Bias Analysis and Correction for Ill-Posed Inversion Problem with Sparsity Regularization Based on L1 Norm for Azimuth Super-Resolution of Radar Forward-Looking Imaging
Abstract
:1. Introduction
2. Azimuth Echo Convolution Model of Radar Forward-Looking Imaging
3. Analysis and Comparison between L2 Norm and L1 Norm
4. Bias Correction for TV-Sparse and TV Model
4.1. Deduction of TVS Model with Bias Correction
- (1)
- when , i.e., and . The partially bias-corrected solution of Equation (25) can be obtained by,
- (2)
- when , i.e., and . The partially bias-corrected solution of Equation (25) can be simplified as,
- (3)
- when , i.e., and . The partially bias-corrected solution of Equation (25) can be refined as,
4.2. Extension of TV Model with Bias Correction
5. Experiments and Results
5.1. Evaluated Indexes
5.2. Experiment1: 1-D Point Target Simulation
5.3. Experiment2: 2-D Area Data Processing
6. Discussion
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Feng, Y.; Shen, Y.; Wang, C. Geometry-specified troposphere decorrelation for subcentimeter real-time kinematic solutions over long baselines. J. Geophys. Res. 2010, 115, L06604. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Shen, Y.; Feng, Y. Fast GNSS ambiguity resolution as an ill-posed problem. J. Geod. 2010, 84, 683–698. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Li, B. Regularized solution to Fast GPS Ambiguity Resolution. J. Surv. Eng. 2007, 133, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.; Tan, J.; Li, Q.; Li, X.; Liu, T. Simulation analysis of regional surface mass anomalies inversion based on different types of constraints. Geod. Geodyn. 2021, 12, 298–307. [Google Scholar] [CrossRef]
- Chen, T.; Kusche, J.; Shen, Y.; Chen, Q. A Combined Use of TSVD and Tikhonov Regularization for Mass Flux Solution in Tibetan Plateau. Remote Sens. 2020, 12, 2045. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Francis, O.; Zhang, X.; Chen, Q.; Li, W.; Chen, T. An Optimized Short-Arc Approach: Methodology and Application to Develop Refined Time Series of Tongji-Grace2018 GRACE Monthly Solutions. J. Geophys. Res. Solid Earth 2019, 124, 6010–6038. [Google Scholar] [CrossRef]
- Yang, F.; Kusche, J.; Forootan, E.; Rietbroek, R. Passive-ocean radial basis function approach to improve temporal gravity recovery from GRACE observations. J. Geophys. Res. Solid Earth 2017, 122, 6875–6892. [Google Scholar] [CrossRef] [Green Version]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Rowlands, D.D.; Luthcke, S.B.; McCarthy, J.J.; Klosko, S.M.; Chinn, D.S.; Lemoine, F.G.; Boy, J.-P.; Sabaka, T.J. Global mass flux solutions from GRACE: A comparison of parameter estimation strategies—Mass concentrations versus Stokes coefficients. J. Geophys. Res. 2010, 115, 1275. [Google Scholar] [CrossRef]
- Reigber, C.; Schmidt, R.; Flechtner, F.; König, R.; Meyer, U.; Neumayer, K.-H.; Schwintzer, P.; Zhu, S.Y. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn. 2005, 39, 1–10. [Google Scholar] [CrossRef]
- Gholinejad, S.; Naeini, A.A.; Amiri-Simkooei, A. Optimization of RFM Problem Using Linearly Programed ℓ ₁-Regularization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–9. [Google Scholar] [CrossRef]
- Gholinejad, S.; Amiri-Simkooei, A.; Moghaddam, S.H.A.; Naeini, A.A. An automated PCA-based approach towards optization of the rational function model. ISPRS J. Photogramm. Remote Sens. 2020, 165, 133–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Wang, L.; Huang, X. A New Approach on Optimization of the Rational Function Model of High-Resolution Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2758–2764. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Gao, W.; Zhang, W.; Sun, H.; Guo, L.; Yu, J. Bayesian Forward-Looking Superresolution Imaging Using Doppler Deconvolution in Expanded Beam Space for High-Speed Platform. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Tan, K.; Lu, X.; Yang, J.; Su, W.; Gu, H. A Novel Bayesian Super-Resolution Method for Radar Forward-Looking Imaging Based on Markov Random Field Model. Remote Sens. 2021, 13, 4115. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Zuo, L.; Sun, H.; Chen, H.; Li, Y. Forward-Looking Super-Resolution Imaging for Sea-Surface Target with Multi-Prior Bayesian Method. Remote Sens. 2022, 14, 26. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Zhang, Y.; Huang, Y.; Yang, J. Airborne Radar Super-Resolution Imaging Based on Fast Total Variation Method. Remote Sens. 2021, 13, 549. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Zhang, Y.; Huang, Y.; Yang, J. A Sparse Denoising-Based Super-Resolution Method for Scanning Radar Imaging. Remote Sens. 2021, 13, 2768. [Google Scholar] [CrossRef]
- Quan, Y.; Zhang, R.; Li, Y.; Xu, R.; Zhu, S.; Xing, M. Microwave Correlation Forward-Looking Super-Resolution Imaging Based on Compressed Sensing. IEEE Trans. Geosci. Remote Sensing 2021, 59, 8326–8337. [Google Scholar] [CrossRef]
- Tuo, X.; Zhang, Y.; Huang, Y.; Yang, J. Fast Sparse-TSVD Super-Resolution Method of Real Aperture Radar Forward-Looking Imaging. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6609–6620. [Google Scholar] [CrossRef]
- Mao, D.; Zhang, Y.; Zhang, Y.; Huo, W.; Pei, J.; Huang, Y. Target Fast Reconstruction of Real Aperture Radar Using Data Extrapolation-Based Parallel Iterative Adaptive Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2258–2269. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Huang, Y.; Zhang, Y.; Pei, J.; Yi, Q.; Li, W.; Yang, J. TV-Sparse Super-Resolution Method for Radar Forward-Looking Imaging. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6534–6549. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Huang, Y.; Zhang, Y. Azimuth Super-resolution of Forward-Looking Radar Imaging Which Relies on Linearized Bregman. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2032–2043. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Huang, Y.; Zhang, Y.; Li, W.; Yang, J. Total Variation Super-Resolution Method for Radar Forward-Looking Imaging. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019; pp. 1–4. [Google Scholar]
- Pu, W.; Bao, Y. RPCA-AENet: Clutter Suppression and Simultaneous Stationary Scene and Moving Targets Imaging in the Presence of Motion Errors. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Feng, R. EISRP: Efficient infrared signal restoration processing for object tracking in human-robot interaction. Infrared Phys. Technol. 2020, 111, 103544. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.F.; Liu, H.; Zhang, Z.; Liu, S. RISIR: Rapid Infrared Spectral Imaging Restoration Model for Industrial Material Detection in Intelligent Video Systems. IEEE Trans. Ind. Inf. 2019, 1–10. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Li, Y.-F.; Chen, Z.; Zhang, Z.; Liu, S. Flexible FTIR Spectral Imaging Enhancement for Industrial Robot Infrared Vision Sensing. IEEE Trans. Ind. Inf. 2020, 16, 544–554. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, H.; Tong, X.; Zhang, H.; Tang, H.; Li, B.; Di, W.; Hao, X.; Liu, S.; Xu, X.; et al. A Combined Deconvolution and Gaussian Decomposition Approach for Overlapped Peak Position Extraction from Large-Footprint Satellite Laser Altimeter Waveforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2286–2303. [Google Scholar] [CrossRef]
- Zhou, T.; Popescu, S.C.; Krause, K.; Sheridan, R.D.; Putman, E. Gold–A novel deconvolution algorithm with optimization for waveform LiDAR processing. ISPRS J. Photogramm. Remote Sens. 2017, 129, 131–150. [Google Scholar] [CrossRef]
- Azadbakht, M.; Fraser, C.; Khoshelham, K. A Sparsity-Based Regularization Approach for Deconvolution of Full-Waveform Airborne Lidar Data. Remote Sens. 2016, 8, 648. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Wang, W.; Zeng, T.-Y.; Huang, T.-Z.; Ng, M.K. Total Variation Structured Total Least Squares Method for Image Restoration. SIAM J. Sci. Comput. 2013, 35, B1304–B1320. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Wang, K. Robust image deblurring with an inaccurate blur kernel. IEEE Trans. Image Process. 2012, 21, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Ji, H. Deep Learning for Handling Kernel/model Uncertainty in Image Deconvolution. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2388–2397. [Google Scholar]
- Hadamard, J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations; Yale University Press: New Haven, CT, USA; New York, NY, USA, 1923. [Google Scholar]
- Ji, K.; Shen, Y.; Chen, Q.; Li, B.; Wang, W. An adaptive regularization solution to inverse ill-posed models. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, P.; Li, B. Bias-corrected regularization solution to inverse ill-posed models. J. Geod. 2012, 86, 597–608. [Google Scholar] [CrossRef]
- Tikhonov, A.N. Solution of incorrectly formulated problems and the regularization method. Dokl. Akad. Nauk SSSR 1963, 151, 501–504. [Google Scholar]
- Tikhonov, A.N. Regularizaiton of ill-posed problems. Dokl. Akad. Nauk SSSR 1963, 1, 49–52. [Google Scholar]
- Xu, P. Truncated SVD methods for discrete linear ill-posed problems. Geophys. J. Int. 1998, 135, 505–514. [Google Scholar] [CrossRef]
- Hansen, C.P. The truncatedSVD as a method for regularization. BIT 1987, 27, 543–553. [Google Scholar] [CrossRef]
- Xu, P.; Shen, Y.; Fukuda, Y.; Liu, Y. Variance Component Estimation in Linear Inverse Ill-posed Models. J. Geod. 2006, 80, 69–81. [Google Scholar] [CrossRef]
- Xu, P. Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems. Geophys. J. Int. 2009, 179, 182–200. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Shen, Y.; Kusche, J.; Chen, W.; Chen, T.; Zhang, X. High-Resolution GRACE Monthly Spherical Harmonic Solutions. J. Geophys. Res. Solid Earth 2021, 126, e2019JB018892. [Google Scholar] [CrossRef]
- Tuo, X.; Zhang, Y.; Huang, Y.; Yang, J. A Fast Sparse Azimuth Super-Resolution Imaging Method of Real Aperture Radar Based on Iterative Reweighted Least Squares With Linear Sketching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2928–2941. [Google Scholar] [CrossRef]
- Zhang, Y.; Tuo, X.; Huang, Y.; Yang, J. A TV Forward-Looking Super-Resolution Imaging Method Based on TSVD Strategy for Scanning Radar. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4517–4528. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithm. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Huo, W.; Tuo, X.; Zhang, Y.; Zhang, Y.; Huang, Y. Balanced Tikhonov and Total Variation Deconvolution Approach for Radar Forward-Looking Super-Resolution Imaging. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Kao, C.-Y.; Osher, S. Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image Segmentation. In International Symposium on Visual Computing; Springer: Berlin/Heidelberg, Germany; pp. 117–128.
- Setzer, S.; Steidl, G.; Teuber, T. Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Represent. 2010, 21, 193–199. [Google Scholar] [CrossRef]
- Biggs, D.S.; Andrews, M. Acceleration of iterative image restoration algorithms. Appl. Opt. 1997, 36, 1766–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fish, D.A.; Brinicombe, A.M.; Pike, E.R.; Walker, J.G. Blind deconvolution by means of the Richardson-Lucy algorithm. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 1995, 12, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Addison-Wesley Publishing Company: Boston, MA, USA, 1992. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
Parameters | Value | Units |
---|---|---|
Carrier frequency | 10 | GHz |
Band width | 75 | MHz |
Pulse interval | 2 × 10−6 | s |
Beamwidth | 2 | ° |
Antenna scanning velocity | 30 | °/s |
Scanning area | −5~5 | ° |
Pulse repetition frequency | 1500 | Hz |
Methods | Mean PSNR (dB) | Mean SSIM | Mean SSE |
---|---|---|---|
Blind Deconvolution | 17.211 | 0.277 | 0.541 |
Regularized Filter | 10.304 | 0.156 | 1.328 |
Wiener Filter | 17.310 | 0.499 | 0.531 |
Richardson–Lucy | 15.195 | 0.698 | 0.684 |
TSVD | 15.336 | 0.587 | 0.666 |
SDBSM | 18.644 | 0.270 | 31.292 |
TV | 18.510 | 0.801 | 0.469 |
TVBC | 18.972 | 0.816 | 0.444 |
TVS | 19.214 | 0.803 | 0.4309 |
TVSBC | 19.244 | 0.809 | 0.4305 |
Methods | PSNR (dB) | SSIM | SSE |
---|---|---|---|
TV | 19.322 | 0.808 | 0.422 |
TVBC | 19.633 | 0.822 | 0.407 |
TVS | 19.800 | 0.814 | 0.399 |
TVSBC | 20.358 | 0.823 | 0.374 |
Methods | SNR = 5 dB | SNR = 15 dB | SNR = 25 dB | ||||||
---|---|---|---|---|---|---|---|---|---|
PSNR (dB) | SSIM | SSE | PSNR (dB) | SSIM | SSE | PSNR (dB) | SSIM | SSE | |
TV | 17.462 | 0.595 | 29.978 | 19.999 | 0.773 | 22.387 | 0.773 | 0.882 | 20.152 |
TVBC | 18.377 | 0.634 | 26.981 | 20.431 | 0.798 | 21.299 | 0.798 | 0.888 | 19.882 |
TVS | 18.922 | 0.612 | 25.341 | 20.771 | 0.807 | 20.481 | 0.807 | 0.888 | 19.796 |
TVSBC | 18.986 | 0.621 | 25.153 | 20.992 | 0.813 | 19.967 | 0.813 | 0.894 | 18.979 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Zhang, S.; Zheng, S.; Wang, M.; Ding, H.; Yan, Q. Bias Analysis and Correction for Ill-Posed Inversion Problem with Sparsity Regularization Based on L1 Norm for Azimuth Super-Resolution of Radar Forward-Looking Imaging. Remote Sens. 2022, 14, 5792. https://doi.org/10.3390/rs14225792
Han J, Zhang S, Zheng S, Wang M, Ding H, Yan Q. Bias Analysis and Correction for Ill-Posed Inversion Problem with Sparsity Regularization Based on L1 Norm for Azimuth Super-Resolution of Radar Forward-Looking Imaging. Remote Sensing. 2022; 14(22):5792. https://doi.org/10.3390/rs14225792
Chicago/Turabian StyleHan, Jie, Songlin Zhang, Shouzhu Zheng, Minghua Wang, Haiyong Ding, and Qingyun Yan. 2022. "Bias Analysis and Correction for Ill-Posed Inversion Problem with Sparsity Regularization Based on L1 Norm for Azimuth Super-Resolution of Radar Forward-Looking Imaging" Remote Sensing 14, no. 22: 5792. https://doi.org/10.3390/rs14225792
APA StyleHan, J., Zhang, S., Zheng, S., Wang, M., Ding, H., & Yan, Q. (2022). Bias Analysis and Correction for Ill-Posed Inversion Problem with Sparsity Regularization Based on L1 Norm for Azimuth Super-Resolution of Radar Forward-Looking Imaging. Remote Sensing, 14(22), 5792. https://doi.org/10.3390/rs14225792