0.913127 | 0.000604 | 2.660444 | 0.989316 | 0.888524 | 0.003313 | 2.483592 | 0.98829 | 0.906382 | 3.56 × 10−6 |
GFDL-ESM4 | 2.415156 | 0.991749 | 0.911421 | 0.002598 | 2.702498 | 0.984136 | 0.884943 | 0.000381 | 2.479362 | 0.99217 | 0.902494 | 0.006418 |
GISS-E2-1-G | 2.2951 | 0.992667 | 0.919373 | 2.03 × 10−5 | 2.67767 | 0.985282 | 0.885917 | 0.001097 | 2.363976 | 0.997295 | 0.916792 | 0.000367 |
INM-CM5-0 | 2.313318 | 0.994196 | 0.917327 | 5.45 × 10−5 | 2.688034 | 0.976984 | 0.884853 | 0.000201 | 2.494703 | 0.991961 | 0.904855 | 0.000691 |
IPSL-CM6A-LR | 2.366487 | 0.986157 | 0.915197 | 2.53 × 10−5 | 2.709299 | 0.959537 | 0.88337 | 0.000268 | 2.433205 | 0.989767 | 0.908817 | 0.001011 |
MIROC6 | 2.538982 | 0.975222 | 0.903379 | 0.002419 | 2.944748 | 0.977422 | 0.86446 | 0.008182 | 2.534029 | 0.982993 | 0.902185 | 0.000318 |
MPI-ESM-1-2-HAM | 2.426283 | 0.988153 | 0.911244 | 7.45 × 10−5 | 2.795797 | 0.97782 | 0.8774 | 0.001699 | 2.472226 | 0.993353 | 0.906509 | 0.000618 |
MPI-ESM1-2-HR | 2.482515 | 0.985307 | 0.90934 | 0.000179 | 2.813033 | 0.984801 | 0.87578 | 0.000855 | 2.478992 | 0.990503 | 0.906471 | 2.68 × 10−5 |
MPI-ESM1-2-LR | 2.440139 | 0.990895 | 0.912516 | 0.000608 | 2.825583 | 0.987112 | 0.87801 | 0.000333 | 2.44428 | 0.994861 | 0.909502 | 0.001426 |
MRI-ESM2-0 | 2.430481 | 0.99084 | 0.911775 | 0.000386 | 2.754317 | 0.989183 | 0.880503 | 5.16 × 10−7 | 2.472997 | 0.993823 | 0.907291 | 0.001735 |
NESM3 | 2.393744 | 0.988131 | 0.913526 | 0.00115 | 2.625448 | 0.989953 | 0.890104 | 8.44 × 10−5 | 2.475125 | 0.992128 | 0.907585 | 0.002775 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, S.; Wang, A.; Su, C.; Wang, K. Prediction of Future Spatial and Temporal Evolution Trends of Reference Evapotranspiration in the Yellow River Basin, China. Remote Sens. 2022, 14, 5674. https://doi.org/10.3390/rs14225674
Jian S, Wang A, Su C, Wang K. Prediction of Future Spatial and Temporal Evolution Trends of Reference Evapotranspiration in the Yellow River Basin, China. Remote Sensing. 2022; 14(22):5674. https://doi.org/10.3390/rs14225674
Chicago/Turabian StyleJian, Shengqi, Aoxue Wang, Chengguo Su, and Kun Wang. 2022. "Prediction of Future Spatial and Temporal Evolution Trends of Reference Evapotranspiration in the Yellow River Basin, China" Remote Sensing 14, no. 22: 5674. https://doi.org/10.3390/rs14225674
APA StyleJian, S., Wang, A., Su, C., & Wang, K. (2022). Prediction of Future Spatial and Temporal Evolution Trends of Reference Evapotranspiration in the Yellow River Basin, China. Remote Sensing, 14(22), 5674. https://doi.org/10.3390/rs14225674