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Abstract: Vegetation phenology reflects the temporal dynamics of vegetation growth and is an
important indicator of climate change. However, differences consistently exist in land surface
phenology derived at different spatial scales, which hinders the understanding of phenological events
and integration of land surface phenology products from different scales. The Qinling Mountains
are a climatic and geographical transitional region in China. To better understand the spatial scale
effect issues of land surface phenology in mountainous ecosystems, this study up-scaled vegetation
start of season (SOS) and end of season (EOS) in the Qinling Mountains derived from three different
Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index
(NDVI) products to four scales (i.e., 2 km× 2 km, 4 km× 4 km, 6 km× 6 km, and 8 km × 8 km) using
the spatial averaging method. Then, similarities and differences between the up-scaled SOSs/EOSs
were examined using the simple linear regression, cumulative distribution function, and absolute
difference. Finally, the random forest model was used to reveal the major factors influencing the
spatial scale effect of land surface phenology in Qinling Mountains. Results showed that the derived
basic SOS/EOS datasets using the same filtering method from the 250 m and 500 m NDVI datasets
were consistent in spatial distribution, while the results from the 1000 m NDVI dataset differed. For
both the basic and the up-scaled datasets, the land surface phenology derived from the Savitzky-
Golay-filtered NDVI showed an advance in SOS, but a delay in EOS, compared to those derived from
the asymmetric Gaussian- and double logistic-filtered NDVI. The up-scaled SOS was greatly impacted
by both NDVI resolution and the filtering methods. On the other hand, EOS was mostly impacted
by the filtering methods. Moreover, up-scaled SOSs usually had larger differences compared to up-
scaled EOSs. While different filtering methods sometimes amplified the absolute differences between
different SOS/EOS across scales, the upscaling reduced the differences. Influence factor analysis
showed that spatial variations observed in SOS in Qinling Mountains were mainly caused by forest
cover, uneven distribution of spring precipitation, and annual precipitation, while spatial variations in
aspect, winter temperature, and autumn precipitation all strongly influenced the observed EOS across
scales in the study area. These findings enhance our understanding of the effects of observational scale
on vegetation phenology in mountain ecosystems and provide a reference for phenology modeling in
mountainous areas.

Keywords: spatial scale effect; Qinling Mountains; up-scaling; vegetation phenology; SOS; EOS

1. Introduction

Vegetation phenology involves several important cyclical plant phenomena, such
as germination, leaf development, flowering, and defoliation [1,2]. These phenological
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processes can reflect the differences in species interactions and ecosystem functions and
are impacted by climate change. Satellite-derived phenology is termed as land surface
phenology (LSP), which quantifies seasonal dynamics of vegetation activity [3]. Rapid
progress in remote sensing technologies have greatly expanded the scope of phenological
studies, thereby improving our understanding of land surface phenology from local to
global scales [4,5]. Due to its periodic/recurrent nature and sensitivity to climate change,
land surface phenology is considered an important vegetation indicator [6,7]. Additionally,
land surface phenology provides suitable references for studying global climate change,
biodiversity changes, ecosystem structure alterations [8–10], and carbon budget dynam-
ics [11]. Land surface phenology metrics are also widely used in remote sensing-based
drought monitoring systems [12] and for yield forecasting purposes [13].

During the last two decades, many land surface phenology products that developed
using different satellite data have assisted in capturing variations in global vegetation phe-
nology [14–19] and supporting the related research [20–23]. However, several studies have
revealed that the results of phenology products derived from different data sources are in-
consistent [24,25], with some differences being too large to ensure suitable comparison [26].
Observed differences can be caused by differences in various factors, such as the selected
vegetation index (VI) [6,27], spectral settings of satellites [7], radiometric resolution of sen-
sor bands [17,28], and spatiotemporal resolution of different datasets [29,30]. Among these,
spatial resolution is believed to be the most significant factor responsible for the observed
discrepancies between different phenology products [5]. Phenological discrepancies have also
been recognized as being scale-dependent because the ecological patterns vary spatially [31].

The impact of noises in the VI time series cannot be neglected when VIs are used to
retrieve vegetation phenology [21,27,28]. As optical data are negatively affected by clouds
and poor atmospheric conditions, different filtering and smoothing techniques have been
developed, which add to the observed differences in the subsequently derived land surface
phenology products (e.g., Atkinson et al. [32]). The problem is further amplified by the fact
that hectometric to kilometric scale products are notoriously difficult to validate via field
measurements [26]. To circumvent this problem, either comparative studies can be performed
or assessments of the product’s usefulness in downstream applications is needed [33].

To quantitatively analyze the phenological differences derived at different scales,
several studies have scaled up fine-resolution phenology and compared it with the coarse-
resolution phenology [34–36]. For example, Fisher and Mustard [37] calculated the average
of 30 m Landsat-5 start of season (SOS) results at 500 m and then compared it with the
average of the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) SOS results.
Their results showed a difference of approximately 0–25 days in SOS, with no systematic
bias. Delbart et al. [38] verified the green-up dates of four woody plants in Canada obtained
from SPOT-VEGETATION by calculating the average value of ground-observed SOS, and
found that the difference was 13.6–15.6 days. Peng et al. [3] investigated the vegetation
SOS in the continental United States by resampling 250 m MODIS enhanced vegetation
index (EVI) to different spatial resolutions (250 m, 2 × 250 m, 3 × 250 m, . . . , 35 × 250 m)
and reported that SOS changed linearly or logistically when EVI became coarser. Among
the six ecological regions analyzed, five showed increases in SOS when EVI became coarser
(that is, green-up was delayed). Contrastingly, Zhang et al. [34], who studied maize and
soybean planting areas in the United States, reported that the 500 m green-up dates were
advanced compared to the 30 m green-up dates.

Although other studies investigated the observational scale effects of remotely sensed
vegetation phenology for different vegetation types, most studies focused on only two
scales, with few considering multiple-scale analysis. Additionally, autumn phenology has
rarely been studied, and different studies have provided contrasting conclusions concerning
phenology products or pre-processing. Together, the mentioned gaps and discrepancies
illustrate the complexity of the spatial scale effects of remotely sensed phenology. To address
this research gap, studies on scale effects in different regions and vegetation ecosystems are
required to better understand these issues and integrate different phenology products.
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Qinling Mountains are a crucial ecological conservation area and geographical and
climatic transition zone in China. This provides an ideal area for examining land surface
phenology spatial scale issues in a mountainous region. Accordingly, this study aimed to
quantitatively demonstrate the changes in vegetation phenology in the Qinling Mountains
derived from different up-scaled data sources. Initially, we acquired three MODIS nor-
malized difference vegetation index (NDVI) products, and then smoothed the three NDVI
time series using the three filters to retrieve the vegetation SOS and end of season (EOS).
Subsequently, the datasets were up-scaled to 2 km × 2 km, 4 km × 4 km, 6 km × 6 km, and
8 km × 8 km resolutions using spatial averaging. The cumulative distribution function
(CDF), the absolute difference, and the linear regression methods were utilized to measure
the differences between the up-scaled SOSs/EOSs. Finally, we also investigated the major
influencing factors that impacted the spatial scale effects of local land surface phenology.

2. Materials and Methods
2.1. Study Area

Our specific study area is confined to the parts of the Qinling Mountains within
Shaanxi Province, China [39]. This region ranges from 105◦30′E to 111◦05′E, and from
31◦40′N to 34◦35′N (Figure 1). It is located in the southern part of Shaanxi Province,
south of the Weihe River and north of the Hanjiang River. The total acreage is 61,900 km2,
which accounts for 30% of the total area of Shaanxi Province, China. The altitude range is
171–3747 m [40]. The Qinling Mountains can be divided into the north and south slopes
by the Qinling mountain line [40,41]. Since we focus on the SOS and EOS changes of
mountainous vegetation, Hanzhong Basin was excluded from further analysis as it is
mainly used for crop plantations.

Qinling Mountains represent a climatic and geographic transition zone between south
and north China [36], and between warm temperate and subtropical climates. Moreover,
China’s 0◦ isotherm passes through this region. As a result, large-scale differences in
climate (Figure 2a,b), plants [42,43], soil, and agricultural land use exist between north
and south regions of the Qinling Mountains [10,44]. Specifically, the climate is dry in the
north and wet in the south. In addition, the elevation gradually increases from east to west
and the topography of Qinling Mountains is characterized by mountains and hills [45]
(Figure 2c). Slightly acid yellow-brown soil developed from granitic gneiss dominates
in the south, while calcareous soil dominates in the north [40]. The forest cover of the
study area exceeds 70%, and its distribution of vegetation types also presents an obvious
transition from the north to the south (Figure 2d) [46], with the north slope dominated
by warm temperate deciduous broad-leaved forests and the south slope characterized by
deciduous broad-leaved forests mixed with evergreen species [28]. Further, from the north
to the south of the Qinling Mountains, evergreen forests occur at lower elevations, while the
larch forest belt is distributed across higher elevations (Figure 3) [46]. These differences in
the vegetation types lead to spatiotemporal diversity in vegetation phenology and growth
status on the north and south slopes.

2.2. Data Sources and Pre-Processing

(1) MODIS NDVI data. To explore the scale effects of land surface phenology, three
MODIS NDVI datasets were considered in this study, including MOD13Q1, MOD13A1, and
MOD13A2, with spatial resolutions of 250 m, 500 m, and 1000 m, respectively. The three
datasets have the same temporal resolution (16 days) [47,48]. Thus, temporal sampling
effects could be ignored in this study. The data during 2017–2019 were obtained from the
United States Geological Survey (https://lpdaacsvc.cr.usgs.gov/ (accessed on 12 September
2020)) for retrieving vegetation SOS and EOS in 2018. The atmospheric contamination has
already been considered during the production of the three datasets.

(2) Meteorological data. To investigate the impacts of precipitation and temperature on
the spatial scale effects of land surface phenology, we also downloaded the 1 km monthly
precipitation [49–53] and temperature [49,54–56] datasets in 2017–2018 from the National
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Tibetan Plateau Data Center (http://data.tpdc.ac.cn/ (accessed on 19 July 2022)). Based
on the two datasets, yearly average temperature (Figure 2a) and yearly total precipitation
(Figure 2b) can be calculated. However, studies have revealed that vegetation phenology
in this region is mainly driven by seasonal meteorological conditions rather than yearly
conditions [40,44]. Therefore, we also calculated the seasonal total precipitation and average
temperature. Seasons are divided into three months per season with the start in January.

(3) Topographic data. Since the study area is in a mountainous region, the influence
of topographic conditions cannot be neglected. The 12.5 m Advanced Land Observing
Satellite (ALOS) Digital Elevation Model (DEM) data (Figure 2c) were downloaded from the
National Aeronautics and Space Administration (https://search.asf.alaska.edu/#/ (accessed
on 7 January 2021)) [57], the slope and aspect are calculated based on the DEM data.

(4) Land cover data. The composite and structure of tree species are highly related to the
dynamics of vegetation phenology in Qinling Mountains. However, an accurate map of tree
species in the study area is unavailable. As a supplement, a high spatial resolution land cover
map can provide complementary information about the ground surface cover. This study
obtained the 30 m GlobeLand30 land cover map in 2020 (http://www.globallandcover.com/
(accessed on 15 July 2022)) for characterizing the tree cover status in this region [41] (Figure 2d).
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2.3. Method

Vegetation phenology (SOS and EOS) was first retrieved from differently processed
NDVI datasets at 250 m, 500 m, and 1000 m. Afterwards, the basic SOS/EOS datasets were
up-scaled to the four desired spatial scales using spatial averaging (Figure 4). Simple linear
regression was used to examine the similarities and differences between the up-scaled
SOSs and EOSs at different scales. To show the spatial scale effects caused by spatial
resolution and the filtering methods, cumulative distribution functions (CDF) of each
up-scaled SOS/EOS were derived as well as the absolute difference between the up-scaled
SOSs/EOSs. Finally, the random forest model was used to reveal the major factors that
influencing the spatial scale effect of SOS/EOS in the study area.
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2.3.1. Retrieval of SOS and EOS

We used TIMESAT 3.3 software to obtain the basic vegetation SOS and EOS from
the NDVI time series using three data smoothing and fitting functions: the asymmetric
Gaussian (AG) filter [58], the double logistic (DL) filter [59], and the Savitzky-Golay (SG)
filter [60]. These three methods are extensively used in vegetation phenology research
to pre-process and analyze vegetation index time series contaminated by clouds and
atmospheric conditions. To focus on scale effects, other prominent filters, such as the
Whittaker smoother [16] and harmonic analysis [59], were not included.
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Vegetation activity follows a strong seasonal cycle. NDVI curves can thus be fitted
using simple Gaussian functions [58]. However, due to factors such as vegetation type,
topography, temperature and precipitation pattern, vegetation NDVI often cannot be
fitted perfectly with a standard Gaussian curve [61]. The asymmetric Gaussian and double
logistic filter can better capture the asymmetry in the NDVI curves with generally consistent
results [59]. Unlike the asymmetric Gaussian and the double logistic filter, the Savitzky-
Golay (SG) filter is based on temporally localized least squares-fits [62], which smooths the
(noisy) observations in overlapping temporal windows to remove noise in the time series
data [27].

To retrieve the land surface phenological metrics of any target year (here 2018), the
TIMESAT software requires input of three consecutive and encompassing years of NDVI
data. We used 2017–2019 NDVI to obtain vegetation SOS and EOS in 2018. To minimize
the impact of different parameter settings, parameters were set to standard settings for
all three filters (Table 1). The only difference is that when the Savitzky-Golay (SG) filter
was used, there was a specific parameter—window size. The window size was set as two,
representing 32 days in this study. Then, for SOS and EOS retrieval, as only one season
occurs per year in the study region, the seasonal parameter was set as one. The seasonal
amplitude method was used to retrieve SOS/EOS for all conditions [63]. Both SOS and
EOS retrieval values were set as 0.2 of the full amplitude. Obviously, all parameter settings
have the potential to impact the retrieved vegetation phenology.

Table 1. Common parameter settings used in this study for NDVI smoothing using the TIMESAT
software.

Parameters Value Setting

Amplitude cutoff 0

Spike method 1-Median filter
Spike parameter 2

Output data 1 = Seasonality & 1 = Filtered data & 0 = No original data
Use land data 0 = No
STL stiffness 3
Debug flag 0 = No debug

2.3.2. Upscaling of SOS and EOS

Differences in vegetation phenology retrieved from NDVI data of different spatial
resolutions should be unified to the same scale for suitable comparison. This can be
achieved by upscaling the phenology metrics retrieved from finer resolution remote sensing
data and then comparing them with the phenology metrics retrieved from coarser resolution
remote sensing data. The spatial averaging method [5,64] and the percentile aggregation
method [34,35] are commonly used upscaling methods in phenology studies. The former
calculates the mean values of fine-resolution vegetation phenology metrics within the
corresponding areas of the coarse-resolution pixels [38]. The latter calculates the cumulative
percentage of fine-resolution vegetation phenology in ascending order and determines the
cumulative percentage of fine-resolution phenology corresponding to the coarse resolution
at the same spatial location [34]. By comparing different upscaling methods, several studies
indicated that the averaging approach can be sufficiently employed in most studies [5,65].
The averaging method was thus selected to obtain the up-scaled vegetation SOS/EOS in
this study.

The upscaling process is illustrated in Figure 4. First, we created a series of grids with
different size (i.e., 2 km × 2 km, 4 km × 4 km, 6 km × 6 km, and 8 km × 8 km) covering
the basic SOS/EOS data (Figure 5). Any grid cells not fully in the study area were removed.
After that, we calculated the average SOS/EOS within each grid at each scale. Background
pixels and outliers (missing values) were set as no-data and ignored during the calculations.
This ensures that border grid cells are not influenced by the background.
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2.3.3. Quantitative Analysis of the Spatial Scale Effect

After upscaling, we carried out the linear regression to measure the similarities and
differences between the up-scaled SOSs or EOSs at each scale and the coefficient of de-
termination (R2) between two up-scaled SOSs or EOSs was derived [66]. The closer R2 is
to one, the closer the two up-scaled SOSs or EOSs are. Also, the root mean square error
(RMSE) [67] between two up-scaled SOSs or EOSs was calculated. A lower RMSE indicates
the two up-scaled SOSs or EOSs are close to each other. The equation for calculating RMSE
is as follow:

RMSE =

√
∑m

i=1(Xi −Yi)
2

m
(1)

where X represents one up-scaled SOS or EOS, and Y denotes another up-scaled SOS or
EOS at the same scale as X, m is the number of grids at this scale.

The cumulative distribution functions (CDF) were also calculated to show the value
distribution difference of the up-scaled SOS and EOS datasets. To further highlight dif-
ferences between the various results, we calculated the absolute difference between the
up-scaled results at each scale. We mainly considered two circumstances:

1. Up-scaled SOSs/EOSs from the same filtering method but from different input data
sets (e.g., from different spatial resolutions).

2. Up-scaled SOSs/EOSs from different filtering methods and different spatial resolutions.

For (1) we calculated the absolute difference between the up-scaled SOS/EOS of the
250 m and 1000 m SOS based on the AG-filtered NDVI, and for (2) we calculated the
absolute difference between the 250 m SOS/EOS obtained through SG-filtering and the
1000 m SOS/EOS obtained through AG-filtering, and these results are representative for
other combinations. For both circumstances, the absolute differences were calculated, and
then the corresponding values of the 20%, 40%, 60%, and 80% cumulative frequency of
the 2 km SOS/EOS difference were taken as the breaking points. The absolute differences
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at other spatial scales were separated at these breaking points to show the changes in the
up-scaled SOS/EOS as the spatial resolution becomes coarser.

2.3.4. Investigation of the Factors Influencing the Spatial Scale Effects of Land
Surface Phenology

Land surface phenology spatial scale effects are measured by the difference of the
maximum SOS (EOS) and the minimum SOS (EOS) in each grid at the four scales. In order
to exclude the impacts of filtering methods, we only considered SOS/EOS derived from the
same filtering method. To be more specific, we calculated SOS spatial scale effect by using
the SOS derived from the 250 m AG-filtered NDVI minus that derived from the 1000 m
AG-filtered NDVI at all four scales. Similarly, EOS spatial scale effect was computed by
using the EOS derived from the 250 m AG-filtered NDVI minus that derived from the
1000 m AG-filtered NDVI at all four scales. Thus, the spatial scale effect of SOS/EOS can
show how big the differences are between the observed SOS/EOS across scales.

Local geographic and environmental conditions strongly influence vegetation phe-
nology. Several studies in this region confirm that meteorological factors are the main
factors affecting the long-term variations in SOS and EOS in Qinling Mountains [68–70]. In
addition, topography strongly impacts vegetation phenology [71]. Moreover, vegetation
phenology is directly related to the surface vegetation types, coverage, composite, and
structure. Therefore, we considered meteorological, topographic, and forest cover factors
(Table 2) in investigating the factors influencing the spatial scale effects of land surface
phenology.

Table 2. Names and definitions of the influencing factors considered in this study.

Types of Influencing Factors Names of Factors Definitions SOS or EOS
Factors

Meteorological factors

Difference of the yearly total
precipitation (DP)

Grid maximum minus grid
minimum. Data in 2018. Both

Difference of the yearly averaged
temperature (DT)

Grid maximum minus grid
minimum. Data in 2018. Both

Difference of the spring
precipitation (DspP)

Grid maximum minus grid
minimum. Data in 2018. SOS only

Difference of the summer
precipitation (DsuP)

Grid maximum minus grid
minimum. Data in 2018. SOS only

Difference of the autumn
precipitation (DauP)

Grid maximum minus grid
minimum. Data in 2018. EOS only

Difference of the winter
precipitation (DwiP)

Grid maximum minus grid
minimum. Data in 2018. EOS only

Difference of the spring
temperature (DspT)

Grid maximum minus grid
minimum. Data in 2018. Both

Difference of the summer
temperature (DsuT)

Grid maximum minus grid
minimum. Data in 2018. Both

Difference of the autumn
temperature (DauT)

Grid maximum minus grid
minimum. Data in 2018. EOS only

Difference of the winter
temperature (DwiT)

Grid maximum minus grid
minimum. Data in 2018. EOS only

Difference of previous autumn
precipitation (DpauP)

Grid maximum minus grid
minimum. Data in 2017. SOS only

Difference of previous winter
precipitation (DpwiP)

Grid maximum minus grid
minimum. Data in 2017. SOS only

Difference of previous autumn
temperature (DpauT)

Grid maximum minus grid
minimum. Data in 2017. SOS only

Difference of previous winter
temperature (DpwiT)

Grid maximum minus grid
minimum. Data in 2017. SOS only



Remote Sens. 2022, 14, 5749 10 of 25

Table 2. Cont.

Types of Influencing Factors Names of Factors Definitions SOS or EOS
Factors

Topographic factors

Difference of elevation (DE) Grid maximum minus grid minimum. Both

Difference of slope (DS) Grid maximum minus grid minimum. Both

Difference of aspect (DA) Grid maximum minus grid minimum. Both

Forest cover factors

Forest area ratio (FAR) Grid forest area ratio. Both

Difference of vegetation area ratio
(DVAR)

Forest area ratio minus grass and shrub
area ratio in a grid. Both

The grid difference of each factor directly shows the uneven distribution of this factor
in a grid or reflects the heterogeneity of this factor in a grid. Since these factors are
different in units and data ranges, the random forest (RF) model [72] was utilized in this
study to detect the major influencing factors because it is a nonparametric multivariate
method and has no requirements for statistical assumptions [73,74]. It can handle complex
relationships with high efficiency, as well as to determine the relative importance of each
input feature [70,75]. The relationships between LSP spatial scale effect and the considered
meteorological, topographic, and forest cover factors may be non-linear and complex, thus,
we detected the relatively significant influencing factors using the important analysis of the
RF model.

3. Results
3.1. Qualitative Comparison of the Derived SOS and EOS
3.1.1. Spatial Distribution of SOS from Three NDVI Datasets at 250 m to 1 km

The maps of vegetation SOS derived from the three NDVI datasets are shown in
Figure 6. Each row presents SOS retrieved from the three spatial resolutions (e.g., 250 m,
500 m, and 1 km) using the same smoothing method. Compared with the SOS retrieved
from the 250 m and 500 m NDVI datasets, the SOS retrieved from the 1000 m NDVI dataset
was significantly delayed in the ridge region but advanced on both sides of the ridge. The
SOS spatial distribution obtained from the AG-filtered and DL-filtered NDVI were almost
the same, but the SOS obtained by SG-filtering was biased to earlier dates (by approximately
10 days).

3.1.2. Spatial Distribution of Vegetation EOS from Three NDVI Datasets at 250 m to 1 km

The EOS maps derived from the three NDVI datasets are shown in Figure 7. The blank
areas in the figure represent masked-out anomalous EOS data; they had been flagged as
missing values in the TIMESAT output result. In the results acquired through AG- and
DL-filtering, fewer outliers were found compared to the SG-filtering. Outliers were mainly
located on the ridge and in the south sloping areas. All outliers were excluded to ensure
accuracy of the subsequent analysis.

The distributions of EOS based on the datasets filtered by the same filtering method
(each row) were consistent with each other. Compared with the EOS data derived from
the 250 m and 500 m datasets, EOS data from the 1000 m dataset indicated that vegetation
green-up occurred earlier in the ridge area and relatively later on the south and north
slopes. Compared to EOS data retrieved through AG- and DL-filtering, those retrieved by
SG-filtering were delayed, especially in the south and north sloping areas.
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3.2. Quantitative Comparisons of the Up-Scaled SOSs and EOSs
3.2.1. Quantitative Comparisons of the Up-Scaled SOSs

The simple linear regression R2 and the RMSE between each pair of the up-scaled
SOSs at each scale is presented in Figure 8. All linear regression equations passed the
F-test at a significance level of 0.001. This figure shows that the up-scaled SOSs are greatly
impacted by both NDVI resolutions and the filtering methods. For SOSs derived from
NDVI smoothed by the same filtering method, their up-scaled results derived from the
250 m SOSs are close to those derived from the 500 m SOSs, with higher R2 and lower
RMSE. However, the results derived from the 1000 m SOSs are less close to the former
two, with relatively low R2 or higher RMSE. For SOSs derived from NDVI processed by
different filtering methods but with the same resolution, up-scaled SOSs from the AG-
and DL-filtered data are closer to each other, but the up-scaled SOSs from the SG-filtered
data are less close to the former two. This can be observed at all four scales. As the scale
becomes larger, the R2 gets bigger and the RMSE becomes smaller in most cases, indicating
the up-scaled SOSs are closer to each other at larger scales.
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are seen from these figures. For example, at the ridge, the up-scaled 1000 m resolution 
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A2). The opposite behavior was observed for the slopes. Noticeable differences can also 
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Figure 8. Linear regression results between the up-scaled SOSs at (a) 2 km, (b) 4 km, (c) 6 km, and
(d) 8 km. D1 is the SOS up-scaled from the SOS derived from the 250 m AG-filtered NDVI. D2 is the
SOS up-scaled from the SOS derived from the 250 m DL-filtered NDVI. D3 is the SOS up-scaled from
the SOS derived from the 250 -m SG-filtered NDVI. D4 is the SOS up-scaled from the SOS derived
from the 500 m AG-filtered NDVI. D5 is the SOS up-scaled from the SOS derived from the 500 m
DL-filtered NDVI. D6 is the 6-km SOS up-scaled from the SOS derived from the 500 m SG-filtered
NDVI. D7 is the SOS up-scaled from the SOS derived from the 1000 m AG-filtered NDVI. D8 is the
SOS up-scaled from the SOS derived from the 1000 m DL-filtered NDVI. D9 is the SOS up-scaled
from the SOS derived from the 1000 m SG-filtered NDVI. SG, AG is the asymmetric Gaussian filter,
DL is the double logistic filter, and SG is the Savitzky-Golay filter. All linear regression equations
passed the F-test at a significance level of 0.001.
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From the above analysis, up-scaled SOSs for the 500 m SOSs are extremely similar to
those from 250 m. Hence, to illustrate upscaling effects, only the 250 m and 1000 m SOSs
are shown here. The up-scaled SOS datasets from 250 m and 1000 m spatial resolution are
shown in Figure 9 and Appendix A, Figures A1 and A2. Consistent differences are seen
from these figures. For example, at the ridge, the up-scaled 1000 m resolution SOS was
significantly later than the 250 m resolution SOS (Appendix A, Figures A1 and A2). The
opposite behavior was observed for the slopes. Noticeable differences can also be seen in
the CDF shapes at all four scales (Figure 9). In particular, the values of the up-scaled SOS
from the 1000 m SOS are consistently higher than the corresponding SOS from the 250 m
SOS, indicating a delayed green-up. Amongst the three filters, the SOS obtained from the
AG-filtered NDVI was the most delayed and the SG-filtered SOS the most advanced.
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The absolute differences between the up-scaled 250 m and 1000 m SOS based on the
AG-filtered NDVI are shown in Figure 10. When the spatial scale was 2 km, the absolute
difference in SOS in about 60% of the study area was <6.6 days, while 20% had differences
>11.7 days. The difference was large in the northeastern regions, while it was small in the
southern and western regions. As the spatial scale increased from 2 to 8 km, the spatial
difference gradually decreased. At 8 km, less than 9% had differences >11.7 days, compared
to 20% at 2 km.
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The vegetation phenology differences were more prominent after datasets were up-
scaled using different filtering methods than when the same filtering method was used
(Figure 11). It shows that, as the spatial scale increased, the difference between the two
datasets (i.e., 250 m SOS obtained through SG-filtering and the 1000 m SOS obtained
through AG-filtering) was “intermediate”, which was more obvious than the trend demon-
strated in Figure 9. Specifically, the areas under <4.9 d and >23.8 d showed a decreasing
trend, and those between 5.0 and 23.7 d showed an increasing trend. This indicates that
although different filtering methods can enlarge this difference, the increase in the scale
can at the same time reduce this difference. This can also be proved by Figure 8.
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3.2.2. Quantitative Comparisons of the Up-Scaled EOSs

Similarly, the simple linear regression R2 and the RMSE between each pair of the
up-scaled EOSs at each scale are drawn in Figure 12. All linear regression equations pass
the F-test at a significance level of 0.001. Unlike the up-scaled SOSs, the up-scaled EOSs are
mostly impacted by NDVI filtering methods. The up-scaled EOSs generated from EOSs
derived from the SG-filtered NDVI are consistently different from those derived from the
AG- and DL-filtered NDVI, with much lower R2 and relatively large RMSE, especially
those from the 500 and 1000 m SG-filtered NDVI. Distinctly, the up-scaled EOSs at 4 km
are all closer to each other than at other scales. This indicates that when the scale becomes
larger, the up-scaled EOSs become similar then become slightly different.
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Figure 12. Linear regression results between the up-scaled EOSs at (a) 2 km, (b) 4 km, (c) 6 km, and
(d) 8 km. D1 is the SOS up-scaled from the SOS derived from the 250 m AG-filtered NDVI. D2 is the
SOS up-scaled from the SOS derived from the 250 m DL-filtered NDVI. D3 is the SOS up-scaled from
the SOS derived from the 250 m SG-filtered NDVI. D4 is the SOS up-scaled from the SOS derived
from the 500 m AG-filtered NDVI. D5 is the SOS up-scaled from the SOS derived from the 500 m
DL-filtered NDVI. D6 is the SOS up-scaled from the SOS derived from the 500 m SG-filtered NDVI.
D7 is the SOS up-scaled from the SOS derived from the 1000 m AG-filtered NDVI. D8 is the SOS
up-scaled from the SOS derived from the 1000 m DL-filtered NDVI. D9 is the SOS up-scaled from
the SOS derived from the 1000 m SG-filtered NDVI. (AG is the asymmetric Gaussian filter, DL is the
double logistic filter, and SG is the Savitzky-Golay filter). All linear regression equations pass the
F-test at a significance level of 0.001.

As the same, to illustrate upscaling effects, only the 250 m and 1000 m EOS datasets
are compared here. Figure 13 and Appendix A, Figures A3 and A4 show the upscaling
results of 250 m and 1000 m resolution EOS data (excluding outliers). The up-scaled EOS
obtained by the three filtering methods was compared at the same scale. The up-scaled
EOS retrieved by the AG filter was the earliest, while that retrieved by the DL filter ranged
between AG- and SG-derived EOS. The EOS obtained by SG-filtering was approximately
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8 d later than the AG-derived EOS. Unlike SOS, the CDFs show data distributions of the
up-scaled EOS from the 250 m and 1000 m EOS that are very close to each other at all scales.
Moreover, irrespective of the resolution and filtering method used to retrieve the EOS, the
spatial difference of EOS gradually decreased from 2 km to 8 km with reductions in the
spatial resolution.
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Similar to the SOS results, we calculated the absolute difference of the 250 m and
1000 m EOS retrieved by AG-filtering (Figure 14). When the spatial scale was 2 km, the
absolute difference was within 5 d in 80% of the study area. The absolute differences were
largest in the northern ridge area, and smallest in the southern and western regions. As the
scale increased, the spatial difference decreased gradually, and when the scale was 8 km,
80% of the study area showed an absolute difference of less than three days.
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Figure 14. Absolute differences between the up-scaled results from 250 m and 1000 m EOSs retrieved
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The absolute differences between the 250 m SOS retrieved by SG-filtering and the
1000 m EOS obtained by AG-filtering are shown in Figure 15. Similar to SOS, the difference
between the EOS upscaling results with different resolutions was not evenly distributed
spatially, and different filtering processing methods enlarged this difference, while an
increasing scale reduced this difference. Our results indicate when smoothing NDVI time
series in mountainous forest ecosystems, the filtering methods should be carefully inspected
and selected.
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3.3. Major Factors Influencing LSP Spatial Scale Effect

We input all data from the four scales into the RF model, and the relative importance
of the considered factors is shown in Figure 16. There are big differences between the
major factors affecting the spatial scale effects of SOS and EOS. As for the spatial scale
effect of SOS, the most important factors are forest cover, spring precipitation, and annual
precipitation. This reveals that the differences observed in SOS across scales in Qinling
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Mountains are mainly caused by forest cover, uneven distribution of spring precipitation,
and annual precipitation. The spatial variations in summer precipitation and previous
winter precipitation also cause the observed SOS difference across different scales. Tem-
perature factors have weak impact on SOS observation at different scales. On the contrary,
spatial variations in aspect, winter temperature, and autumn precipitation all strongly
influence the observed EOS at different scales, indicating that topographic heterogeneity
and unevenly distributed meteorological conditions can strongly influence the observation
of EOS across scales. In addition, spatial variations in winter precipitation have big impact
on EOS observation across scales. Different from SOS, forest cover has very weak impact
on the detected EOSs across scales in the Qinling Mountains.
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4. Discussion

Long-term spatiotemporal changes in regional and global land surface phenology
and its responses to climatic and environmental change have been extensively studied
in the current research. However, the spatial scale effects in land surface phenology are
seldom studied, especially in mountainous areas. We compared the upscaling differences in
vegetation phenology based on various datasets in the Qinling Mountains. The up-scaled
SOS was greatly impacted by both NDVI resolution and the filtering method, while the
up-scaled EOS was mostly impacted by the filtering method. Our findings are consistent
with existing research. For example, by using the same MODIS NDVI products as used
in this study, Li et al. [76] compared the correlations between ground observations and
the SOS retrieved from the three NDVI data in the mountains of northwest Mongolia,
and found the SOS derived from the high resolution MOD13Q1 NDVI had the strongest
correlations with ground truths. Similarly, Mountford et al. [77] investigated the SOS/EOS
across the entire United Kingdom and found that remotely sensed phenological parameters
are sensitive to spatial resolution and composite period.

Different filtering processing methods enlarged the difference between different up-
scaled vegetation phenology in the Qinling Mountains, while up-scaling reduced this
difference. Different filtering methods have different assumptions and utilize different
mathematic methods to smooth NDVI time series, which alters the shape of NDVI time
series and eventually impacts the retrieved SOS/EOS. Our findings indicate when smooth-
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ing NDVI time series in mountainous forest ecosystem, the filtering methods should be
carefully inspected and selected. The spatial averaging method was used for up-scaling
SOS and EOS. Since the spatial averaging tends to eliminate the differences between pixels
in grids, making the results move toward the regional mean. Thus, it blurs the differences
between the up-scaled SOSs/EOSs. Although this method is easy to use, some studies
have reported that the phenology obtained by this method differs from that retrieved from
coarse resolution data [5]. In contrast, the percentile method can reduce the inconsistency
in phenological data retrieval at different scales by selecting the SOS/EOS corresponding
to different percentiles [5,34]. However, the percentile method is highly empirical. Deter-
mining the appropriate percentile, which varies regionally, requires appropriate validation
data [34]. Thus, the most suitable percentiles for different regions are difficult to determine.

Elevation has been identified as a significant contributor of the phenology variabil-
ity [76,78]. In mountain ecosystems, topography greatly influences the microclimate,
community composition, and available soil moisture [79]. Prominent spatial scale effects
of vegetation phenology are observed in the Qinling Mountains in our study. While the
difference observed in SOS across scales in Qinling Mountains are mainly caused by forest
cover, uneven distribution of spring precipitation, and annual precipitation, the aspect
heterogeneity and unevenly distributed winter temperature and autumn precipitation
strongly influence the observation of EOS across scales. The possible reason is that an
increase in spring precipitation in mountain areas may make soil moisture reach its optimal
state for vegetation to grow earlier [80]. As Qinling Mountains are dominated by forest,
a higher forest cover means less shrub and grass exist, thus the start of season will show
less heterogeneity. It has been well recognized in existing studies that warmer autumn
leads to a later EOS [81,82]. The temperature in mountain areas is usually lower than
the plains at the same latitude. As sunny slopes receive more sunlight and are low in
water content, it favors the growth of sun loving plants. Shady slopes, on the contrary,
receive less sunlight and are high in humidity; thus, they are suitable for the growth of
shade loving plants. In this way, the aspect affects the microclimate, which ultimately
affects the vegetation phenology. A higher temperature in winter in Qinling Mountains will
extend the photosynthetic activities of vegetation [83]. Increased precipitation in autumn
will improve the soil moisture and delay vegetation senescence. Our findings not only
provide a useful supplement to the existing literature on the analysis of factors affecting the
long-term variations of phenology in the same area [45,68,70,71], but also strongly confirm
the discoveries in previous studies in other forest mountain regions, such as Peng et al. [84].
Therefore, the spatial scale effects of vegetation phenology in mountain areas should not be
neglected in future related studies.

A series of ecological projects has been implemented in the past two decades in
Qinling Mountains to prevent vegetation degradation and help vegetation recovery, such
as the Grain for Green program, the Natural Forest Protection project, the Establishment of
Nature Reserves, and the Project of Biodiversity Protection. Vegetation cover in this region
increased notably, but problems still exit. As there are many on-going ecological restoration
projects planned in Qinling Mountains, our findings about the factors influencing vegetation
phenology could serve as an essential reference for vegetation restoration practice.

5. Conclusions

Quantifying the differences and identifying the influencing factors of vegetation
phenology using remote sensing data with different spatial resolutions is significant for
understanding the spatial scale effects of land surface phenology. This study qualitatively
and quantitatively analyzed the vegetation phenology discrepancy across different scales in
the Qinling Mountains, and the major factors influencing LSP spatial scale effect were also
detected. The derived basic SOS/EOS datasets by the same filtering method from the 250 m
and 500 m NDVI datasets are consistent in spatial distributions, while the results from the
1000 m NDVI dataset differ. For both basic and the up-scaled datasets, the LSP derived
from the SG-filtered NDVI showed advance in SOS, but delay in EOS, compared to those
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derived from the AG- and DL-filtered NDVI. The up-scaled SOS was greatly impacted by
both NDVI resolution and the filtering method. EOS, on the other hand, was only impacted
by the filtering method. Moreover, up-scaled SOS had usually larger differences compared
to up-scaled EOS. While different filtering methods sometimes amplified the absolute
differences between different SOS/EOS across scales, the upscaling reduced the differences.
Influence factor analysis showed that the spatial variations observed in SOS in Qinling
Mountains are mainly caused by forest cover, uneven distribution of spring precipitation,
and annual precipitation, while spatial variations in aspect, winter temperature, and
autumn precipitation all strongly influence the observed EOS across scales in the study area.
Our findings have significant implications for understanding the effects of observational
scale on vegetation phenology and ecology in the Qinling Mountains.
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