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Abstract: Fire prevention policies during different periods may lead to changes in the drivers of forest
fires. Here, we use historical fire data and apply the boosted regression tree (BRT) model to analyze
the spatial patterns and drivers of forest fires in the boreal forests of China from 1981 to 2020 (40 years).
We divided the fire data into four periods using the old and new Chinese Forest Fire Regulations
as a dividing line. Our objectives here were: to explore the influence of key historical events on
the drivers of forest fires in northern China, establish a probability model of forest fire occurrence,
and draw a probability map of forest fire occurrence and a fire risk zone map, so as to interpret the
differences in the drivers of forest fires and fire risk changes over different periods. The results show
that: (1) The model results from 1981 to 2020 (all years) did not improve between 2009 and 2020 (the
most recent period), indicating the importance of choosing the appropriate modeling time series
length and incorporating key historical events in future forest fire modeling; (2) Climate factors are
a dominant factor affecting the occurrence of forest fires during different periods. In contrast with
previous research, we found that here, it is particularly important to pay attention to the relevant
indicators of the autumn fire prevention period (average surface temperature, sunshine hours) in
the year before the fire occurrence. In addition, the altitude and the location of watchtowers were
considered to have a significant effect on the occurrence of forest fires in the study area. (3) The
medium and high fire risk areas in our three chosen time periods (1981–14 March 1988; 15 March
1988–2008; 2009–2020) have changed significantly. Fire risks were higher in the east and southeast
areas of the study area in all periods. The northern primeval forest area had fewer medium-risk
areas before the new and old regulations were formulated, but the medium-risk areas increased
significantly after the old regulations were revised. Our study will help understand the drivers and
fire risk distribution of forest fires in the boreal forests of China under the influence of history and
will help decision-makers optimize fire management strategies to reduce potential fire risks.

Keywords: boreal forests of China; Forest Fire Prevention Regulations; prediction effects; fire risk
drivers; fire risk zoning

1. Introduction

The boreal forest (45◦–70◦N) represents over 25% of the world’s forest surface [1] and
is one of the largest forest biomes in the world, with its carbon content in forest vegetation,
soil, and forest wetlands exceeding 700 Pg [2]; these forests provide important natural
and economic resources for Arctic countries. These forests provide important cultural
and commercial resources for Arctic countries. China’s boreal forests are found in the
southernmost biomes of the global boreal zone, primarily in the Daxing’an Mountains
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region of northeastern China, and are important to China’s national forest resources [3,4].
Forests in northern China are widely distributed and are frequently affected by forest
fires [5–7].

An important aspect of the study of forest fires is understanding the formation mecha-
nisms of forest fires. Meteorology, vegetation, topography, human activities, and socioeco-
nomic conditions can all play a role in the ignition and spread of forest fires [8–13]. Several
studies which employ forest fire prediction models have been conducted in the boreal
forests of China, most of which focus on, e.g., comparisons of the drivers of forest fire
occurrence between different geographical zones [14], comparisons of the drivers of forest
fire occurrence between different temperature zones [15], or comparisons between the
environmental zones classified according to different scientific needs [16]. These studies
select fire point data within a certain period of time for modeling. However, other studies
have shown that forest fire prevention policies and measures in different periods also have
an important impact on the occurrence and patterns of forest fires [17,18]. For example,
changes in forest fire management policies have increased the risk of forest fires in the
western United States, and fire dynamics, which are typically considered high frequency
and low intensity, have changed significantly [19,20]. When we only consider factors such
as meteorology, vegetation, topography, or different regions (such as geographical regions
and temperature zones), we tend to ignore the impact of fire management policies on the
drivers of forest fires in fire modeling. Thus, a question worth considering is whether
different forest fire management policies will change the effect of fire modeling in conven-
tional/routine/regular periods and if these changes result in changes to the driving factors
and modeling accuracy.

The largest forest fire ever recorded in China occurred in the Daxing’an Mountains
on 6 May 1987, burning 1.33 million hm2 of the forest, causing 213 deaths, and leading to
more than 50,000 people being displaced [21]. After this fire, China’s forest fire prevention
work has been highly valued and continuously strengthened, and the number of forest fires
and burned areas in northern China has reduced significantly. In recent decades, an active
forest fire prevention policy in China has led to changes in forest fire cycles, which in turn,
has led to changes in the forest structure and combustibles [22]. On 15 March 1988, China
formulated and implemented the Forest Fire Prevention Regulations (hereinafter referred
to as “the regulations”). Since then, China has attached great importance to forest fire
prevention and control and has increased its investment in forest fire management [23]. At
the end of 2008, the regulations were revised and were formally implemented in 2009. The
main difference between the new and old regulations is that the old regulations have fewer
preventive measures, incomplete provisions on legal liability, and light penalties. The new
regulations increased the corresponding legal responsibilities and increased the penalties for
preventive measures, including supervision and management measures, requiring the strict
implementation of fire source control, the strengthening of fire prevention through both
publicity and education, and the importance of paying more attention to the construction
of forest fire prevention personnel and increasing investment in fire prevention funds. The
forest fire prevention measures stipulated in the old regulations are still effective, while the
revision of the new regulations adapts to the new environment and pays more attention to
the control of fire sources [24].

The boreal forest In the Daxing’an Mountains in Inner Mongolia accounts for more
than 55% of the entire Daxing’an Mountains area, with a forest area of 8.39 million hm2 and
a timber volume of 760 million m3, accounting for 4% and 5% of China, respectively [25,26].
In the past, the Daxing’an Mountains in Inner Mongolia have experienced a high rate
of forest fires. From the time that the People’s Republic of China was established until
the 1980s, the Chinese government invested a significant amount of both human and
material resources in fire prevention campaigns, the creation of fire prevention measures,
and specialized firefighting teams. However, the momentum of forest fires has not yet been
significantly reduced. There were 1344 forest fires from 1962 to 1980, with an affected forest
area of 1.24 million hm2 [27]. Here, we employ a boosted regression tree (BRT) model,
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which is very adaptable and does not rely on assumptions about the response-predictor
relationship made a priori. In conventional linear regression models, it is difficult to deduce
such assumptions [28]. Our objective here was to assess the impact of forest fire policies on
the probability and drivers of forest fires in northern China during different periods based
on historical fire data using GIS and remote sensing data. We used historical fire data from
1981 to 2020 (40 years), and took the regulations that had significantly changed China’s
forest fire prevention and control policies as a historical demarcation line to clarify the
following questions: (1) What is the difference between the modeling accuracy in different
periods before and after the revision of the regulations? (2) Are there differences in the
drivers that play a primary role in different periods? Are any of these drivers different
from the findings of previous studies? (3) How does the probability of forest fire occurrence
change during different periods? What is the pattern of change in medium and high fire
risk areas in different periods?

2. Materials and Methods
2.1. Study Area

The Daxing’an Mountains of Inner Mongolia are located in northeastern China with a
total area of approximately 17.73 million hm2 and an altitude range from 425 m to 1760
m asl (Figure 1). It has a temperate continental climate with long, cold winters (more
than 9 months), short warm summers (less than 1 month), and a short frost-free period
(only 70 to 100 days). The vegetation is dominated by Larix gmelinii, which accounts for
approximately 60% of the total forest land, and the substrate is primarily brown coniferous
forest soil. Betula platyphylla, Populus davidiana, and Pinus sylvestris var.mongolia, are among
other places [4]. There are two phases to the fire prevention season in the study area: the
annual spring fire prevention season, which runs from 15 March to 15 June; as well as the
annual fall fire prevention season, which runs from 15 September to 15 November [9].
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2.2. Data Source and Preprocessing
2.2.1. Forest Fire Records

Forest fire data is provided by the Inner Mongolia Forestry and Grassland Bureau,
which includes important details about each forest fire, such as its geographic location,
duration, scale, cause, number of casualties, and more. In 2021, China launched the first
nationwide survey and assessment of forest and grassland fire risks. Data and access to
historical fires are important elements of the survey, and our data access originated from
this survey. China has written data acquisition and disposal processes into law; both the
old and new “Forest Fire Prevention Regulations” stipulate the standards and methods of
post-disaster fire investigation, which can ensure the maximum reliability and consistency
of data. Before 1990, the location of the fire was determined by the person in charge of
the forest farm, who identified each fire through fixed observation points in the forest
combined with a comprehensive method of a forest resource distribution map. Since 1990,
the global positioning system (GPS) has been used to record the fire location. A total of
2552 fires were recorded from 1981 to 2020, of which 211 had no geographic coordinate
information. We did not consider the fires without a geographic location. According to
China’s “Forest Fire Prevention Regulations”, fires are classified into four categories: (1)
General forest fires: the affected forest area is less than 1 hm2. (2) Larger forest fires: the
affected forest area is more than 1 hm2 and less than 100 hm2. (3) Major forest fires: the
affected forest area is more than 100 hm2 and less than 1000 hm2. (4) Especially major forest
fires: the affected forest area is more than 1000 hm2. Figure 2 shows the location of the fire
points at different levels.
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2.2.2. Climate Data

Climate is considered to be the main cause of forest fires, so the occurrence of fire
can be mitigated by controlling the moisture content of combustibles and understanding
the changes in meteorological elements [29]. Climate factors in the fire prevention period
in the year before the fire occurrence can significantly affect future fire occurrence [30].
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The dependent variable in previous studies was the average value of the meteorological
elements across all the fire prevention periods in a given year; the meteorological elements
across all fire prevention periods in a given year were not refined [13,31,32]. In our work,
we used indicators, such as the average temperature, average surface air temperature,
average humidity, and accumulated sunshine hours during the spring and autumn fire
prevention periods of the year before the fire occurred.

In addition to climate factors, many fire prediction studies have considered the
meteorological impact on the daily and monthly scales of fire occurrence [33,34]. On
the daily scale, we selected the average temperature (◦C), maximum temperature (◦C),
daily temperature range (◦C), average relative humidity (%), average surface air tem-
perature (◦C), maximum surface air temperature (◦C), minimum relative humidity (%),
average wind speed (m/s), sunshine hours, and accumulated precipitation (mm/24 h).
On the monthly scale, we selected the monthly average temperature (◦C), monthly av-
erage relative humidity (%), monthly average surface temperature (◦C), monthly accu-
mulated sunshine hours, and monthly average precipitation (mm) of the month when
the fire occurred, see Table 1 for details. The daily meteorological data are from the
National Tibetan Plateau Data Center (daily meteorological dataset of basic meteoro-
logical elements of China National Surface Weather Station (V3.0) (1951–2010)) (http:
//data.tpdc.ac.cn/en/data/52c77e9c-df4a-4e27-8e97-d363fdfce10a/, accessed on 1 May
2022); Greenhouse Data Sharing Platform, China (http://data.sheshiyuanyi.com/, accessed
on 1 October 2021).

Table 1. Explanatory variables and their abbreviations and units.

Factors Variables Abbreviation Numerical
Range Units Resolution/Scale

Climate

Average daily temperature Temp −31.3–28.7 ◦C

Daily/0.01

Daily maximum temperature Max_temp −23.4–39.3 ◦C
Daily difference in temperature Temp_diff 0.9–34.1 ◦C
Daily average relative humidity Hum 12–99 %

Daily minimum relative humidity Minhum 0.4–93 %
Average daily ground temperature G_temp −32.2–38.9 ◦C

Daily maximum ground temperature Maxg_temp −23.5–70.6 ◦C
Daily average wind speed Win 0–11.3 m/s

Maximum daily wind speed Max_win 0–18.7 m/s
Daily accumulated precipitation Prec 0–104.3 mm/24 h

Sunshine hours Sun 0–16 h

Average monthly temperature Mmeantemp −30.2–24.7 ◦C

Monthly/0.01
Average monthly precipitation Mmeanprec 0–13.8 mm

Monthly average relative humidity Mmeanhum 5.7–87.3 %
Average monthly surface temperature Mmeang_temp −29.8–54.8 ◦C

Average monthly sunshine hours Mmeansun 0.34–12.51 h

Average temperature during spring fire prevention season TempSpr 0.2–11 ◦C

Quarterly/0.01

Average humidity during spring fire prevention season HumSpr 34.9–64.1 %
Average ground temperature during spring fire prevention season G_tempSpr 2.44–15.1 ◦C

Average precipitation during the spring fire prevention season PrecSpr 0.18–2.94 mm
Average sunshine hours during the spring fire season SunSpr 1.01–10.7 h

Average temperature during autumn fire prevention season TempAut −5.96–6.53 ◦C
Average humidity during autumn fire prevention season HumAut 44.4–75.5 %

Average ground temperature during autumn fire prevention season G_tempAut −6.45–8.4 ◦C
Average precipitation during the autumn fire prevention season PrecAut 0.03–2.82 mm

Average sunshine hours during the autumn fire season SunAut 0.64–8.88 h

Anthropogenic

Distance to the nearest settlement Dis_res 0.06–60.54 km

Vector/1:250,000Distance to the nearest road Dis_road 0.001–24.9 km
Distance to the nearest railway Dis_rail 0.01–133.2 km

Distance to the nearest watchtower Dis_watch 0.06–129 km

Vegetation Vegetation types Vegetation
type Ten types - Raster/30 m

Normalized Difference Vegetation Index NDVI 0.01–0.94 - Raster/5 km

Topographic
Altitude Dem 178–1657 meter Raster/30 m

Aspect index Aspect - - -
Slope Slope 0–35.14 degree Raster/30 m

Socioeconomic
GDP per capita GDP 197–167,100 10,000 yuan Yearly

Density of population Pop 1.7–33.7 People/100 hm2

Note: The relevant indicator of the fire prevention period refers to the year before the fire.

http://data.tpdc.ac.cn/en/data/52c77e9c-df4a-4e27-8e97-d363fdfce10a/
http://data.tpdc.ac.cn/en/data/52c77e9c-df4a-4e27-8e97-d363fdfce10a/
http://data.sheshiyuanyi.com/


Remote Sens. 2022, 14, 5724 6 of 27

We used ArcGIS10.7 to match the sample points and the nearest weather stations
(12 in the study area and 2 outside the study area, but that were close to the study area, for
a total of 14 national-level weather stations (Figure 1b). We used spatial connection tools to
match the fire points and non-fire points to the weather stations and finally matched the
meteorological data in a SQL Server database according to the weather stations and dates
corresponding to the sample points.

2.2.3. Vegetation

The type of vegetation can be a predisposing factor for the ignition and spread of forest
fires [35,36]. We used data from the Aerospace Information Research Institute, Chinese
Academy of Sciences (https://data.casearth.cn/en/sdo/detail/614c68e908415d75145c0
d85, accessed on 1 April 2022) downloaded 1985–2020 (every 5 years) for the global 30 m
surface coverage fine classification products, which have altogether 30 types of surface cover
classifications, among which the vegetation types in our study area are: 11—herbaceous
cover, 20—irrigated cropland, 62—closed deciduous broadleaved forest (fc > 0.4), 72—
closed evergreen needle-leaved forest (fc > 0.4), 81—open deciduous needle-leaved forest
(0.15 < fc < 0.4), 82—closed deciduous needle-leaved forest (fc > 0.4), 120—shrubland, 121—
evergreen shrubland, 122—deciduous shrubland, 130—grassland. The land use types in
the study area at 5-year intervals are shown in Appendix A, Table A1. We selected random
points in the years close to the surface classification data and extracted their corresponding
vegetation types when establishing the random points, screened the random points within
the forest range, and randomly selected random points until there were enough numbers
for modeling; this was conducted to ensure that the random points were located within
the forest range. We used ArcGIS10.7 to extract the forest types of each fire point and the
random points that were close to the years of the surface classification coverage data. (For
example: for 1981–14 June 1987, we used the 1985 surface classification coverage data; for
15 June 1987–14 June 1992, we used the 1990 surface classification coverage data; for 15 June
1992–14 June 1997, we used the 1995 surface classification coverage data).

Many researchers have proposed using the change in the normalized difference vege-
tation index (NDVI) to assess the effect of vegetation on fire because the occurrence of fire
is closely linked to the condition of the vegetation at a particular time [37–39]. We used the
1982–2020 China monthly NDVI dataset from the National Earth System Science Data Cen-
ter (http://www.geodata.cn/data/datadetails.html?dataguid=239118756960240&docId=0,
accessed on 1 April 2022) with a resolution of 5 km and used ArcGIS10.7 to extract the
monthly NDVI corresponding to each fire point and random point. The 5 km resolution
data started in 1982, so for the NDVI data for July–December 1981, we used the GIMMS
(global inventory modeling and mapping studies) NDVI 3g v1.0 data downloaded from
the National Aeronautics and Space Administration (https://www.nasa.gov/nex, accessed
on 1 April 2022), with a temporal resolution of 15d and a spatial resolution of 8 km. The
monthly maximum value was synthesized using the R language, and the first few months
of July 1981 were replaced with data from the same month in 1982.

2.2.4. Topographic Data

DEM (digital elevation model) data were obtained from the GDEMV2 30M digital
elevation data of the Computer Network Information Center of the Chinese Academy of
Sciences, Geospatial Data Cloud (http://www.gscloud.cn, accessed on 19 April 2022). The
DEM was processed by spatial correction splicing, editing, and resampling. The Surface
tool in the Spatial Analyst toolkit in ArcGIS10.7 software was used to extract the slope and
aspect data of the study area, and then we calculated the aspect index according to [36]:

Aspect index = cos(θ × 2 × PI/360) (1)

where θ is the ArcGIS “Aspect” function’s aspect, which is a number between 0 and 360.
The aspect index was between −1 and 1, with higher values indicating more potential solar

https://data.casearth.cn/en/sdo/detail/614c68e908415d75145c0d85
https://data.casearth.cn/en/sdo/detail/614c68e908415d75145c0d85
http://www.geodata.cn/data/datadetails.html?dataguid=239118756960240&docId=0
https://www.nasa.gov/nex
http://www.gscloud.cn
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radiation. Finally, the “Extract” tool was used to extract the altitude, slope, and direction of
the sample points.

2.2.5. Infrastructure

The impact of human infrastructure on forest fires has been widely studied [34,37–39];
however, its impact on forest fires should be comprehensively considered when studying
the drivers of forest fires. Guo et al. (2016) added variables such as the fire control station
and fireline length to study the drivers of forest fires in the Daxing’an Mountains of
Heilongjiang, China [40]. In our treatment, the distance between the watchtower and the
fire point was treated as the dependent variable since the watchtower is an important forest
fire prevention management platform to detect fires and report an early warning.

The fire watchtower data (including the name, latitude, and longitude of the watch-
tower) was provided by the Forestry and Grassland Bureau of Inner Mongolia Autonomous
Region. We retrieved the distance from the fire point to the nearest railway, highway, resi-
dential area, and other variables from the 1:250,000 digital line graph (DLG) of the National
Catalog Service for Geographic Information, China (https://www.webmap.cn/commres.
do?method=result25W, accessed on 5 April 2022). The distribution of infrastructure is
shown in Figure 1b.

2.2.6. Demographic and Socioeconomic Data

Both the population density and the GDP per capita are important indicators that
can reflect socioeconomic factors. These two indicators have been widely used in the past
to predict forest fires [31,41,42]. Official raster datasets are typically used to quantify the
population density and GDP per capita, and the missing years are calculated using the
official average growth rate [40,43]. The use of local statistical yearbooks in the study area
can better reflect socioeconomic factors [34,40]. Since our fire dataset belongs to a long time
series, and the raster data of socioeconomic factors were generally established after 2000,
we used the statistical yearbook (1981–2008 [44]; 2009–2018) by the Inner Mongolia Bureau
of Statistics (http://tj.nmg.gov.cn/tjyw/jpsj/index_1.html, accessed on 20 April 2022)) to
obtain the population density and GDP per capita of the Daxing’an Mountains in Inner
Mongolia at the county level (13 counties in total) from 1981 to 2020. Details can be found
in Table 1.

2.3. Models and Computing Procedures

We focused on the differences in fire prevention policies in different periods. All
modeling and analyses were carried out according to different periods separated by the
time of the new and old regulations.

2.3.1. Statistics on the Number, Area, and Causes of Forest Fires

We divided the number, area, and causes of the forest fires in 40 years into 3 parts
(1981–14 March 1988; 15 March 1988–2008; 2009–2020) for statistical purposes.

2.3.2. Models and Identification of Significant Variables

The boosted regression tree (BRT) method combines the advantages of regression tree
algorithms and boosting methods [45] to automatically handle interaction effects between
the factor variables and adapt to complex nonlinear relationships, which can boost the
model’s stability and accuracy. The regression tree algorithm cuts the dataset into multiple
sub-datasets that are easy to model by recursion and then uses linear regression to model
the sub-datasets. The enhancement algorithm first constructs a series of prediction functions
and then combines each function sequence into a prediction function, according to certain
rules, to improve the accuracy of weak classification algorithms. The principle of the BRT
algorithm is as follows [46]:

https://www.webmap.cn/commres.do?method=result25W
https://www.webmap.cn/commres.do?method=result25W
http://tj.nmg.gov.cn/tjyw/jpsj/index_1.html
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First, the relationship between the independent variable x and the dependent variable
y, which is initialized to 0, was characterized using the f(x) function:

f0(x)= 0 (2)

where m is the fitted sequence value, and the total number of fitted regression trees is n.
When m = 1:n, we first calculated the residual r of all the observation data:

r = −
[

∂L(y, f (x))
∂ f (x)

]
f (x)= f m−1(x)

(3)

Second, the least squares regression tree was used to fit the residual r to estimate the
value of βb (x; γm), where βb (x; γm) represents the information of a single tree, where
the value of b is related to the chosen calculation method; the optional methods included
the polynomial and regression tree among other approaches. β is the estimated parameter
set of the chosen calculation method, and γm represents the partition variable, tree node
value, and prediction value. We then calculated βm by calculating the minimum value of
the loss equation L, where βm represents the weight of each tree node and determines the
combination mode of each tree:

L(y, f m − 1(x)+βb(x; γm)) (4)

Finally, we updated the function based on the iteration result:

fm(x)= f m − 1(x) + βmb(x; γ m
)

(5)

After all tree loops were updated, we calculated the final functional relation:

f (x) = ∑
m

fm(x) (6)

We built the BRT model in R studio 4.1.3 using the “gbm” package.
The BRT model required the target variable to be binary, so the known fire point was

assigned a value of 1, and the random points created in the study area were assigned a
value of 0 using Arcgis10.7 (random points are usually created at a ratio close to or more
than fire points to prevent the excessive separation and dispersion of data). Our study used
a ratio of fire points: random points = 1:1.5 [33]. We then selected the time of random points
according to the time distribution probability of actual fires when creating random points.
For example, there were 55 fires during the period of 1981–14 March 1988; thus, 83 random
points were created based on a ratio of 1.5 times that of the actual fire points, and the
random points of all the months were summed to form complete random points. We then
assigned random dates to the non-fire points in Excel (random dates were also obtained
according to the time distribution of the actual fires) and ensured that the generation of
random points was completely random in time and space. To prevent the created random
points from overlapping or being adjacent to the known fire points, the minimum allowable
distance between any two random points was set to 1 km. We set up 886 random points at
a ratio of 1:1.5 for 586 fire points during the period of 1981–14 March 1988. Similarly, we
set up 1979 random points for 1319 fire points during the period of March 15, 1988–2008,
and 654 random points for 436 fire points during the period of 2009–2020. Finally, all fire
points were mixed with random points to obtain a complete set of 2341 fire points and 3519
random points. The samples in different periods were divided into 70% training samples
and 30% test samples during modeling, and five intermediate models were established by
repeating the sample division five times to eliminate the impact of sample distribution on
the model results.

In the BRT model, we used the “summary” function to obtain the relative influence
(Rel.inf) of the variables.
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2.3.3. Model Evaluation Methods

The ROC (receiver operating characteristic) curve generated a set of sensitivity and
specificity values by setting a variety of distinct critical values for continuous variables.
We specified an abscissa to draw curves after using the sensitivity as an ordinate. An
evaluation metric known as the area under the curve (AUC) was used to assess the model
prediction’s accuracy. When the AUC is larger, the model performs better. AUC values
between 0.5 and 0.7 denoted a poor fit, 0.7 and 0.9 denoted a moderate fit, and greater
than 0.9 denoted a very good fit [47]. The cut-off point was a threshold to determine the
accuracy of the model prediction and was calculated based on the sensitivity and specificity
of the ROC, estimated using the Yueden index [41], and if the model’s predicted likelihood
was greater than the threshold, a fire occurred. Otherwise, the case was recorded as having
no fire [48].

2.3.4. Fire Ignition Probability Maps

We used the BRT model to draw the probability map of fire occurrence in each of the
four periods using kriging in the ArcGIS environment (1981–14 March 1988 ((hereafter
referred to as Period 1)); 15 March 1988–2008 ((hereinafter referred to as Period 2)); 2009–
2020 ((hereinafter referred to as Period 3)); 1981–2020 ((hereinafter referred to as all years)).
The likelihood ranged from 0 to 1. The likelihood of fire increased with the grid value.
The probability of forest fires referred to locations where a fire was likely to start and from
where it could easily spread to other areas. The anticipation of factors influencing the
occurrence of fire and understanding the dynamic behavior of fire are critical aspects of
fire management. A precise evaluation of forest fire problems and decisions on solution
methods can only be satisfactorily made when a fire risk zone map is available [49]. Thus,
in essence, the forest fire probability map and the fire risk zoning map present the same
information to the outside world, except that the fire risk zoning map is more specific and
lists specific subzones. Based on the probability map of fire occurrence and the Yueden
index, we classified the fire risk area map for different periods into three fire risk levels:
low, medium, and high.

2.3.5. Kernel Density Analysis

Kernel density analysis was used to study the spatial distribution density of point-like
elements in the region to reflect the spatial cohesion of the elements and was determined
through [34]:

fh(x) =
1

nh

n

∑
i=1

(
x− xi

h

)
(7)

where fh(x) is the kernel density function, x − xi denotes the distance from x to xi, h denotes
the bandwidth and is always greater than 0; the larger the value of fh(x), the denser the
distribution of fire points.

We divided the fires during different periods into natural factors (lightning fires),
human factors (including smoking, production and living, and paper burning), and invasive
factors (foreign and out-of-province burning) and conducted a kernel density analysis of
fires caused by different factors, respectively.

3. Results

We mapped the probability of fire occurrence based on the model and compared the
driving factors for four distinct time periods. In the modeling, the samples from different
periods were divided into 70% training samples and 30% test samples. This division was
performed five times to build five intermediate models, so the sample distribution did not
affect the results of the models.
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3.1. Statistical of Forest Fire Data

There has been an overall decrease over the past 40 years, although there have been
fluctuations in the number of fires and the area of fires from 2001 to 2008 (Figure 3). We
classified the causes of fires into three categories: natural factors (lightning fires), human
factors (smoking, production and living, paper burning, etc.), and invasive factors (foreign
burn-in, burn-in in other provinces and cities). From Figure 4 and Table 2, we can see
that the number of man-made fires before 15 March 1988, the number of fires, and the fire
area was large; however, after the development of the “regulations” and amendments, the
situation has improved. The number of lightning fires increased significantly, from 7.28 per
year in Period 1 to 23.14 in Period 2 and 27.66 in Period 3.
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Figure 3. Number of fires and burned area per year during the past 40 years. (a) 1981–14 March 1988;
(b) 15 March 1988–2008; (c) 2009–2020.

Table 2. Average annual number of fires and fire area for three causes in four periods.

Period 1
(1981–14 March 1988)

Period 2
(15 March 1988–2008)

Period 3
(2009–2020)

All Years
(1981–2020)

Disaster-
Causing
Factors

Average
Number of

Fires per Year

Average
Annual Fire

Area (104 hm3)

Average
Number of

Fires per Year

Average
Annual Fire

Area (104 hm3)

Average
Number of

Fires per Year

Average
Annual Fire

Area (104 hm3)

Average
Number of

Fires per Year

Average
Annual Fire

Area (104 hm3)

Human factors 56.3 23.5 30.61 2.15 6.33 0.13 27.82 5.28
Natural
factors 7.28 10.86 23.14 0.72 27.66 0.27 21.73 2.36

Invasive
factors 0.71 2.46 2.47 2.27 1.16 0.18 1.775 2.36
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Figure 4. Number of fires with three causes of fire and area of fire. The natural factor is lightning fire;
human factors mainly include smoking, production and living, burning paper, deliberately setting
fire, etc. The invasive factors include foreign burning and burning in other provinces and cities. Note:
time periods are as in Figure 3. (a) 1981–14 March 1988; (b) 15 March 1988–2008; (c) 2009–2020.

3.2. Identification of Drivers during Different Periods Using the BRT Model

We used the “gbm.simplify” function in the “gbm” package in R studio to test five
training samples for abandoning unimportant variables. The “gbm.simplify” function
allows the abandoning of unimportant variables among multiple variables to optimize the
prediction accuracy of the model. We kept the variables that were not abandoned three
times or less in the five training samples, and these variables were regarded as important
variables (Table 3). Finally, 12, 12, 12, and 13 variables were entered into the fitting phase
of the model as the main forest fire drivers for the four periods, respectively. The key
parameters of the BRT model in the four periods are shown in Table 4.
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Table 3. Selection of significant variables by the BRT model during four periods.

Period 1
(1981–14 March 1988)

Period 2
(15 March 1988–2008)

Period 3
(2009–2020)

All Years
(1981–2020)

Variable
Number of

Times
Abandoned

Variable
Number of

Times
Abandoned

Variable
Number of

Times
Abandoned

Variable
Number of

Times
Abandoned

Altitude 0 Daily difference
in temperature 0 Daily difference

in temperature 0 Altitude 0

Vegetation type 0 Altitude 0 Average monthly
precipitation 0 Daily difference

in temperature 0

Daily minimum
relative humidity 0 GDP per capita 0 Daily maximum

temperature 0 Monthly average
relative humidity 0

Daily average
relative humidity 0 Monthly average

relative humidity 0 NDVI 0 Average monthly
precipitation 0

Daily difference
in temperature 0 Distance to the

nearest railway 0 Daily average
relative humidity 0 Daily average

relative humidity 0

Daily maximum
ground

temperature
0 Average monthly

precipitation 0 Altitude 0 Daily minimum
relative humidity 0

Distance to the
nearest

watchtower
1 Daily minimum

relative humidity 0 Density of
population 0 Daily maximum

temperature 0

GDP per capita 1 Slope 0

Average ground
temperature

during autumn fire
prevention season

1
Distance to the

nearest
watchtower

0

Average sunshine
hours during the

fall fire season
1

Daily maximum
ground

temperature
1 Distance to the

nearest road 1
Daily maximum

ground
temperature

1

Distance to the
nearest settlement 1 Average monthly

sunshine hours 1 Daily minimum
relative humidity 1 Distance to the

nearest settlement 1

Sunshine hours 1 Sunshine hours 1 Distance to the
nearest watchtower 2

Average ground
temperature

during autumn fire
prevention season

1

Average daily
ground

temperature
2

Average sunshine
hours during the

fall fire season
1 Average monthly

sunshine hours 2 Distance to the
nearest road 1

GDP per capita 0

Table 4. Key fitting parameters of the final BRT model.

Parameters Period 1
(1981–14 March 1988)

Period 2
(15 March
1988–2008)

Period 3
(2009–2020)

All Years
(1981–2020)

Family Bernoulli Bernoulli Bernoulli Bernoulli
Learning rate 0.01 0.01 0.01 0.01

Tree complexity 5 5 5 5
Bag fraction 0.05 0.05 0.05 0.05

Number of trees 1050 2900 2350 4750

3.3. Ranking the Importance of Drivers

Nearly half of the important variables that were excluded were climate factors. The
model selection of significant variables suggests that fire occurrence was significantly
influenced by altitude, daily mean relative humidity or minimum relative humidity, and
daily temperature range. Humidity and precipitation are significant monthly factors that
influence the occurrence of fires. We also found that some indicators in the autumn fire
prevention period in the year before the fire had a significant impact on the fire occurrence
in the four periods, such as the average sunshine and average surface temperature during
the autumn fire prevention period in the year before the fire occurrence. Altitude and
topographic factors in all the models during all four periods showed a significant effect on
fire occurrence, and its importance level decreased during Periods 1–3. Vegetation type
had a significant effect during Period 3, and NDVI was also important during this period.
Socioeconomic factors, such as the average population density or GDP per capita, were
important at least once during each of the four periods. During Period 1, the location of
residential areas (Dis_res) had a significant impact on the occurrence of fires, but this effect
vanished in Periods 2 and 3. Figure 5 depicts the aforementioned data.
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3.4. Model Performance and Prediction Accuracy

We calculated the prediction accuracy of each sub-sample and the entire dataset, as
well as the AUC value under the ROC curve and the corresponding cut-off value, to test
the BRT model’s ability to predict (Figure 6). The results showed that the AUC values of
the BRT model in the four periods were all greater than 0.9, and the prediction accuracy
was greater than 80% (Table 5), indicating that the model fits well in the four periods. In
general, the AUC value was ranked as Period 1 < Period 2 < Period 3 ≈ all years, and the
AUC value of Period 3 was generally slightly higher than that of all the years.

We used the full sample fitting results of the BRT model and used the “gbm.plot”
function in the R language to plot the marginal effects between the forest fire occurrence
and main forest drivers (Appendix A, Figures A1–A4) to analyze the influence range of
the variables selected in different periods on the probability of forest fire occurrence. The
ordinate represents the marginal effects, and the higher the value, the greater the probability
of fire occurrence.
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Table 5. Model prediction accuracy and goodness of fit based on intermediate and complete datasets.

Sample Period Cut-off AUC Value
Prediction Accuracy (%)

Training Data Validation

Sample 1 1/2
3/All years

0.31/0.428
0.429/0.426

0.958/0.963
0.974/0.959

87.8/90.1
87/89.5

84.3/85.6
87/84.4

Sample 2 1/2
3/All years

0.332/0.431
0.252/0.387

0.968/0.97
0.966/0.969

90.4/90.6
90.1/90.4

81/87.8
79.9/85.1

Sample 3 1/2
3/All years

0.331/0.372
0.315/0.358

0.969/0.958
0.973/0.97

89.1/89.1
91.4/90.1

81.6/82.1
86.6/85.6

Sample 4 1/2
3/All years

0.31/0.428
0.429/0.426

0.955/0.961
0.976/0.967

89/89.9
92.9/83.6

83.2/84.7
90.3/83.7

Sample 5 1/2
3/All years

0.34/0.411
0.34/0.388

0.96/0.955
0.97/0.969

90.1/90
90/90

83.2/83.9
84.4/84.7

Complete dataset 1/2
3/All years

0.315/0.388
0.337/0.349 Figure 6 88.5/90.7

92/89.9

3.5. Mapping the Likelihood of Fire Occurrence and Fire Risk

We then drew the forest fire probability map and the fire risk zone map (Figures 7
and 8) (a 0 cut-off point was a low fire risk area, a cut-off points up to 0.6 was a medium
fire risk area, and 0.6 to 1 was a high fire risk area), according to the final model of the
BRT model in the four periods. The findings indicated that, within a larger region to the
east and southeast of the study area, the areas with a high probability of forest fires during
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Periods 1 and 2 were primarily concentrated. The areas with high a probability of forest
fire during Period 3 were different from the first two periods, mainly in the north and
northeast, and the area with a high probability of fire in the east decreased. The areas with
a high probability of forest fire were also concentrated in the east, southeast, and south,
and the fire risk for the entire period was comparable to that of Period 2. It is worth noting
that for all years, the border areas of China-Russia and China-Mongolia have had a high
fire risk. In addition, although the number of “border-crossing” fires was not high, weak
fire prevention facilities in the border areas and different fire management systems, and
difficulties in coordinating the cross-border firefighting efforts led to the fact that the area
of crossing fires was generally large and there was a great risk potential.
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Figure 8. Fire risk zone map of the Daxing’an Mountains, Inner Mongolia, in four periods (a) 1981–14
March 1988 (Period 1); (b) 15 March 1988–2008 (Period 2); (c) 2009–2020 (Period 3); (d) 1981–2020 (all
years). Fire risk is represented by three levels: low, medium, and high fire risk.

The model’s residuals were calculated and plotted to determine the model’s goodness
of fit. Figure 9 shows that there were clusters of positive residual areas (underprediction) in
the south and center of the study area in Periods 1 and 4, while clusters of negative residual
areas (overprediction) were found in the east. Positive residual areas were observed in
the south of the study area by the models during Period 2. Positive residual areas were
relatively concentrated in the northwest, southeast, and center of the study area during
Period 3 of the models. The model had more positive residuals throughout the entire time
period, but there was no large cluster area.
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Figure 9. Distribution of residuals obtained from the developed fire prediction model. (a) 1981–14
March 1988 (Period 1); (b) 15 March 1988–2008 (Period 2); (c) 2009–2020 (Period 3); (d) 1981–2020
(all years).

3.6. Kernel Density Analysis of Different Disaster-Causing Factors in Different Periods

Fires caused by human factors in the three periods were mainly concentrated in the
eastern part of the study area (Figure 10), while the distribution of natural factors (lightning
fires) was mainly concentrated in the northern part of the study area, and there was a
tendency to shift to the north with increasing fire density values. Combining Figure 10 with
Figures 7 and 8, we can see that the eastern part of the study area has a higher probability of
fire occurrence in different periods. The gradual northward migration of the fire occurrence
probability in Periods 2 and 3 in Figures 7 and 8 may be related to the migration trend of
lightning strike fires. The northeastern and southwestern parts of the study area have been
invaded by foreign fires at various times, and the northeast also has a high fire density, so it
is important to guard against fires from other provinces and cities as well.
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4. Discussion
4.1. Changes in Forest Fire Risk Zones and Fire Causes in Different Periods

The kernel density analysis graphs over different periods (Figure 10) show that the
aggregation of anthropogenic factors and natural factors are not the same in different
periods. In addition, the medium and high fire risk areas during Period 1 and Period 2 were
very different from those during Period 3, mainly because the risk of forest fire in the north
of the Daxing’an Mountains in Inner Mongolia was low before 15 March 1988, and the risk
increased after this period (Figures 7 and 8). The northern part of the Daxing’an Mountains
in Inner Mongolia is an undeveloped northern primeval forest area. For a long time, there
have been few fires caused by human factors, especially before 1987. The proportion of
lightning strikes as the cause of all forest fires in this area has been increasing in recent
decades [50]. After 1987, the number of human-caused fires decreased (Table 2), mainly
because regulations changed human activities during the fire season (all persons were
prohibited from using wildfires during the fire season), thus reducing human-caused fires.
At the same time, the number of fires caused by lightning strikes has increased significantly.
For example, in the northern primeval forest area, on the Qiqian Forest Farm on 2 July 2017
and Uma Forest Farm on 27 July 2002, there were huge forest fires caused by lightning
strikes. Another important reason for the increase in the probability of forest fires in this
area after 1987 is the burning from abroad. For example, on 30 April 2014, in the Yimu River
area of the Uma Forestry Bureau and on 2 May 2003, in the Heishantou area of Erguna City,
a huge forest fire occurred in the Russian borderland region, which undoubtedly increased
the fire risk in China. Both before and after the regulations were written, there was typically
a high likelihood of fires occurring in the eastern portion of the study area. The reason for
this is that the human gathering points in this area are relatively concentrated, and the road
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network density is high. After the 1990s, many tourist areas and forest trails were built,
which greatly increased the possibility of fire caused by human factors. At the same time,
the area is also prone to lightning strikes, making it a high-fire risk area.

4.2. Key Drivers and Their Changes in Different Periods

The key drivers affecting fire occurrence in different periods mainly include three
variables: temperature, relative humidity, and surface temperature. The contribution of
these climate-related factors are the main drivers of fires in the Daxing’an Mountains in
Inner Mongolia, consistent with the research on the boreal forests of China [7,33,34,43]. Here,
we discovered that some indicators of the fall fire prevention period are now significant
factors that influence the occurrence of forest fires. There is always a correlation between
the likelihood of a fire occurring and the average amount of sunshine hours and surface
temperature during the autumn fire prevention period of the year prior to the fire. Zhao
(2007) and Shu (2011) concluded from their research on the Daxing’an Mountains in China
that if the temperature is high and the relative humidity is low in the fire prevention
period in spring or fall, the number of forest fires and the burned area will increase
significantly [51,52]. The latter study also pointed out that if the temperature in the non-fire
prevention period in winter is significantly higher than that of the same period, it will lead
to the advance of the snow melting date in the spring of the second year and the increase in
the drying degree of combustibles, making the meteorological and combustible conditions
conducive to an early-season occurrence of forest fires [52]. Our results extended the winter
nonfire prevention period to the autumn fire prevention period. When formulating fire
prevention strategies, the forestry management department should pay attention to the
fire risks that may be caused by meteorological factors during the fire prevention period of
that year and should also carry out forest fire prevention work for the following year in
advance if it is found that meteorological factors, such as the average surface temperature
in the previous autumn fire prevention period have significant fluctuations when compared
with the same period. Two variables, altitude, and vegetation type are considered to
have an important impact on the occurrence of forest fires in the Daxing’an Mountains of
Inner Mongolia. This is consistent with the previous results [5,34,40,53]. Figures A1–A4
show that the majority of forest fires occur in low-altitude regions due primarily to the
concentration of intense human activity there, which will undoubtedly raise the likelihood
of human-caused fires. Additionally, the weather will alter the vegetation cover and soil
moisture as the altitude increases, making it less likely that fires will start [5,54,55]. After the
formulation of regulations, human-caused fires decreased significantly, while the number
of lightning fires increased and mainly occurred in high-altitude areas.

Socioeconomic factors such as gross domestic product, population density, and human
infrastructure factors (such as the location of settlements and railroads) have a significant
impact on the occurrence of forest fires. These findings are consistent with previous
results [7,14,43,56–58]. During Period 1, the location of the settlement (Dis_res) had a
significant effect on the occurrence of forest fires, but the effect of this variable disappeared
in Periods 2 and 3. Here, we hypothesize that fire prevention policies in different periods
have changed the distance between the fire point and the residential areas, which is an
important human factor affecting the occurrence of forest fires. After the 1990s, China
entered a stage of rapid development after reform and opening up, and many roads and
railways were built in the Daxing’an Mountains in Inner Mongolia. Fires near railway
tracks are mainly due to sparks accidentally released by steam engines, fire accidents on
trains, and cigarette butts thrown by passengers [43], while the roads are highly disturbed
by human activities, which is also a high-risk area for forest fires.

During Period 2 and Period 3, there were two key drivers: the location of the road
(Dis_road) and the location of the railway (Dis_train). Both of these factors decreased the
fire probability with an increase in the distance (Figures A2 and A3). Figures A1, A3 and A4
show that when the distance from the fire point to the observation tower was further, the
probability of fire occurrence was relatively higher. We propose two possible hypotheses for
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this to happen: (1) The closer to the watchtower, the easier the fire is to be discovered, and
if someone has the potential to start a fire, it can be stopped in time from the watchtower.
(2) If a fire has already occurred, the forestry management can discover the fire through the
watchtower and respond in time, which can limit the fire spreading, so there are fewer fires
near the watchtower. The concentration of firefighting resources is relatively low outside
the areas with frequent human activities, so increasing and smartly locating watchtowers is
crucial for forest fire prevention in remote areas.

4.3. Implications for Forest Fire Modeling and Management

Fire data used in modeling has long been limited by time and accuracy. The use of
remote sensing technology to identify wildfires has greatly developed since 2000 (such
as MOD14A1 satellite fire point data), with most current forest fire modeling studies
(especially large-scale) using fire point data from the past 20 years [31,59]. Other studies
use historical fire point data for modeling. The time span of historical fire point data can be
longer than that of satellite fire points, but most of them lack recent data [40]. Our modeling
using a long time series (40 years) of fire data revealed that the prediction accuracy of
Period 3 was higher than that of the full period, indicating that the modeling accuracy
using a long time series of fire data (1981–2020) was not higher than that of recent fire data
for a shorter period (2009–2020). In future work, we will consider the various factors in the
selection of fire time range data for the forest fire prediction modeling; this should allow
prediction results that are truly applicable to forest fire prevention and control.

The purpose of fire prevention and control policies is to minimize the harm of forest
fires to humans and their property through the actions of managers. Fire prevention
and control policies during different periods lead to different drivers affecting the fire
occurrence in different periods. The influence of the elevation on fire is weakened over time
(Figure 5), indicating that human activities are reduced, which is a quantitative process
for fire prevention and control policies. It is well-known and logical that watchtowers can
effectively reduce fire occurrence, and a comparison of the different periods shows that the
location of watchtowers may significantly influence fire occurrence (Figure 5), indicating
that there is still a higher risk of fire in places with fewer watchtowers. This means that fire
policy influences the probability and drivers of forest fires primarily through the regulation
of human behavior.

Different fire prevention and control policies have led to great differences in the fire
probability map of the same area during different periods. However, in the actual construc-
tion of forest fire prediction models and the division of fire risk zones, previous studies
have often ignored the impact of fire prevention and control policies, especially in China,
where the occurrence of forest fires is identified as an administrative event and equipped
with the corresponding laws for support [60]. After 1987, government departments at all
levels, from national to local, strengthened their forest fire management [21], which reduced
the impact of human factors and socioeconomic factors on the occurrence of forest fires.
Our results show that the relevant fire prevention and control policies formulated in China
after the fire in 1987 had a positive effect on the control of forest fires. In the future, the
impact of fire prevention and control policies on the dynamic changes in the fire risk zones
should be fully considered when drawing updated fire probability maps. The forest fire
management policy of China has made great progress compared to the period before 1987.
Before this, forest fire prevention and firefighting in China were developing slowly, lacked
laws on forest fire prevention, mainly relied on trees and branches to put out fires, and
lacked professional firefighting teams. After the implementation of the regulations, wind-
powered fire extinguishers were promoted. China has focused on forest fire prevention
and has established professional firefighting and rescue teams, which has greatly improved
the efficiency of fire prevention and firefighting. After the implementation of the new
regulations, China’s investment in forest fire prevention infrastructure has increased year
by year, local forest fire prevention forces have been developed, and the introduction of
large aircraft has improved aviation forest fire protection capabilities. The average number
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of forest fires per year in China has decreased from 15,932 before the formulation of the
old regulations to 7626 after the implementation of the old regulations to 3537 after the
implementation of the new regulations.

The forest fire management policies of China have made great progress; however,
there are still significant issues to address. In recent decades, a large number of trees have
been planted in China, which has greatly increased the forest fuel load and increased the
potential risk of forest fires. Additionally, the proportion of human-caused fires is still high
due to traditional customs and habits. The forest fire management information system
in China is inadequate systems in various regions are not unified and have poor data
sharing and system compatibility [17]; In addition, the pressure of lightning fire prevention
and control is high. The Daxing’an Mountains in Inner Mongolia is a high-incidence
area of forest fires caused by lightning strikes, accounting for 70% of the total number
of lightning fires in China, and most of the lightning strikes are in primeval forest areas
and areas with no roads. It is difficult to spot these fires in their initial stage, and they are
extremely difficult to mitigate or fight. There have been many major forest fires in history,
resulting in the heavy losses of ecological resources [61]. The basic capabilities of forest
fire prevention and control in China still have gaps compared to developed countries, the
basic theoretical support is lacking, and research on relevant forest fire spread models,
lightning fire monitoring, etc., is still in its infancy. It is thus necessary to continue to
improve relevant management policies, learn from the experience of developed countries,
and yield a strengthened comprehensive understanding of forest fire science in the future.

4.4. Limitations and Prospects

There are some limitations to this study. The fire data we use are from official govern-
ment data; however, it is crucial to check the reliability of this data for forest fire forecasting.
In China, forest fires are considered administrative events, so the fire information recorded
in our fire dataset is relatively detailed. The date of the fire is accurate, but there may be
some inevitable errors in the details. As for fire location, an alternative method based on
historical data is to use satellite imaging for fire detection [53], where satellite-derived and
historical data can be compared to verify the accuracy of the fire data location. Some of
the variables we use are often limited by the time range of the data, and there is no past
or current information about the variables [5], such as the distance from the fire points
to the roads and the distance from the fire point to human gathering points, which may
vary over time. In future research, we will collect updated information on the variables
from different data sources to improve the prediction of our forest fire model. In addition
to the impact of historical events on the occurrence and drivers of forest fires, extreme
climate events also affect the occurrence of forest fires. Yao et al. (2017) [62] found that
positive phases of the ENSO (El Niño-southern oscillation) and the PDO (Pacific decadal
oscillations) and negative NAO (North Atlantic oscillations) were linked to regional wild-
fires, which mostly occurred during drought years. Gao et al. (2021) [63] showed that the
AMO (Atlantic multidecadal oscillation) could regulate the fire states caused by lightning
strikes in the boreal forests of China. All this evidence suggests that extreme climate events
may impact or change the mechanisms of forest fires. Climate is still the dominant factor
affecting the occurrence of forest fires. Therefore, in future research, we will correlate major
historical events with extreme climate events and further explore the mechanisms and
drivers leading to forest fires in different periods. Additionally, a phenomenon known as
spatial non-stationarity can result from differences in the relative importance of factors
influencing fire occurs due to the environmental heterogeneity of fire points in various
spatial locations [64]. The problem of spatial non-stationarity can be effectively solved with
geographically weighted regression (GWR) [43]. This approach can incorporate spatial
changes in explanatory variables into the model by taking into account the influence of
geospatial and spatial factors. The impact of forest fire drivers on the probability of forest
fires with spatial location changes will be examined in our subsequent step using tech-
niques like geographically weighted logistic regression (GWLR). We here analyzed actual
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fire data combined with other remote sensing data based on GIS to supplement forest fire
prediction and forecasting systems. In the future, we will work on the collection of actual
fire data in practice and combine it with remote sensing data to achieve better forest fire
prediction results.

5. Conclusions

Here, we used historical fire data and demarcated using the new and old Forest Fire
Prevention Regulations as a dividing line to compare the differences between the model
prediction accuracy and the drivers in different periods using a BRT model. The results
show that the BRT model is suitable for the construction of forest fire predictions in the
Daxing’an Mountains of Inner Mongolia, with AUC values of more than 0.95 and prediction
accuracies of about 90%. The average surface temperature and average sunshine hours
during the fire prevention season of the previous year are the important driving factors
affecting the occurrence of forest fires in Daxing’an Mountains of Inner Mongolia. The
implementation of the old and new “Forest Fire Prevention Regulations” has caused the
number of man-made fires to decrease year by year, while the number of lightning fires
is increasing year by year. The aggregation of fires caused by natural factors (lightning
fires) varies from period to period, with a tendency to shift northward. The probability of
fire occurrence and fire risk zones have changed in different periods under the combined
influence of policy-regulated anthropogenic fires and lightning fires influenced by events
such as extreme weather. Our research can provide support and guidance for the selection
of the time series lengths of forest fire modeling and will provide more reasonable resource
allocations (such as watchtowers, checkpoints, etc.) for local forest fire prevention and
control so as to reduce the hidden danger of forest fires.
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Table A1. Land use type every five years from 1985 to 2020.

Land Use Classification Year (Percentage of Area Occupied)

Code Name Name 1985 1990 1995 2000 2005 2010 2015 2020

10 Rainfed cropland <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
11 Herbaceous cover 7.77% 8.26% 9.75% 10.82% 11.46% 11.24% 11.17% 11.79%
20 Irrigated cropland 0.15% 0.16% 0.17% 0.23% 0.22% 0.22% 0.25% 0.19%
61 Open deciduous broadleaved forest (0.15 < c < 0.4) \ <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
62 Closed deciduous broadleaved forest (fe > 0.4) 47.66% 48.41% 46.65% 46.24% 45.77% 45.42% 43.73% 43.76%
71 Open evergreen needle-leaved forest(0.15< fc < 0.4) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
72 Closed evergreen needle-leaved forest (fc > 0.4) 0.61% 0.82% 0.96% 1.24% 1.35% 1.44% 1.31% 1.37%
81 Open deciduous needle-leaved forest(0.15< fc < 0.4) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
82 Closed deciduous needle-leaved forest (fc > 0.4) 29.33% 28.17% 27.52% 27.31% 27.75% 27.94% 28.87% 28.78%
92 Closed mixed leaf forest (broadleaved and needle-leaved) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
120 Shrubland <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
121 Evergreen shrubland \ \ \ \ <0.1% <0.1% <0.1% <0.1%
122 Deciduous shrubland <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
130 Grassland 14.34% 13.88% 14.62% 13.71% 12.91% 13.03% 13.88% 13.14%
150 Sparse vegetation (fe < 0.15) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% 0.11% 0.16%
180 Wetlands <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
190 Impervious surfaces 0.15% 0.17% 0.18% 0.22% 0.26% 0.29% 0.33% 0.37%
200 Bare areas <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
210 Water body <0.1% <0.1% <0.1% 0.11% 0.15% 0.21% 0.22% 0.21%
220 Permanent ice and snow \ \ \ \ \ \ \ <0.1%
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