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Abstract: This study sought to establish the performance of Spatially Varying Coefficient (SVC)
Bayesian Hierarchical models using Landsat-8, and Sentinel-2 derived auxiliary information in
predicting plantation forest carbon (C) stock in the eastern highlands of Zimbabwe. The development
and implementation of Zimbabwe’s land reform program undertaken in the year 2000 and the
subsequent redistribution and resizing of large-scale land holdings are hypothesized to have created
heterogeneity in aboveground forest biomass in plantation ecosystems. The Bayesian hierarchical
framework, accommodating residual spatial dependence and non-stationarity of model predictors,
was evaluated. Firstly, SVC models utilizing Normalized Difference Vegetation Index (NDVI), Soil
Adjusted Vegetation Index (SAVI), and Enhanced Vegetation Index (EVI), derived from Landsat-8
and Sentinel-2 data and 191 sampled C stock observations were constructed. The SVC models built
for each of the two multispectral remote sensing data sets were assessed based on the goodness of
fit criterion as well as the predictive performance using a 10-fold cross-validation technique. The
introduction of spatial random effects in the form of Landsat-8 and Sentinel-2 derived covariates
to the model intercept improved the model fit and predictive performance where residual spatial
dependence was dominant. For the Landsat-8 C stock predictive model, the RMSPE for the non-
spatial, Spatially Varying Intercept (SVI) and SVC models were 8 MgCha−1, 7.77 MgCha−1, and
6.42 MgCha−1 whilst it was 7.85 MgCha−1, 7.69 MgCha−1 and 6.23 MgCha−1 for the Sentinel-2
C stock predictive models, respectively. Overall, the Sentinel-2-based SVC model was preferred
for predicting C stock in plantation forest ecosystems as its model provided marginally tighter
credible intervals, [1.17–1.60] MgCha−1 when compared to the Landsat-8 based SVC model with 95%
credible intervals of [1.13–1.62] Mg Cha−1. The built SVC models provided an understanding of the
performance of the multispectral remote sensing derived predictors for modeling C stock and thus
provided an essential foundation required for updating the current carbon forest plantation databases.

Keywords: Bayesian hierarchical modelling; geostatistics; Eucalyptus grandis; Eucalyptus camaldulensis;
Pinus patula; spatial random effects; spatially varying coefficient

1. Introduction

Since the onset of the Fast Track Land Reform (FTLRP) program in Zimbabwe and
the subsequent redistribution and resizing of large-scale land holdings in the year 2000,
plantation forests within and around the neighborhood of resettlement areas continu-
ously faced physical distress [1]. Zimbabwe lost close to 224,000 ha of tree cover, which
is equivalent to a forest degradation of 17% and 88 Mt of CO2 emissions from 2000 to
2021 [2]. The steady decline of land under forest over the years has therefore been mainly
driven by the activities of the year 2000 taking place on resettled land, which included
wildfires, illegal logging, mining, and agriculture expansion. Yet the amount of additional
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biomass that can be accumulated in these areas depends much on the forest condition and
land management practices.

A number of studies modeling the relationship between C stock and remote sensing-
derived information adopt a standard approach where the effects of independent variables,
including vegetation indices on C stock, remain constant over space in the model [3,4].
Given the history of Zimbabwe’s land reform program, it is well known that manage-
ment and conservation practices of plantation forests have been changing over the years,
particularly since the adoption of the program in the year 2000. Greater portions of for-
mally designated commercial plantation forests were occupied and replaced by subsistence
farmers across the country. It is upon this premise that it cannot be assumed that the
impact of covariates on C stock is constant in these ecosystems. The carbon sequestration
potential in various regions of the occupied forest plantations, therefore, remains unknown
as the management and conservation practices of the managed ecosystems have been
largely modified and altered [5]. Yet government and other stakeholders in the timber
industry are obliged under the 2015 Paris climate agreement to provide accurate accounts
of the country’s carbon sequestration potential for managed and natural forest ecosystems.

The literature proffers methods used in the estimation of AGB, either as direct or indi-
rect approaches from forest inventory data. These methods either use allometric equations,
conversion factors such as wood density, or biomass expansion factors (BEF) [1]. In spite of
the advantages of using conventional methods given in [6,7] as generally providing accurate
AGB estimates, these techniques are also regarded as time-consuming and environmentally
unfriendly. The inaccessibility of some areas due to complicated topography and forest
conditions also makes conventional methods less attractive to AGB estimation, especially
in extensive areas [8]. However, remote sensing is emerging as a promising technique free
of the aforementioned limitations as it offers cost-effective methods of AGB monitoring
through stratification of canopy density and forest types. Repeated application of remote
sensing leads to the generation of historical data critical for change detection analysis
and incorporation into a Geographic Information System (GIS) for integration with other
datasets [9]. However, remote sensing methods are also not immune from limitations as
they usually face limitations in areas of bad weather conditions, especially in areas with
cloud cover, and require a certain level of training for effective use and application [7].

Remote sensing C stock data derived from satellite imagery has significantly grown
over the years. This data has been the basis for informing international policy agreements
associated with CO2 emissions into the atmosphere, mainly from deforestation and other
land use land cover changes (LULCC) [10]. Remote sensing is regarded as a powerful tool
for deriving AGB and forest structure as it offers practical means of acquiring spatially-
distributed forest carbon from local, continental, and global scales [5,11]. Forest biomass
can generally be measured from three broad categories of remote sensing (RS) data, namely,
passive optical remote sensing, radio detection and ranging, microwave (radar), and light
detection and ranging (LiDAR) [8,10]. Passive optical spectral reflectance is responsive to
vegetation structural attributes (tree density, leaf area index, and crown size), shadow, and
texture [8,12]. Crown size, tree density, and leaf area index (LAI) are strongly correlated
with AGB. Radar remote sensing measure geometrical and dielectric attributes of forests.
LiDAR RS methods of biomass measurement characterise forest vertical structure and
height. Remote sensing (RS) and ancillary technologies such as Geographical Information
System (GIS) are practical and cost-time effective, allowing for imaging and research on
extensive and inaccessible areas.

The estimation of plantation forest C stock, together with other structural parameters
using new regeneration multispectral remote sensing data, is a relatively new ground in
the climate change and carbon monitoring arena. Research in this field has demonstrated
the potential for remote sensing data as tools for developing estimates of forest attributes,
amongst them, being Above Ground Biomass (AGB), either as a standalone or coupled with
other earth observation techniques [11,13]. Spatial regression models applied in mapping C
or biomass using new-generation multispectral remote sensing data may fail to clearly make
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room for residual spatial dependence [14,15]. Modeling of natural resource variables
without explicitly accommodating spatial variation can be justified if covariates can account
for all the spatially structured dependence. Such assumptions do not hold in many practical
applications involving georeferenced data.

Failure to account for spatial dependence in the modeling of regionalized variables
can lead to inaccurate model parameters and incorrect predictions [9]. Subsequently,
disregarding spatial correlation in electing model choices can result in higher prediction
uncertainty for inference of the outcome variable. In addition to the drawbacks highlighted
in the foregoing, non-Bayesian spatial modeling can further lead to underestimation of
uncertainty [9,16] as traditional spatial regression estimation methods assume stationarity
of the covariance matrix, Σ. The ultimate effect is the derivation of standard error estimates
that are unable to take all the uncertainties in the parameters into account. Checking for
spatially correlated residuals when spatial data are employed in the modeling of above-
ground biomass is therefore critical.

Some attention has been given to spatially varying coefficient (SVC) models in the liter-
ature [17–19]. The Bayesian framework of statistical inference is the bedrock of SVC models
in which analyses make use of samples derived from Markov Chain Monte Carlo (MCMC)
techniques from the posterior distribution of model parameters [20]. What makes Spa-
tially Varying Intercept (SVI) and SVC models unique in applied geostatistical and the
remote sensing literature is their ability to consider the residual spatial dependence and the
non-homogeneity in model parameters differently than ordinary geostatistical approaches.
SVI models assume the model intercept is spatially varying, whilst the SVC models assume
all the model regression coefficients to be spatially varying [21]. A number of applications
and methodologies utilizing spatially varying coefficient models are documented in the
literature. Amongst them are the geographically-weighted regression (GWR) by [21], who
employed the technique of canopy height prediction using remote sensing data. Appli-
cation of these models resulted in significant improvement in model fit. On the other
hand, [22] made provisions for spatial dependence and parameter non-homogeneity by
exploring geostatistical kriging variants for forest canopy height prediction. Co-kriging
and regression kriging models resulted in significant improvements in model fit.

However, it has been shown in recent times that GWR might not be robust to cor-
relation among predictors and can potentially lead to inaccurate results when complex
correlation structures are involved [18,23]. Again, from an inferential viewpoint, GWR can
present problems when drawing inferences regarding prediction uncertainty and model
parameters. The lack of valid underlying probability models in GWR makes prediction
uncertainty, and standard parameter error estimates difficult to justify. For instance, uncer-
tainty maps produced from kriging and co-kriging techniques make no consideration of the
uncertainty in the variogram-based spatial covariance parameters. This is an established
and common weakness encountered when using these geostatistical approaches [24]. It is
possible to estimate spatial covariance parameters within the SVC and SVI models using a
Bayesian hierarchical construction. Such an approach allows the propagation of uncertainty
to the prediction of the response variable [25]. In such scenarios, a better and statistically
defendable map of uncertainty can be produced than would else be produced when GWR
or traditional kriging methods are utilized.

Landsat-8 and Sentinel-2 are multispectral platforms categorized as new generation
remote sensing sensors with enhanced spectral and spatial properties than previous mis-
sions of the Landsat series. It is this perceived improvement in earth observation properties
that we expect to give a dividend to C stock predictive models for applications in carbon
accounting and inventorying under the United Nations Framework Convention on Climate
Change (UNFCC) [8]. We employed a Bayesian hierarchical framework with spatially
varying coefficients (SVC) using predictor information derived from the aforementioned
sensors for predicting C stock. The modeling framework considered the non-stationarity
and residual spatial dependence of model covariates through the inclusion of spatial ran-
dom effects into the SVC models. We, therefore, developed and compared the performance
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of C stock predictive models under spatially varying regression coefficients derived from
Landsat-8 and Sentinel-2 predictors. Prediction accuracy and uncertainty quantification
for the REDD collaborative program in the developing world is a critical aspect of the
Carbon Measurement, Reporting, and Verification Systems (MRVs) of the United Nations
(UN-REDD, 2009; CMS, 2014). Thus, in this paper, we explored how spatially varying
coefficient models constructed using a Bayesian hierarchical set-up with aiding information
from Landsat-8 and Sentinel-2 multispectral sensors and implemented through Markov
Chain Monte Carlo (MCMC), perform in C stock prediction in plantation forest ecosystems.

2. Materials and Methods
2.1. Study Area

The study was carried out at lot 75 A of Nyanga Downs in Nyanga district in the East-
ern Highlands of Zimbabwe (Figure 1). The study area is dominated by Eucalyptus grandis,
Eucalyptus camaldulensis, and Pinus patula plantation forest species which have some
of its patches being used for agriculture, grazing, and gold panning and is located be-
tween latitude 32◦40′E and 32◦54′E and 18◦10′12”S and 18◦25′4”S longitude as illustrated
in Figure 1 [5,26]. Grazing, agriculture, and gold panning activities came after part of the
commercially owned plantation forests were redistributed to small and medium-sized
indigenous farmers in 2000. This development has increased the interface between settle-
ments and timber plantations in all forests originally designated under forest plantations
in Zimbabwe. The study area covers an area of approximately 2766 ha. Rainfall amounts
are varied, with a mean annual precipitation range of 741 mm to 2997 mm. Annual mean
temperatures range from a minimum of 9 ◦C to 12 ◦C to a maximum of 25 ◦C to 28 ◦C. The
weather is very hot, and extensive wildfires occur in the high-elevation grasslands from
August to November when the grasses are dry [26].

As illustrated in Figure 1c, Eucalyptus camaldulensis and Pinus patula are the most
dominant species in the study area. Pockets of cultivated land within the plantations are
evident and are partly responsible for the present biomass density in the sampled region.
Greater portions of former plantation vegetation have been cleared by pockets of resettled
small-scale and medium-scale farmers venturing into coffee and tea plantations and, in
some cases, for dairy farming. Patches of unprotected forest plantations are still present
but remain vulnerable to attack for agriculture by settled farmers in the area.

2.2. Sampling Design

We employed the spatial coverage sampling scheme that exploits the Mean Squared
Shortest Distance (MSSD) for the optimization of data locations in the study domain. The
k-means clustering scheme for equal area coverage was therefore used [27] for obtaining
a representative sample from the studied region. The work of [28] demonstrated how
the mapping and estimation of mean spatial problems could be resolved through the
employment of a uniform coverage sampling scheme. MSSD is particularly suited for areas
where sampling campaigns cannot be extended beyond a single phase. As illustrated in
Figure 2, the smallest separation distance between samples was approximately 8 m whilst
the largest separation distance between samples was 2500 m.

2.3. Above-Ground Biomass Measurements and C Stock Derivation

We sampled and collected measurements of Diameter at Breast Height (DBH) for
Above Ground Biomass (AGB) estimation for all trees with a DBH of more than 10 cm
(1.3 m) using 500 m2 circular plots from the 19 September 2021 to 24 October 2021 in
Manicaland Province of Zimbabwe as illustrated in Figure 1. The sampling program meant
to measure DBH for subsequent AGB and C stock estimation utilized the MSSD optimiza-
tion function, resulting in 191 sampling plots being measured from the study area. The
191 sample plot measurements of DBH were then transformed into per plot C stock data
using allometric equations of [4] for the Pinus species, whilst the allometric equations
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of [10] were used for deriving C stock for the Eucalyptus species. The aforementioned
allometric equations were also applied by [26].
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Allometric equations shown in Equations (1) and (2) were used for the calculation
of Above Ground Biomass (AGB) for the Pinus patula and the Eucalyptus grandis and
Eucalyptus camaldulensis species, respectively [1]. A default conversion factor of 0.47 used
by the IPCC was applied to derive AGB to C stock.

tDw = e(−1.170+2.119×ln(dbh)) (1)

tDw = 0.39× (dbh)2.142 (2)
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2.4. Modelling Framework

It is a common geostatistical practice to assume at location S ∈ D ⊆ R2 where s is a
vector of observed x, y coordinates within the domain D. A Gaussian response variable
y(s) is therefore modeled through the regression model as in Equation (3):

y(s) = x(s)′β + x̃(s)′w(s) + ε(s) (3)

x(s)′ denotes a set of p covariates in the model. In this case, the linear mean structure
accounting for wide-scale variation in the response is comprised of px1 vectors of x(s)
which include an intercept and spatially varying georeferenced predictors together with
an associated column vector of model coefficients β = (β0, β1, . . . , βp−1)

′. The x̃(s) in
the model represents a q x 1 vector accommodating the intercept and those predictors from
x(s) whose impact on the response is assumed to vary spatially. The space-varying impact
is obtained from the vector of spatial random effects w(s) =

(
w1(s), w2(s), . . . , wq(s)

)′. The
specification of different combinations of x̃(s) and the associated w(s) leads to the formation
of different sub-models. We model ε(s) as an independent white noise process that takes
care of the micro-scale (measurement error) variation. As such, with the collection of n C
stock locations, S = s1, s2, . . . , sn, we assume the ε(si)’s are independent and identically
distributed (iid) as provided by N

(
0, τ2) where τ2 is the nugget.

The spatial structure of this model is generally introduced by way of a multivariate
Gaussian process (GP) [24,25,29] in which a cross-covariance function clearly models the
covariance of w(s) within and among data points. The added flexibility in this model is
documented in the literature [17,30]. We assume in this study that elements of w(s) emanate
from q independent univariate GPs. Precisely, the process associated with the k − th
prediction is wk(s) ∼ GP(0, (., .; θk)) where C(s, s∗; θk) = Cov(wk(s), wk(s∗)) is a valid
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spatial covariance function modelling the covariance related to a pair of observations s and
s∗. The process outcomes are gathered into an n x 1 vector, say wk = (wk(s1), . . . , wk(sn))

′

which permits a multivariate normal distribution MVN(0, Σk), in which Σk is an n x n
covariance matrix of wk with the (i, j)− th element provided by C

(
si, sj; θk

)
. Evidently,

C(s, s∗; θk) cannot just be a function, but guarantees that the resulting Σk matrix is positive
definite and symmetric. Functions of this type are regarded as positive definite and are
referred to as the characteristic function of a symmetric stochastic variable [24,25,31].

We denote C(s, s∗; θk) = σ2
k ρ(s, s∗; θk) with θk =

{
σ2

k , φk
}

, ρ(.; φk) to be a valid spatial
correlation function in which φk computes the correlation decay rate and var(wk) = σ2

k . We
assumed for all the accompanying analyses an exponential correlation function
ρ(||s− s∗||; φk) = exp(−φk||s− s∗||), where ||s− s∗|| represents the Euclidean distance
between location s and location s∗. Completion of the Bayesian modeling framework
requires specification and assignment of prior distributions to the parameters of the model,
where inference proceeds by sampling from the posterior distribution of the modeled
parameters. As standard practice, we assume β ∼ MVN

(
µβ, Σβ

)
prior where µβ = 0 and

Σβ = 10, 000Ip, whilst the spatial variance components σ2
k ’s and the measurement error

variance τ2 are designated inverse-Gamma, IG(a, b) priors. The spatial decay parame-
ters φk ∼ Uni f (a, b) with the lower and upper bounds of the distribution covering the
geographic domain of the sampled study region.

Applying notation similar to the ones used by [32], we can specify the model parameter
posterior distribution as p(Ω|y) where:

Ω =
{

β, w1, w2, . . . , wq, σ2
1 , σ2

2 , . . . , σ2
q , φ1, φ2, . . . , φq, τ2

}
y = (y(s1), . . . y(sn))

′ and is proportional to:

∏q
k=1 Uni f

(
φk

∣∣∣aφk, bφk

)
x ∏q

k=1 IG
(

σ2
k

∣∣∣aσk, bσk

)
x N

(
β
∣∣µβ

)
xIG

(
τ2
∣∣∣aτ , bτ

)
x

∏q
k=1 N(wk|0, Σk)x ∏n

i=1 N(y(si)|x(si)
′β + x̃

(
s)′w(s), τ2

)
(4)

An effective Markov Chain Monte Carlo (MCMC) function for the estimation of
Equation (4) is derived through updating of β from its full conditional and utilizing Metropo-
lis procedures for the remainder of the parameters. Reparameterization of the model is an
alternative way of ensuring the spatial random effects w do not require direct sampling [33].
The spatial random effects could represent other independent variables that are spatially
structured and not taken into consideration in the current modeling approach. Nonetheless,
the MCMC process produces posterior samples of the parameter space, Ω.

From a prediction point of view, if S0 = {s0,1, s0,2, . . . , s0,m} is a set of m new sites,
the spatial random effects posterior predictive distribution corresponding to the k − th
regression coefficient is provided by:

p(wk,0|y) ∝
∫

p(wk,0|wk, Ω, y)p(wk|Ω, y)p(Ω|y)dΩwk (5)

where wk,0 = (wk(s0,1), wk(s0,2), . . . , wk(s0,m))
′.

Since we are making use of MCMC sample-based inference, the integral in Equation (5)
does not need to be evaluated precisely. Instead, given L posterior samples for the pa-

rameter space (Ω), that is,
{

Ω(l)
}L

l=1
, composition sampling can be used to derive this

distribution [33] by first drawing wl
k followed by w(l)

k,0 for each l from p(wk,0|w
(l)
k , Ω(l), y).

The last distribution is multivariate normal as it is a derivative of a conditional distribu-
tion from a multivariate normal distribution. More specifically, the process realizations
over the new sites are conditionally independent of the measured outcomes given the
values over the sampled locations and the process parameters. Expressed differently,
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p(wk,0
∣∣wk, Ω, y) = p(wk,0

∣∣wk, Ω) is a multivariate distribution with mean and variance
given by

E[wk,0|wk, Ω] = Cov(wk,0, wk)var−1(wk)wk = R0(φk)
′R(φk)

−1wk (6)

and
var[wk,0|wk, Ω] = σ2

k

{
R(φk)− R0(φk)

′R(φk)
−1R0(φk)

}
(7)

where R0(φk is an n x n matrix with (i, j)− th element specified as ρ
(
s0,i, sj; θk

)
and R(φk

is an n x n matrix with (i, j)− th element provided by ρ
(
si, sj; φk

)
. Repetition of the same

procedure results in the generation of samples for all the wk,0’s. Lastly, for a set of predictors
at unsampled locations s0, posterior predictive distribution samples regarding the outcome
variable y(s0)

l , are derived from N(x(s)′0β
(l) + x̃(s0)′w

(l)
0 , τ2(l)) for l = 1, 2, . . . , L.

We evaluated 95% credible interval widths (CIWs) using the posterior predictive
distribution of Landsat-8 and Sentinel-2 C stock models by calculating the difference
between the 2.5% and the 97.5% quantile bounds. The 95% CIWs were therefore used
as summaries of the C stock prediction uncertainty for the Landsat-8 and Sentinel-2 C
stock-based spatially varying coefficient models.

2.5. Competing Models

We derived five candidate models for each of the two multispectral remote sensing-
based C stock models using Equation (1) using NDVI and SAVI as predictors of C
stock [34]. The models included the non-spatial where wk’s is fixed to zero; the spa-
tially varying intercept (SVI) in which we only included the spatial random effects related
to the model intercept; the complete SVC model in which all predictors have associated
spatial random effects; the SVC − β1 which included the spatial random effects for the
intercept and NDVI predictor variables and the SVC − β2 which included the spatial
random effects for the intercept.

We utilized empirical semivariograms modeled for the residuals of the independent
error model as guidelines for candidate model IG and Uni f hyperprior specifications.
Precisely, for the variance parameters, the Inverse Gamma hyperprior a was set equal to
1.76, which would result in a mean prior distribution equal to b and infinite variance [35].
To add on, the models’ b hyperpriors for the τ2 and σ2’s were calibrated in accordance
with the sample variograms of the simple linear regression model residuals derived from
Landsat-8 and Sentinel-2 sensor’s nugget and partial sill. We programmed the prior for
the spatial decay parameter φ’s to Uni f (0.38, 0.0012) which, adopting the exponential
covariance function, equates to support an effective range spanning between ∼ 8 and
2500 m. We define the effective spatial range as the distance where the correlation equals
0.05 [18].

Three Markov Chain Monte Carlo (MCMC) chains were run for 20,000 iterations,
each with the computationally demanding model requiring approximately 30 min to
complete a single MCMC chain. We diagnosed convergence using the CODA library
in the R Statistical and Computing environment by monitoring the mixing of chains
and the Gelman–Rubin statistic [36]. Acceptable convergence was established within
10,000 iterations for all the models. The posterior inference was premised on a post-burn-in
subsample of 15,000 iterations, that is, every third sample from the last 15,000 iterations of
each chain. SVC and SVI models were fit using the spBayes R Statistical and Computing
Library version 0.4.3. We, therefore, utilized the spBayes R statistical package for fitting all
the predictive models for both Landsat-8 and Sentinel-2 SVC models.

2.6. Landsat OLI and Sentinel-2 MSI Imagery Derived Covariates

Landsat-8 has a revisit period of 16 days and offers nine spectral bands with a spatial
resolution of 30 m for Bands 1 to 7 and 9 [6,37]. The panchromatic band, Band 8, has a spatial
resolution of 15 m. On the other hand, Sentinel-2 has thirteen spectral bands where four
bands are configured at 10 m spatial resolution, six bands at 20 m, and three bands at 60 m
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spatial resolution [37]. Common vegetation indices utilized in the estimation of biophysical
variables of Absorbed photosynthetically active radiation (APAR), Leaf Area Index (LAI),
and biomass are Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI) and Soil Adjusted Vegetation Index (SAVI) [5]. We utilized the same Vegetation
Indices (VIs) in this study. Readily available and cost-effective new-generation sensors
(Landsat-8 and Sentinel-2) with improved spectral and spatial resolution were therefore
utilized in the modeling of C stock under the spatially varying coefficients assumption.

We obtained Landsat 8 imagery from the United States Geological Survey Earth Ex-
plorer (http://earthexplorer.usgs.gov) as data ready for analysis (ARDs) on the 20 of
September 2020. All the datasets were riddled with cloud cover and shadow cloud cover
limits set to smaller than 10%. We acquired Sentinel-2 cloud-free images on 20 Septem-
ber 2020 at the same time as the Landsat 8 OLI data collection covering the entire area
coinciding with the dates Landsat-8 OLI was collected covering the domain of interest.
The multispectral instrument is the main imaging instrument used for Sentinel-2, a push
broom scanner that measures the terrestrial Top of the Atmosphere (TOA) reflectance in
thirteen spectral bands, that is, 443 nm to 2190 nm. We derived Sentinel-2 spectral data as
level-1C 12-bit automated TOA reflectance values. Orthorectification and pre-processing of
the TOA-derived products were performed using the sen2r package of the R Statistical and
Computing environment [38].

Soil Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), and Nor-
malized Difference Vegetation Index (NDVI were used as Landsat-8 and Sentinel-2 de-
rived covariates for C stock prediction in the plantation forest of the eastern highlands of
Zimbabwe. The literature is replete with studies that have utilized the aforementioned
vegetation indices [3,39] as ABG predictors in biomass estimation. In this study, predictor
variables supplied by both Landsat-8 and Sentinel-2 are used specifically for comparing
SVC Bayesian hierarchical geostatistical models predicting C stock in a disturbed environ-
ment in Zimbabwe. Given information regarding C stock distribution at each location, we
fit the model in Equation (1) SVC with p = 2. Hence, we have two processes, an intercept
and one slope process relating to NDVI.

2.7. Model Fit and Prediction Accuracy Evaluation

We assessed the performance of the models using the commonly used Deviance
Information Criterion (DIC) to categorize models in terms of how well they fit the data [40].
The sum of the Bayesian Deviance and the effective number of model parameters make up
the DIC criterion. The Bayesian deviance measurement, which assesses model goodness
of fit, and the effective number of model parameters which penalizes model complexity,
are measured by D and pD, respectively. Attractive models have lower DIC values.

Predictive performance was evaluated through a k− f old cross-validation technique.
C stock was predicted from observations within each subset, given the estimated parameters
from the remaining subsets. We employed the Root Mean Squared Prediction Error (RMSPE)
as a metric from the R Statistical and Computing environment to calculate the sampled C
stock data values and the accompanying median of the posterior predictive distribution
(PPD). Models with lower RMSPE signify more accurate C stock predictions.

3. Results
3.1. Multispectral Remote Sensing C Stock Derived Predictors

Employed predictors in C stock prediction using a Bayesian hierarchical framework
with spatially varying coefficients showed NDVI as a significant predictor of C stock as
illustrated in Table 1. 95% credible intervals of SAVI and EVI contained zero and hence,
rendering them as insignificant predictors of C stock. These predictors were therefore
excluded in the final prediction and mapping of C stock distribution.

http://earthexplorer.usgs.gov
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Table 1. Landsat-8 and Sentinel-2 derived predictors of C stock.

Lansat-8 OLI C Stock Model Sentinel-2 MSI C Stock Model
Parameter

Mean s.d 2.5% 97.5% Mean s.d 2.5% 97.5%

Intercept −2.65 1.02 −4.76 −0.83 −2.40 0.31 −3.01 −1.80
NDVI 2.47 0.98 0.78 4.62 4.90 0.23 4.52 5.38
SAVI −0.57 0.67 −2.04 0.63 −0.55 0.34 −1.25 0.17
EVI −0.62 0.55 −1.57 0.50 −0.002 0.096 −0.17 0.24
σ2

w 1.25 0.26 0.72 1.72 0.075 0.016 0.046 0.092
σ2

ε 0.35 0.17 0.074 0.54 0.0043 0.0030 0.0005 0.011
φ 0.0016 0.0003 0.0012 0.0018 0.0015 0.0002 0.0014 0.0014

3.2. Candidate Models and Parameter Estimates

Model posterior estimates of the regression coefficients for the Landasat-8 and Sentinel-
2-based C stock models are illustrated in Tables 2 and 3, respectively, for the non-spatial,
SVI, and SVC models. Spatial autocorrelation is modeled in the residuals in the SVI,
SVC, and all the SVC − βk variant models. This may entail differences in the posterior
regression coefficient parameter estimates, depending on the C stock model parameter
structure. Credible intervals (95% CI) for β0 and βNDVI including zero for both non-
spatial and SVI models would hint at a non-significant relationship between the C stock
observations and predictor variables. However, we cannot apply the same reasoning and
interpretation for the SVC models as the predictor-specific spatially varying coefficient maps
of βNDVI + wNDVI(s) should be considered and ascertain whether location-specific CIs
include zero.

Table 2. Landsat-8-based SVC model median parameter estimates alongside their 95% credible intervals.

Non-Spatial SVI SVC−NDVI SVC

Parameter C.I
50% (2.5%, 97.5%) β0 −2.5 (−4.1, −0.8) −2.7 (−4.6, −0.8) −2.9 (−5.0, −0.9) −3.5 (−5.3, −1.7)

β̃NDVI(s) 5.4 (3.3, 7.5) 2.8 (0.8, 4.7) 3.3 (1.2, 5.1) 3.6 (1.4, 5.8)
τ2 1.5 (1.2, 2.0) 0.5 (0.3, 0.8) 0.12 (0.03, 0.40) 0.1 (0.02, 0.2)
3

φ0
- 0.0014 (0.0012, 0.0021) 0.003 (0.002, 0.003) 0.1 (0.07, 0.16)

3
φNDVI

- - 0.13 (0.06, 0.22) 0.03 (0.02, 0.05)
σ2

0 - 1.0 (0.5, 1.5) 1.1 (0.8, 1.6) 0.24 (0.12, 0.48)
σ2

NDVI - - 1.0 (0.2, 3.0) 0.45 (0.14, 1.43)

Fit Statistics D 436 140 41.8 65.9

pD 4.1 68.9 87.0 108.9
DIC 207 105.6 −77.9 29.0

RMSPE (MgCha−1) 8 7.77 7.54 6.42

C.I means 95% Credible Interval.

Table 3. Sentinel-2-based SVC model median parameter estimates alongside 95% credible intervals.

Non-Spatial SVI SVC−NDVI SVC

Parameter C.I
50% (2.5%, 97.5%) β0 −2.5 (−4.1, −0.8) −2.8 (−4.6, −0.9) −2.9 (−4.9, −0.7) −3.5 (−5.4, −1.6)

β̃NDVI(s) 5.4 (3.3, 7.5) 3.0 (1.2, 4.9) 2.9 (0.7, 4.9) 3.7 (1.5, 5.7)
τ2 1.5 (1.2, 2.0) 0.5 (0.3, 0.9) 0.32 (0.15, 0.55) 0.2 (0.11, 0.42)
3

φ0
- 0.0015 (0.0014, 0.0016) 0.0016 (0.0015, 0.0018) 0.06 (0.018, 0.076)

3
φNDVI

- - 0.09 (0.036, 0.13) 0.0015 (0.0014, 0.0017)
σ2

0 - 0.7 (0.4, 1.1) 1.1 (0.8, 1.9) 0.23 (0.16, 0.47)
σ2

NDVI - - 0.7 (0.43, 1.1) 0.65 (0.41, 1.05)

Fit Statistics D 436.6 159 93.3 17.9

pD 4.1 58.0 89.8 106.1
DIC 207.6 112.5 65.6 −177.3

RMSPE (MgCha−1) 7.85 7.69 7.46 6.23

C.I means 95% Credible Interval.
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Posterior estimates for the Landsat-8 and Sentinel-2 based βNDVI + wNDVI(s) coeffi-
cients are shown in Figures 3 and 4, with a significant relationship between the outcome
variable and NDVI being evident over the entire study domain. In both cases, there
is significant variability in the values of βNDVI + wNDVI(s) in the studied region. This
could imply more accessibility to plantation resources by communities settling in the
plantation areas. The same trend is noticeable for the Sentinel-2-based C stock-based
SVC model (Figures 5 and 6) for both predictor coefficient values of βNDVI + wNDVI(s)
and for the same region as observed in the Landsat-8 based SVC model in Figure 3. Com-
munities settled within certain areas of the plantation forest have more access to forest
resources than in other areas, rendering low C stock density in these areas as demon-
strated by the corresponding low NDVI values in the same region for the Sentinel-2-based
SVC model. Enhanced detail in the spatial resolution of Sentinel-2 based βNDVI +wNDVI(s)
vindicates variability in βNDVI + wNDVI(s) coefficient values in the same region over those
derived from generalized Landsat-8 multispectral data [41].
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Estimates of β0 + w0(s) for the Landsat-8 and Sentinel-2-based SVI and SVC models
are shown in Figures 3 and 4, respectively. The β0 + w0(s) pattern for the SVI is the same
for both Landsat-8 and Sentinel-2 spatially varying coefficient models whilst the β0 + w0(s)
SVC pattern in Landsat-8 is the same for Landsat-8-based SVC (βNDVI +wNDVI(s)) process.
On the other hand, the β0 + w0(s) SVI pattern for Sentinel-2 based model is different for
Sentinel-2 βNDVI + wNDVI(s) SVC model. However, the same is not true for Sentinel-2-
based SVI as the partitioning of w0 into w0 and wNDVI in Sentinel-2 SVC is detailed with
enhanced spatial resolution compared to Landsat-8 based wNDVI SVC model.
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Tables 2 and 3 illustrate the posterior estimates of the uncorrelated residual variance, τ2.
The uncorrelated residual variance is largest in the non-spatial model, whilst it is small for
the SVC-variant models for both Landsat-8 and Sentinel-2-based SVC. The SVI and the SVC
variant models incorporate a spatially varying correlated random effect, w0 with variance
σ2

0 . The SVC model variants further incorporate more spatially varying correlated random
effects wNDVI and variance σ2

NDVI . For both Landsat-8 and Sentinel-2 based models, the w0
and wk explained much of the residual variability and hence, a reduced τ2. The implication
is higher predictive accuracy for the SVC-variant models in both sensors, making the SVI
and SVC more attractive over the error-independent models. This is supported by the
goodness of fit diagnostics for the SVI and the SVC-variant models illustrated in Tables 2
and 3 for the Landsat-8 and Sentinel-2 derived regression coefficients, respectively.

In comparison to the SVI model, the SVC model based on both remote sensing-derived
covariates reduced the non-spatial residual spatial dependence by incorporating the space-
varying impact of βNDVI . Estimates of the spatial process parameters have a big difference.
In particular, the spatial process parameters for the Landsat-8-based (Figure 3) SVC point es-
timates of σ2

0 = 0.24 and the effective range of 30 m (i.e., ≈ −log(0.05/φ) = −log(0.05/0.1)
denote a less variable and significantly shorter effective spatial range than the spatial pro-
cess of the SVI model. The same pattern recurs in the Senitnel-2-based SVI and SVC models,
where the effective spatial range reduces from ≈ 1800 m in the SVI to ≈ 100 m in the
SVC model (Table 3). The non-negligible spatial process parameter estimates of σ2

NDVI and
φNDVI in the SVC model denote a potentially space-varying relationship between C stock
and multispectral remote sensing derived covariates.
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3.3. Landsat-8 and Sentinel-2 C Stock-Based Predictions

The entire SVC model based on Landsat-8 and Sentinel-2-based C stock models gener-
ated the lowest DIC, D, and RMSPE, as illustrated in Tables 2 and 3, respectively. Landsat-8-
based SVC 95% CIW is much shorter when compared to the non-spatial fitted model values.
A 10% improvement in the RMSPE is seen in the Landsat-8-based model when moving
from the error-independent to the SVC model. In the same vein, the Sentinel-2-based model
had a 12% improvement from the SVI to the SVC model (Table 3). Predictions produced
for both Landsat-8 and Sentinel-2-based C stock models mirrored the observed C stock
data in the studied region. Observed C stock data values ranged from log (0.2–6) MgCha−1

(Figure 1). Variability in C stock uncertainty is fairly constant across the studied domain
for both Landsat-8 and Sentinel-2 SVC-based models.

The almost similar variability in the density of C stock predicted by both sensors could
be attributed to the inadequacy of covariates in the modeling framework, which when the
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range of modeled covariates is broadened, could accurately depict the variability of C stock
in these disturbed plantation forest ecosystems [5].
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3.4. C Stock Model Prediction Assessment

Scatterplots observed against predicted C stock alongside the 95% intervals are illus-
trated in Figure 7. Slight improvement in the performance of Landsat-8 and Sentinel-2 C
stock-based predictions can be validated through a visual inspection of the results. Esti-
mated Root Mean Square Prediction Error (RMSPE) for Landsat-8 (6.42 Mg C ha−1) and
Sentinel-2 (6.23 Mg C ha−1) based C stock prediction further reinforces the model prediction
performance for the two sensors illustrated in Figure 7.
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4. Discussion

Space varying coefficient models constructed from different but related new-generation
multispectral remote sensing platforms were used to predict C stock in a managed planta-
tion forest ecosystem in Zimbabwe. The RMSPE is marginally higher in Sentinel-2-based
C stock SVC model than in the Landsat-8-based SVC counterpart. Our findings with
regard to the performance of Landsat-8 and Sentinel-2 sensors are also congruent with
the work of [12,37]. SVC models for both new-generation remote sensing-derived pre-
dictors showed preference over the error-independent models. However, estimates from
the two data sources were marginally different from each other on the prediction of C
stock, as illustrated in validation diagnostics [42]. The adaptable structure of the SVC
permitted the residuals spatial variability to be apportioned between the random slope and
the random intercept. This provided additional benefits not available in the SVI models
from the two predictor sources. The SVC permitted reconnaissance of the C stock observa-
tions and the NDVI predictor. Furthermore, the SVC models in both multispectral data
sources had better representation of the processes thereby yielding C stock predictions with
reduced variance.

Evaluation of the models utilizing predictors from both remote sensing data sources
showed SVC to fit the data better than the SVI models. Kriged maps for C stock us-
ing Landsat-8 and Sentinel-2 data were not significantly different from each other, with
the Landsat-8 SVC displaying a slightly wider 95% CI compared to the Sentinel-2-based
SVC model. Again, this is partly because the study employed conventional bands (indices)
that are calculated in a similar fashion in both Landsat-8 and Sentinel-2, and hence, the
differences in prediction only emanated from the spatial resolutions. Explicit accommoda-
tion of residual spatial dependence through spatially correlated random effects gathered
better predictions as the SVC models using the two data sources as regression coefficients
borrowed additional information from neighboring C stock observations [43,44]. Precise
estimates of covariance parameters are not easy to derive with small inventory sample
sizes [45]. Consequently, we might anticipate some impact on the accuracy of the predic-
tions when uncertainty in the covariance ensues to the posterior predictive distributions.
Predictions had limited information to borrow from because of the sparsity of C stock
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inventory observations. This was further worsened by the reduction in the overall sample
size through cross-validation.

Similar to previous studies predicting ABG and C stock, our findings establish
Sentinel-2 as a better source of RS data for predicting C stock in disturbed environments [37]
compared Sentinel-2 and Landsat-8 imagery for forest biomass prediction and showed
Sentinel-2 outperforms Landsat-8 because of the enhanced spatial resolution in the former
in comparison to Landsat-8. Most studies comparing Sentinel-2 and Landsat-8 for predict-
ing AGB prefer Sentinel-2 over Landsat-8. This is further justified by the work of [13], who
compared Worldview-3, Sentinel-2, and Landsat-8 for representing AGB in a forest envi-
ronment in Thailand and demonstrated Worldview-3 and Sentinel-2 as better data sources
and, therefore, predictors than Landsat-8 due to the red-edge and the improved spatial
and spectral properties of Worldview-3 and Sentinel-2. Furthermore, [16] utilized LiDAR
derived covariates from establishing the prediction performance of SVC models using forest
inventory data in North America. The researchers established significant improvement in
biomass prediction accuracy in the presence of residual spatial dependence deriving from
the finer resolution LiDAR covariates. In most cases, the effectiveness of SVC models in
these studies is usually strengthened by the solid non-stationary relationships between the
response variable and the predictor variables influenced by unobserved ecological factors
operating at broad geographical scales. Such ecological factors were also seen in the present
study as NDVI was established to be a statistically significant predictors of C stock in the
studied region. The biggest drivers to these factors are the presumed activities of forest
disturbance due to human encroachment into plantation forests that subsequently impact
the density and distribution of ABG biomass.

4.1. Limitations of the Study

Apart from the vegetation indices influencing the spatial distribution and density
of AGB employed in this study, it is also known and acknowledged in the literature
that climate and topographic variables play a part in the distribution of C stock. For
example, [37,38] have shown elevation and aspect accounting for the bigger portion of the
spatial variability of C stock in a mountainous region of Nepal. As such, the limitation of
our study is the application of vegetation indices as predictors of C stock, and this may,
therefore, not be representative of the general C stock dynamics in the studied region. We,
therefore, recommend the integration of topo-climatic factors with new generation remote
sensing-derived vegetation indices for future research in order to obtain a more accurate
global overview of the C stock density and distribution in the studied region.

4.2. Conclusions

The study presented a hierarchical Bayesian geostatistical spatially varying coeffi-
cient model for determining the relationship between sampled C stock data and multispec-
tral remote sensing derived predictors. There was a marginal improvement in model fit,
and prediction accuracy in both Landsat-8 and Sentinel-2-based SVC models in comparison
to the error-independent models. The SVC model permitted exploration of the observed
C stock locations where the models performed well or poorly, which was missing in the
SVI models. This provided an understanding of the performance of the multispectral
remote sensing derived predictors for modeling C stock and hence, sets the foundation for
the updating of the carbon forest plantation database for forest practitioners in the country
and utilized as a monitoring tool in the long term. The Sentinel-2-based SVC model was
preferred for prediction in the plantation forest ecosystems as its model provided tighter
credible intervals compared to the Landsat-8-based C stock SVC model.

The small sample size of the data utilized in the present research enabled the mod-
eling approach to be computationally feasible. When inventory plots are comprised of
bigger sample sizes, the matrix operations of immense dimensions are needed for comput-
ing model parameter estimates of higher magnitude and may not be achievable through
ordinary PCs. Our future work is therefore aimed at exploring algorithms for resolving
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the dimensionality curse when fitting spatially varying coefficient models. The prob-
lem of dimensionality can also get complicated if many predictors are involved in the
SVC modeling framework. Resolving dimensionality issues is needed as forest C stock
is typically modeled with predictors from many data sources, chief amongst them being
topographic, bioclimatic, and anthropogenic variables.
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