A Potential Mechanism of the Satellite Thermal Infrared Seismic Anomaly Based on Change in Temperature Caused by Stress Variation: Theoretical, Experimental and Field Investigations
Abstract
:1. Introduction
2. Thermodynamic Formulas for Solid Adiabatic Deformation
3. Experiments on Temperature Variation and Elastic Deformation
3.1. Equipment
3.2. The Second Experiment
3.3. The Third Experiment
4. Field Exploration: The Case of the Thrust Fault
4.1. The Mechanical Model of the Thrust Fault
4.2. The Decrease in the Temperature in Rock Walls Due to the Mean Stress Drop Caused by Thrust Slip
5. Discussion
6. Conclusions
- (1)
- The temperature change during the adiabatic elastic deformation is only related to the mean stress and independent of the deviator stress. For rock materials, the temperature rises (drops) as the mean stress increases (decreases) (compressive stress condition is taken as positive). According to Equation (4), it is convenient to obtain the relationship between the temperature response and the change in stress. Specifically, the change in temperature is 3.3 mK as a response to a change in mean stress of 1 MPa for granite.
- (2)
- The theoretical results were verified through laboratory experiments in rock samples. Temperature was measured by an infrared camera with a spectral range of 8~12 μm. This implies that temperature change caused by stress variation can be detected in laboratory with thermal infrared radiation.
- (3)
- The magnitude of the co-seismic temperature response can be estimated based on the co-seismic mean stress change. For thrust faulting, the co-seismic mean stress drop around the fault is about 54 MPa, and the corresponding temperature drop is about 0.18 K. From the energy point of view, the changes in temperature in the shallow crust may cause a change in heat that is equivalent to the changes in atmospheric temperature with values of 3.0–6.0 K, which are in accordance with the magnitude of the temperature anomaly obtained by the satellite thermal infrared remote sensing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorny, V.I.; Sal’Man, A.G.; Tronin, A.A.; Shilin, B.V. Outgoing infrared radiation of the earth as an indicator of seismic activity. Proc. Acad. Sci. USSR 1988, 301, 67–69. [Google Scholar]
- Qiang, Z.; Xu, X.; Dian, C. Satellite infrared thermos-anomaly: Earthquake imminent precursor. Chin. Sci. Bull. 1990, 35, 1324–1327. [Google Scholar]
- Tronin, A.A. Satellite thermal survey—A new tool for the studies of seismoactive regions. Int. J. Remote Sens. 1996, 17, 1439–1455. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F.T. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Boyarchuk, K.; Pokhmelnykh, L. The physical nature of thermal anomalies observed before strong earthquakes. Phys. Chem. Earth Parts A/B/C 2006, 31, 143–153. [Google Scholar] [CrossRef]
- Blackett, M.; Wooster, M.; Malamud, B. Exploring land surface temperature earthquake precursors: A focus on the Gujarat (India) earthquake of 2001. Geophys. Res. Lett. 2011, 38, L15303. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Singh, S.; Sam, L.; Bhardwaj, A.; Martín-Torres, F.J.; Singh, A.; Kumar, R. MODIS-based estimates of strong snow surface temperature anomaly related to high altitude earthquakes of 2015. Remote Sens. Environ. 2017, 188, 1–8. [Google Scholar] [CrossRef]
- Jiao, Z.-H.; Zhao, J.; Shan, X. Pre-seismic anomalies from optical satellite observations: A review. Nat. Hazards Earth Syst. Sci. 2018, 18, 1013–1036. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Barkat, A.; Ali, A.; Sultan, M.; Rasul, K.; Iqbal, Z.; Iqbal, T. Investigation of Spatio-temporal Satellite Thermal IR Anomalies Associated with the Awaran Earthquake (Sep 24, 2013; M 7.7). Pakistan. Pure Appl. Geophys. 2019, 176, 3533–3544. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Singh, S.; Sam, L.; Joshi, P.K.; Bhardwaj, A.; Martín-Torres, F.J.; Kumar, R. A review on remotely sensed land surface temperature anomaly as an earthquake precursor. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 158–166. [Google Scholar] [CrossRef]
- Carbone, V.; Piersanti, M.; Materassi, M.; Battiston, R.; Lepreti, F.; Ubertini, P. A mathematical model of lithosphere–atmosphere coupling for seismic events. Sci. Rep. 2021, 11, 8682. [Google Scholar] [CrossRef] [PubMed]
- Cicerone, R.D.; Ebel, J.E.; Britton, J. A systematic compilation of earthquake precursors. Tectonophysics 2009, 476, 371–396. [Google Scholar] [CrossRef]
- Jiao, Z.; Shan, X. Pre-Seismic Temporal Integrated Anomalies from Multiparametric Remote Sensing Data. Remote Sens. 2022, 14, 2343. [Google Scholar] [CrossRef]
- Jiao, Z.-H.; Shan, X. Statistical framework for the evaluation of earthquake forecasting: A case study based on satellite surface temperature anomalies. J. Asian Earth Sci. 2021, 211, 104710. [Google Scholar] [CrossRef]
- Jiao, Z.-H.; Shan, X. Consecutive statistical evaluation framework for earthquake forecasting: Evaluating satellite surface temperature anomaly detection methods. J. Asian Earth Sci. X 2022, 7, 100096. [Google Scholar] [CrossRef]
- Tronin, A.A. Satellite remote sensing in seismology. A review. Remote Sens. 2010, 2, 124–150. [Google Scholar] [CrossRef] [Green Version]
- Saraf, A.K.; Rawat, V.; Choudhury, S.; Dasgupta, S.; Das, J. Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 373–379. [Google Scholar] [CrossRef]
- Qiang, Z.J.; Kong, L.C.; Wang, Y.P. Earth gas emission, infrared thermo-anomaly and seismicity. Chin. Sci. Bull. 1992, 24, 2259–2262. [Google Scholar]
- Freund, F. Pre-earthquake signals-Part I: Deviatoric stresses turn rocks into a source of electric currents. Nat. Hazards Earth Syst. Sci. 2007, 7, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Freund, F. Pre-earthquake signals-Part II: Flow of battery currents in the Crust. Nat. Hazards Earth Syst. Sci. 2007, 7, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Geng, N.G.; Cui, C.Y.; Deng, M.D. Remote sensing detection of rock fracturing experiment and the beginning of remote rock mechanics (in Chinese). Acta Seism. Sin. 1992, 14, 645–652. [Google Scholar]
- Wu, L.; Cui, C.; Geng, N.; Wang, J. Remote sensing rock mechanics (RSRM) and associated experimental studies. Int. J. Rock Mech. Min. Sci. 2000, 37, 879–888. [Google Scholar] [CrossRef]
- Yin, J.Y.; Fang, Z.F.; Qian, J.D.; Deng, M.D.; Geng, N.G.; Hao, J.S.; Wang, Z.; Ji, Q.Q. Research on the application of infrared remote sensing in earthquake prediction and its physical mechanism. Earthq. Res. China 2000, 16, 140–148. [Google Scholar]
- Ouzounov, D.; Liu, D.; Kang, C.; Guido, C.; Menas, K.; Patrick, T. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Chen, S.; Liu, P.; Guo, Y.; Liu, L.; Ma, J. An experiment on temperature variations in sandstone during biaxial loading. Phys. Chem. Earth Parts A/B/C 2015, 85–86, 3–8. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.I.; Zhang, J.Y.; Zhang, P.Z.; Wei, W. Tectonic setting and general features of coseismic rupture of the 25 April, 2015 Mw 7.8 Gorkha Nepal earthquake (in Chinese). Chin. Sci. Bull. 2015, 60, 2640–2655. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lin, W.; Tadai, O.; Zeng, X.; Yu, C.; Yeh, E.-C.; Li, H.; Wang, H. Experimental and numerical investigation of the temperature response to stress changes of rocks. J. Geophys. Res. Solid Earth 2017, 122, 5101–5117. [Google Scholar] [CrossRef]
- Yang, X.; Lin, W.; Yeh, E.C.; Xu, H.; Xu, Z. Analysis on the mechanisms of coseismic temperature negative anomaly in fault zones. Chin. J. Geophys.-Chin. Ed. 2020, 63, 1422–1430. [Google Scholar]
- Chen, S.; Guo, Y.; Liu, P.; Zhuo, Y.; Wang, K.; Ma, J. Theoretical and experimental investigations on temperature variations in granodiorite with a hole during biaxial loading and its potential implications for monitoring changes in the crustal stress. Geophys. J. Int. 2018, 215, 996–1002. [Google Scholar] [CrossRef]
- Huang, J.W.; Liu, S.; Gao, X.; Yang, Z.C.; Ni, Q.; Wu, L.X. Experimental study of the thermal infrared emissivity variation of loaded rock and its significance. Remote Sens. 2018, 10, 818–834. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.X.; Wu, L.; Zhang, Y.; Wang, S.; Yao, X.L.; Wu, X.Z. The characteristics of crack existence and development during rock shear fracturing evolution. Bull. Eng. Geol. Environ. 2020, 80, 1671–1682. [Google Scholar] [CrossRef]
- Zhang, K.; Li, N.; Liu, W.; Xie, J. Experimental study of the mechanical, energy conversion and frictional heating characteristics of locking sections. Eng. Fract. Mech. 2020, 228, 106905. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; Rapisarda, F.; Cubito, A.; Di Maria, G. Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng. Geol. 2015, 195, 225–235. [Google Scholar] [CrossRef]
- Yasuyuki, K.; Jim, M.; Ryo, F.; Hisao, I.; Takashi, Y.; Setsuro, N.; Ma, K.F. Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake. Geophys. Res. Lett. 2006, 33, 70–84. [Google Scholar]
- Fulton, P.M.; Toczko, S. Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements. Science 2013, 342, 1214–1217. [Google Scholar] [CrossRef] [Green Version]
- Wojnar, R. Thermodynamics of solids with a state equation. J. Theor. Appl. Mech. 1999, 37, 809–827. [Google Scholar]
- Hsieh, J.S. Principles of Thermodynamics; McGraw-Hill Inc.: New York, NY, USA, 1975. [Google Scholar]
- Robertson, E.C. Thermal Properties of Rocks. USGS Open-File Rep. 1988, 1988, 1–106. [Google Scholar]
- Chen, S.Y.; Liu, L.; Liu, P.; Ma, J.; Ghen, G. Theoretical and experimental study on relationship between stress-strain and temperature variation. Sci. China Ser. D Earth Sci. 2009, 52, 1825–1834. [Google Scholar] [CrossRef]
- Liu, P.; Chen, S.; Liu, L.; Chen, G.; Ma, J. An experiment on the infrared radiation of surficial rocks during deformation. Seismol. Geol. 2004, 26, 502–511. [Google Scholar]
- Liu, P.; Ma, J.; Liu, L.; Ma, S.; Chen, G. An experimental study on variation of thermal fields during the deformation of a compressive en echelon fault set. Prog. Nat. Sci. 2007, 17, 298–304. [Google Scholar]
- Ma, J.; Liu, L.; Liu, P.; Ma, S. Thermal precursory pattern of fault unstable sliding:An experimental study of en echelon faults. Chin. J. Geophys. 2007, 50, 1141–1149. [Google Scholar] [CrossRef]
- Ma, J.; Ma, S.; Liu, L.; Liu, P. Experimental study of thermal and strain fields during deformation of en enchelon faults and its geological implications. Geodyn. Tectonophys. 2010, 1, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Liu, P.; Ma, J.; Chen, S. Experimental study on evolution of thermal field of en echelon fault during the meta-instability stage. Chin. J. Geophys. 2013, 56, 612–622. [Google Scholar]
- Wu, L.; Liu, S.; Wu, Y.; Wang, C. Precursors for rock fracturing and failure—Part I: IRR image abnormalities. Int. J. Rock Mech. Min. Sci. 2006, 43, 473–482. [Google Scholar] [CrossRef]
- Wu, L.; Wu, Y.; Liu, S.; Li, G.; Li, Y. Infrared radiation of rock impacted at low velocity. Int. J. Rock Mech. Min. Sci. 2004, 41, 321–327. [Google Scholar] [CrossRef]
- Zhuo, Y.-Q.; Liu, P.; Guo, Y.; Chen, H.; Chen, S.; Wang, K. Cross-effects of loading rate and cumulative fault slip on pre-seismic rupture and unstable slip rate of laboratory earthquakes. Tectonophysics 2022, 826, 229266. [Google Scholar] [CrossRef]
- Scholz, C.H. The Mechanisms of Earthquake Faulting; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Chen, S.Y.; Ma, J.; Liu, P.X.; Liu, L.Q.; Ren, Y.Q. Exploring the current tectonic activity with satellite remote sensing thermal information: A case of the Wenchuan earthquake. Seismol. Geol. 2014, 36, 775–793. [Google Scholar]
- Chen, S.; Liu, P.; Feng, T.; Wang, D.; Zhang, G. Exploring Changes in Land Surface Temperature Possibly Associated with Earthquake: Case of the April 2015 Nepal Mw 7.9 Earthquake. Entropy 2020, 22, 377. [Google Scholar] [CrossRef]
- Yang, S.-M.; Lan, Q.-G.; Nie, Z.-S.; Wang, Q.-L.; Li, H.; Liao, H.; Tan, K.; Qiao, X.-J.; Wang, Q. Coseismic displacement caused by the 2008 great Wenchuan earthquake derived from various types of geodetic data. Chin. J. Geophys. 2012, 55, 2575–2588. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Chen, S.; Liu, Q.; Guo, Y.; Ren, Y.; Zhuo, Y.; Feng, J. A Potential Mechanism of the Satellite Thermal Infrared Seismic Anomaly Based on Change in Temperature Caused by Stress Variation: Theoretical, Experimental and Field Investigations. Remote Sens. 2022, 14, 5697. https://doi.org/10.3390/rs14225697
Liu P, Chen S, Liu Q, Guo Y, Ren Y, Zhuo Y, Feng J. A Potential Mechanism of the Satellite Thermal Infrared Seismic Anomaly Based on Change in Temperature Caused by Stress Variation: Theoretical, Experimental and Field Investigations. Remote Sensing. 2022; 14(22):5697. https://doi.org/10.3390/rs14225697
Chicago/Turabian StyleLiu, Peixun, Shunyun Chen, Qiongying Liu, Yanshuang Guo, Yaqiong Ren, Yanqun Zhuo, and Jiahui Feng. 2022. "A Potential Mechanism of the Satellite Thermal Infrared Seismic Anomaly Based on Change in Temperature Caused by Stress Variation: Theoretical, Experimental and Field Investigations" Remote Sensing 14, no. 22: 5697. https://doi.org/10.3390/rs14225697
APA StyleLiu, P., Chen, S., Liu, Q., Guo, Y., Ren, Y., Zhuo, Y., & Feng, J. (2022). A Potential Mechanism of the Satellite Thermal Infrared Seismic Anomaly Based on Change in Temperature Caused by Stress Variation: Theoretical, Experimental and Field Investigations. Remote Sensing, 14(22), 5697. https://doi.org/10.3390/rs14225697