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Abstract: The sparsity regularization based on the L1 norm can significantly stabilize the solution
of the ill-posed sparsity inversion problem, e.g., azimuth super-resolution of radar forward-looking
imaging, which can effectively suppress the noise and reduce the blurry effect of the convolution
kernel. In practice, the total variation (TV) and TV-sparsity (TVS) regularizations based on the L1

norm are widely adopted in solving the ill-posed problem. Generally, however, the existence of bias
is ignored, which is incomplete in theory. This paper places emphasis on analyzing the partially
biased property of the L1 norm. On this basis, we derive the partially bias-corrected solution of TVS
and TV, which improves the rigor of the theory. Lastly, two groups of experimental results reflect that
the proposed methods with partial bias correction can preserve higher quality than those without
bias correction. The proposed methods not only distinguish the adjacent targets, suppress the noise,
and preserve the shape and size of targets in visual terms. Its improvement of Peak Signal-to-Noise
Ratio, Structure-Similarity, and Sum-Squared-Errors assessment indexes are overall 2.15%, 1.88%, and
4.14%, respectively. As such, we confirm the theoretical rigor and practical feasibility of the partially
bias-corrected solution with sparsity regularization based on the L1 norm.

Keywords: L1 norm; bias correction; deconvolution; sparsity regularization; azimuth super-resolution

1. Introduction

Ill-posed models widely exist in fields of geodesy and remote sensing, such as GNSS
(Global Navigation Satellite System) fast ambiguity resolution [1–3], gravity field de-
termination from the satellite missions of Gravity Recovery And Climate Experiment
(GRACE) [4–10], geometric correction of satellite imagery based on rational function model
(RFM) [11–13], azimuth super-resolution imaging of Real Aperture Radar (RAR) [13–25], sig-
nal restoration for vision sensing [26–28], full waveform Lidar data deconvolution [29–31]
and optical remote sensing deblurring [32–34]. As is known, the solutions of a well-posed
model should satisfy three standards: i.e., existence, uniqueness, and stability [35]. For
any ill-posed observational equations, the coefficient matrix is full-rank, but its condition
number is significantly great. In consequence, very small observation errors can also
corrupt the estimated parameters considerably [36,37]. In other words, the solution of
an ill-posed model violates the stability of necessary conditions of a well-posed solution,
which is existent and unique but unstable. Therefore, regularization methods are proposed
to stabilize the ill-posed solutions.

Tikhonov regularization has been successfully proposed to solve the ill-posed prob-
lems, which is based on the L2-norm criterion that the residuals and parameters sum of
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squares are minimized [38,39]. Tikhonov regularization utilizes the regularization parame-
ter to reduce the influence of the small singular values of the coefficient matrix and further
decrease the condition number to get a better regularization solution. But it also introduces
biases to the estimated solution. Considering the impact of small singular values, Xu [40]
and Hansen [41] directly truncated the small singular values and implemented pseudo
inversion to obtain a stable solution, which is the famous Truncated Singular Value De-
composition (TSVD) regularization. Although TSVD can get fine and stable solutions for
ill-posed models, it still is biased due to the information loss of the coefficient matrix. To
this end, Xu et al. [42], Xu [43], Shen et al. [37], Chen et al. [44], and Ji et al. [36] corrected
the biases of the biased parameter estimates with fully-, partially- and adaptively- bias
correction strategies. These methods of Tikhonov regularization based on the L2 norm
can depress the noise by smoothing the processed results. Thereby, when latent sparsity
of unknown parameters exists, the Tikhonov regularization based on the L2 norm will
be unsuitable. For example, in the imaging region, the interest targets are sparse in ship
monitoring or airport surveillance compared with the entire imaging area [16].

Therefore, in order to reconstruct these sparse characteristics, the sparsity regular-
ization terms based on the L1 norm were applied to estimate sparse parameter solutions.
Azadbakht et al. [31] proposed a sparsity-constrained regularization approach for the
deconvolution of the returned Lidar waveform and successfully restored the target cross-
section. Zhang et al. [23] used the method solved by splitting the Bergman algorithm
to get strong-point targets. A sparse denoising-based super-resolution method (SDBSM)
was proposed in [18] to avoid losing the shape characteristics treated as strong-point tar-
gets. Furthermore, Tuo et al. [45] developed an iterative reweighted least-squares method
for the sparsity-constrained regularization method to accelerate the computation speed.
Zhang et al. [46] designed a total variation (TV) [47] super-resolution imaging method
based on the TSVD strategy. Shortly after, a fast sparse-TSVD version was put forward
by Tuo et al. [20] to improve its efficiency. Zhang et al. [22] introduced the TV method to
restore the contour information of the target smoother and the L1 norm to preserve the
sparsity to improve the resolution of radar forward-looking imaging, which was called the
TV-sparse (TVS) method. Similarly, Quan et al. [19] developed an improved quasi-Newton
iteration method based on the Graphics Processing Unit Platform to raise the computation
efficiency of sparse reconstruction. Due to the information loss of the coefficient matrix,
the restored results of TV are slightly inferior to those of TVS. The Gohberg-Senmencul
representation-based fast TV method was proposed by Zhang et al. [17] to improve the com-
putation efficiency. Recently, Huo et al. [48] conceptualized a balanced Tikhonov and TV
regularization approach to retain the sparsity of the candidate solution and the smoothness
of continuous contours in the regularization solution. Although these methods based on
the L1 norm with different algorithms can get fine results, which can preserve the sparsity
of the unknown parameters and its smooth shape of continuous contours, the bias of the
regularization solution based on the L1 norm cannot be analyzed nor mitigated. Obviously,
it is theoretically insufficient and incomplete for the analytical solution of the L1 norm.

To this end, the main purpose of the paper addresses three goals. They are: (1) The
bias analysis of the sparsity regularization method based on the L1 norm is implemented to
place emphasis on its theoretical importance and make up for its incompleteness. (2) The
comparison with the bias of the sparsity regularization method based on the L2 norm is
realized to explicate its advantage with partial bias. The consistency with the conclusion of
partially bias correction regularization methods proposed by Shen et al. [37] is analyzed,
and the theoretic reason for its advantage will be mined. (3) A piecewise partially bias-
corrected regularization solution based on the L1 norm is deduced, and the corresponding
iterative algorithms based on the two typical TV and TVS models will be designed to
achieve a more accurate solution.

The remainder of this paper is organized as follows. Section 2 contains a brief introduc-
tion to the azimuth echo convolution model of radar forward-looking imaging. In Section 3,
an analysis and a comparison with the regularization solution based on the L1 norm and
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L2 norm are carried out, with their differences being expressed and the nature of partial
bias being revealed. In Section 4, taking two typical TV and TVS methods to alleviate the
ill-posed problem as examples, we derive their partial bias correction solutions with a
piecewise form. The corresponding iterative flowcharts are designed. In Section 5, two ex-
perimental examples have been designed to demonstrate the performance of the proposed
methods, namely, 1-D point target and 2-D area simulation for azimuth super-resolution of
radar forward-looking imaging. A discussion on the superiority of the proposed methods
with bias correction is implemented in Section 6. In final, conclusions and remarks are
summarized in Section 7.

2. Azimuth Echo Convolution Model of Radar Forward-Looking Imaging

The azimuth echo signal convolution model of radar forward-looking imaging is
illustrated in Figure 1, according to which the imaging platform travels along the Y-
direction with a velocity of v and at the height of H. R0 is the initial slant range between
the radar and the target P, with the initial azimuth angle being θ0. ϕ0 is the initial pitching
angle. As the platform travels with a time interval t, the slant range changes into R, the
pitching angle turns to ϕ, and the azimuth angle becomes θ.
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According to the trigonometric relation, the slant range history R(t) satisfies

R(t) =
√

R2
0 + (vt)2−2R0vtcosθ0cosϕ0 ≈ R0−vtcosθ0cosϕ0 (1)

Considering both the range resolution and working distance, the radar transmits linear
frequency-modulated signal is expressed as

r(τ)= rect
(

τ

Tp

)
exp(j2πfc)exp

(
jπµτ2

)
(2)

where τ is the fast times in range direction, the carrier frequency of the transmitted signal is
denoted as fc, Tp is the signal duration, and µ stands for the chirp rate; rect(·) is a rectangle
window. After platform traveling and antenna scanning, the received signal of the target P
can be evolved as follows,

r(τ, t) = σph(t−t0)rect
(

τ−τd
Tp

)
exp
(

j2πfc

(
τ−τd

Tp

))
exp

(
jπµ

(
τ−τd

Tp

)2
)

(3)

where h(·) represents the modulation effect of the antenna pattern, σp is the target scattering
coefficient, τd = 2R(t)/c is time delay, and t0 is the moment when the beam center scans P.
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By matched filtering the widely utilized technology for high range resolution, the received
signal becomes

r(τ, t) = σph(t−t0)sinc(Br(τ − τd))× exp(−j2πfcτd) (4)

Radar scanning imaging is accompanied by platform movement, which results in the
echoes aliasing in different units. Therefore, its influence has to be removed [16,46,48].
Furthermore, the received echo can be modeled in the following convolution form,

r = a ∗ u + ε (5)

where r represents the discrete azimuth echo signal vector, a is the convolution kernel standing
for antenna pattern signal, “∗” is the convolution symbol, and ε is the random error.

3. Analysis and Comparison between L2 Norm and L1 Norm

In order to show the bias of the regularization solution based on the L1 norm intuitively,
we derive the formulae of the bias and analyze and compare it with that based on the
L2 norm.

For the linear discrete ill-posed models, its expression can be written by,

r = Au + ” (6)

where r is an m-vector of observations, A is an m × n (m > n) deterministic coefficient
matrix, which is assumed as full column rank but with a large condition number, u is the
n-vector of unknown parameters, and ε is the random error vector with zero mean and
variance-covariance matrix œ2

0W−1. Here œ2
0 is the variance of unit weight, and W is a

weight matrix, which is set as the identity matrix in this paper. According to the Tikhonov
regularization criterion, the objective function is expressed as,

û = arg min
û
‖Au− r‖2

2 + α‖u‖2
2 (7)

where α is the positive regularization parameter and ‖·‖2
2 is the L2 norm. For the solution of

the Tikhonov regularization method based on the L2 norm, namely ûT =
(

ATA + αI
)−1

ATr,
applying the mathematical expectation and matrix inversion formula to it, we get

E(ûT) = u− α
(

ATA + αI
)−1

u where E(·) is the operator of mathematical expectation and
u is the true value of the unknown parameter. Thus, its bias can be obtained according
to [37,42],

bias(ûT) = −α
(

ATA + αI
)−1

u (8)

Since the bias vector can be formally computed with Equation (8), we can formally
remove the biases from the regularization solution and obtain the bias-corrected regularized
estimate as follows:

uc = ûT − bias(uT) = ûT + α
(

ATA + αI
)−1

u (9)

But the L2 norm representing the smoothing characters cannot solve the ill-posed prob-
lem with sparsity regularization, and in particular, of deconvolution problem. According
to Tuo et al. [20], it can be recast as Equation (6), where A is a corresponding circulant
Toeplitz matrix from a. In general, the L0 norm is selected to represent the sparsity of the
parameters, but it is a non-convex problem which is hard to solve. Therefore, the L1 norm
is utilized to replace it with the L0 norm for a balance between sparsity and smoothness.
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For the ill-posed problem with sparsity regularization, the objective function (7) can be
recast as

û = arg min
u
‖Au− r‖2

2 + β‖u‖1 (10)

where β is a positive regularization parameter. A splitting Bergman algorithm (SBA) can
be used to estimate the parameter u [49,50]. An intermediate variable w = u is introduced,
and Equation (10) can be rewritten as

û = arg min
u
‖Au− r‖2

2 + β‖w‖1, s.t. w = u

According to the SBA, the above-mentioned formula can be further evolved with the
following iterative form,

(
ûk+1, wk+1

)
= arg min

u,d
‖Au− r‖2

2 + β‖w‖1 + γ ‖ w− u− bk‖2
2

bk+1 = bk +
(

ûk+1 −wk+1
) (11)

where γ is the penalty parameter with a large number, and b is the gradient of w. The
superscript k stands for the kth iteration. The solutions of iterative strategy can be updated
with the following formulae,

ûk+1 =
(

ATA + γI
)−1(

ATr + γ
(

wk − bk
))

wk+1 = sign
(

ûk+1 + bk
)

max
(

ûk+1 + bk − β/2γ, 0
)

bk+1 = bk + ûk+1 −wk+1

(12)

where sign(·) stands for the signum function. The first formula of Equation (12) is similar to
the Tikhonov regularization solution and with the extra term wk − bk, which is dependent
on SBA. Thereby, we derive the equivalent formula according to the matrix inversion

formula
(

ATA + γI
)−1

as follows,

û =

[(
ATA

)−1
− γ

(
ATA + γI

)−1(
ATA

)−1
](

ATr + γ
(

wk − bk
))

=
(

ATA
)−1

ATr− γ
(

ATA + γI
)(

ATA
)−1

ATr + γ
(

ATA + γI
)−1(

wk − bk
)

= u− γ
(

ATA + γI
)−1(

u−
(

wk − bk
)) (13)

For convenience to express, the superscript k is omitted. According to the definition
of expectation, the bias û can be expressed by,

bias(û) = −γ
(

ATA + γI
)−1

(u− (w− b)) (14)

When γ is equal to α, through subtracting Equation (8) and Equation (14), one can
obtain the difference ∆b between the L1 norm and L2 norm as,

∆b = −γ
(

ATA + γI
)−1

(w− b) (15)

Substituting the intermediate variable solution w in Equation (12) into ∆b, we can
achieve the following piecewise formulation as

∆b =

 −γ
(

ATA + γI
)−1

û, û− b > β/2γ

γ
(

ATA + γI
)−1

b , û− b ≤ β/2γ
(16)
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Referring to the definition of SBA, the intermediate variable b is a small value. There-
fore, the above-mentioned ∆b can be approximately recast as,

∆b ≈
{
−γ
(

ATA + γI
)−1

û, û− b > β/2γ

0 , û− b ≤ β/2γ
(17)

The equation infers that the bias existing in the L1 norm and L2 norm are closely equal
when û− b ≤ β/2γ. In other words, the solution of the L2 norm needs to correct the
part of this condition û− b > β/2γ, while that of the L1 norm need not do. Furthermore,
according to the definition of iterative shrinkage threshold algorithms about w, u− (w− b)
bias(û) can be rewritten as

u− (w− b) =
{

u− û + β/2γ, u + b > β/2γ
û + b , u + b ≤ β/2γ

(18)

With the iterations employed deeply, the true value u is gradually approached by the
estimated û, i.e., Equation (18) can be updated with the form of limit as follows,

lim
û→u

(u− (w− b)) =
{

β/2γ, u + b > β/2γ
û + b , u + b ≤ β/2γ

(19)

The positive penalty parameter γ is a large value and grows with a scale greater than 1
as its iteration implements, then β is a small positive value. Thus, the value of β/γ is close
to zero. Thereby, Equation (19) can be approximately recast as,

lim
û→u

(u− (w− b)) ≈
{

0 , û + b > β/2γ
û + b , û + b ≤ β/2γ

(20)

From it, û of Equation (13) based on the L1 norm is a partially bias-corrected regu-
larization solution, obviously. Namely, the bias existing in the solution û based on the L1
norm is partially unbiased when û− b ≤ β/2γ. Shen et al. [37] reported that the partially
bias-corrected regularization solution is superior to the fully bias-corrected regularization
solution (7) but depends on the inequality with regard to the singular values of coefficient
matrix A and the regularization parameter α. It suggests that extra work to fully bias-
correct is employed for the Tikhonov regularization solution based on the L2 norm, while
the regularization solution based on the L1 norm for partial bias correction originates from
its own characteristics contained in Equation (20). In other words, from the frequentists’
point of view, the low-frequency part of singular values of the coefficient matrix is not
corrected, while the rest part is corrected [36].

4. Bias Correction for TV-Sparse and TV Model

In ill-posed sparsity inversion problems for latent sparsity parameters, like deconvo-
lution, the TVS and TV methods are usually used to relax it for satisfactory results. But
their biases are typically ignored. Therefore, we give the following deductions to correct
their biases.

4.1. Deduction of TVS Model with Bias Correction

The TVS method proposed by Zhang et al. [22] is based on TV regularization term
utilizing the sparsity property of the signal ‖u‖1 and its gradient ‖∇u‖1, whose objective
function can be evolved from Equation (10) as follows,

û = arg min
u
‖Au− r‖2

2 + α‖∇u‖1 + β‖u‖1 (21)
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According to SBA, the objective function (21) can be recast by introducing the interme-
diate variables v = ∇u and w = u,

û = arg min
u
‖Au− r‖2

2 + α‖v‖1 + β‖w‖1 + γ1‖v−∇u− b1‖2
2 + γ2‖w− u− b2‖2

2 (22)

where b1 and b2 are the gradient of ∇u and u, γ1 and γ2 are the penalty parameters with
large values, and α and β are the positive regularization parameters. The corresponding
solutions with an iterative strategy can be derived as,

uk+1 =
(

ATA + γ1∇T∇+ γ2I
)−1(

ATr + γ1∇T
(

vk − bk
1

)
+ γ2

(
wk − bk

2

))
vk+1 = sign

(
∇uk+1 + bk

1

)
max

(
∇uk+1 + bk

1 − α/2γ1, 0
)

wk+1 = sign
(

uk+1 + bk
)

max
(

uk+1 + bk
2 − β/2γ2, 0

)
bk+1

1 = bk
2 +∇uk+1 − vk+1

bk+1
2 = bk

1 + uk+1 −wk+1

(23)

Referring to the analyses in Section 3 and Equations (13)–(15), the formula of the
estimated solution u for TVS can be rewritten as follows,

uk+1 = u− γ1

(
ATA + γ1∇T∇+ γ2I

)−1
∇T
(
∇u−

(
vk − bk

1

))
−γ2

(
ATA + γ1∇T∇+ γ2I

)−1(
u−

(
wk − bk

2

)) (24)

The bias can consist of two parts, including bias1 = −γ1

(
ATA + γ1∇T∇+ γ2

)−1
·

∇T
(
∇u−

(
vk − bk

1

))
and bias 2 = −γ2

(
ATA + γ1∇T∇+ γ2

)−1(
u−

(
wk − bk

2

))
. For

the convenience of representation, R stands for the real number space. We define a set
Φ2,1(x) = {x|x > fi/2γ2},Φ2,2(x) = {x|x ≤ fi/2γ2}, and Φ2.1 ∪Φ2.2 = R. Similarly, the
first term bias1 can be reconstructed as,

bias1 ≈

 0 , Φ1,1

(
∇ûk+1 + bk+1

1

)
−γ1

(
ATA + γ1∇T∇

)−1
∇T
(
∇ûk+1 + bk+1

1

)
, Φ1,2

(
∇ûk+1 + bk+1

1

) (25)

Set Φ1,1(x) = {x|x > α/2γ1}, Φ1,2(x) = {x|x ≤ α/2γ1}, and Φ1.1 ∪Φ1.2 = R. Due to
the uncertainty of the relationship between sets Φ1,1 and Φ2,1, a necessary discussion can be
carried out as follows. By comparison with Equations (20) and (25), the inclusion relation
of sets Φ1,1 and Φ2,1 is dependent on the values of α/γ1 and β/γ2, namely, α/γ1 < β/γ2,
α/γ1 = β/γ2, and α/γ1 > β/γ2. Concretely,

(1) when α/γ1 < fi/γ2, i.e., Φ2,1 ⊆ Φ1,1 and Φ1,2 ⊆ Φ2,2. The partially bias-corrected
solution of Equation (25) can be obtained by,

uk+1
TVSBC =


ûk+1, Φ2,1

(
ûk+1 + bk+1

2

)
ûk+1 + γ2

(
ATA + γ2I

)−1(
ûk+1 + bk+1

2

)
, Φ2,1

(
ûk+1 + bk+1

2

)
∩Φ1,1

(
∇ûk+1 + bk+1

1

)
ûk+1 + γ1

(
ATA + γ1∇T∇

)−1
∇T
(
∇ûk+1 + bk+1

1

)
+ γ2

(
ATA + γ2I

)−1(
ûk+1 + bk+1

2

)
, Φ1,2

(
∇ûk+1 + bk+1

1

) (26)

(2) when α/γ1 = fi/γ2, i.e., Φ2,1 = Φ1,1 and Φ1,2 = Φ2,2. The partially bias-corrected
solution of Equation (25) can be simplified as,

uk+1
TVSBC =


ûk+1 , Φ2,1

(
û + bk+1

2

)
or Φ1,1

(
∇ûk+1 + bk+1

1

)
ûk+1 + γ1

(
ATA + γ1∇T∇

)−1
∇T
(
∇ûk+1 + bk+1

1

)
+ γ2

(
ATA + γ2I

)−1(
ûk+1 + bk+1

2

)
, Φ1,2

(
∇ûk+1 + bk+1

1

)
or Φ2,2

(
∇ûk+1 + bk+1

2

) (27)

(3) when α/γ1 > fi/γ2, i.e., Φ1,1 ⊆ Φ2,1 and Φ2,2 ⊆ Φ1,2. The partially bias-corrected
solution of Equation (25) can be refined as,
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uk+1
TVSBC =


ûk+1, Φ1,1

(
∇ûk+1 + bk+1

1

)
ûk+1 + γ1

(
ATA + γ1∇T∇

)−1
∇T
(
∇ûk+1 + bk+1

1

)
, Φ2,1

(
ûk+1 + bk+1

2

)
∩Φ1,1

(
∇ûk+1 + bk+1

1

)
ûk+1 + γ1

(
ATA + γ1∇T∇

)−1
∇T
(
∇ûk+1 + bk

)
+ γ2

(
ATA + γ2I

)−1(
ûk+1 + bk+1

2

)
, Φ1,2

(
∇ûk+1 + bk+1

1

) (28)

Obviously, the solution of the TVS model based on the L1 norm is partially biased,
which is a key point superior to those based on the L2 norm. The implemented flowchart of
the proposed TVS with bias correction (TVSBC) can be found in Figure 2.
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4.2. Extension of TV Model with Bias Correction

Considering the TV model proposed by Zhang et al. [17], we find that the TV model
is simpler than the TV-sparse model without fi‖u‖1, the expression of which is displayed
as follows,

û = min
u
‖Au− r‖2

2 + α‖∇u‖1 (29)

By employing the SBA to calculate the solution, the intermediate variable vectors
v and b can be introduced. The corresponding objective function can be approximately
transformed as,

û = min
u
‖Au− r‖2

2 + α‖v‖1 + γ‖∇u− (v− b)‖2
2 (30)
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And the target parameter and variable vectors can be estimated iteratively with the
following formulae,

ûk+1 =
(

ATA + γ∇T∇
)−1(

ATr + γ∇T
(

vk − bk
))

vk+1 = sign
(
∇ûk+1 + bk

)
max

(
∇ûk+1 + bk − α/2γ, 0

)
bk+1 = bk +∇ûk+1 − vk+1

(31)

As we know, the bias of Equation (31) can be derived easily,

bias(û) ≈

 0 ,∇uk + bk > α/2γ

−γ
(

ATA + γ∇T∇
)−1
∇T
(
∇u + bk

)
,∇uk + bk ≤ α/2γ

(32)

And the bias-corrected solution of uTVBC can be calculated according to Equation (32),

uk+1
TVBC ≈

 uk+1 ,∇uk+1 + bk+1 > α/2γ

uk+1 + γ
(

ATA + γ∇T∇
)−1
∇T
(
∇uk+1 + bk+1

)
,∇uk+1 + bk+1 ≤ α/2γ

(33)

Obviously, by comparison with Equations (26)~(28) and (33) from the form of formulae
and judgment criterion, TVBC is simpler than TVSBC. And its iterative process is shorter
than TVSBC, and the flowchart can be displayed in Figure 3.
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5. Experiments and Results

In addition to theoretical derivation, the performance of the proposed TVSBC and
TVBC methods will be verified by two numerical experiments designed in this section.
Two aspects of performance, including the ability to distinguish adjacent targets and
maintain the shape of the target, are considered. Several traditional deconvolution methods,
including Blind deconvolution [51], Richardson–Lucy method [52], Regularized Filter
(Tikhonov Regularization) [53], Wiener Filter [53], Truncated Singular Value Decomposition
(TSVD) [20], Sparse Denoising-Based Super-Resolution Method (SDBSM) [18], TV [17] and
TVS [22], are selected as competitors to the two proposed methods.

5.1. Evaluated Indexes

As we know, in deconvolution problems, the true parameters are impossibly known in
practical applications, and only their estimates can be obtained by these methods. However,
since the simulation results can be repeated and the true parameters are also known, the
sum square errors (SSE) can be numerically calculated as follows,

M =
N

∑
i=1

(x̂− x)T(x̂− x) (34)

where M denotes the numerical SSE of the estimated parameter, N is the number of
repeated experiments, x̂ and x stand for the deconvolution estimated and true parameters.
The smaller values of M, the closer the parameter estimates are to the true values.

Additionally, the peak signal-to-noise ratio (PSNR) is used to assess the ability of the
noise suppression ability, which is defined as

PSNR = 20 log(As/An) (35)

where As is the maximum amplitude of the target and An is the maximum amplitude of the
noise. And then, the Structural Similarity (SSIM) [54] is selected to evaluate the capability
to differentiate adjacent targets and the similarity between the restored and original signals,
which can be obtained by the following formula,

SSIM(x, y) =

(
2¯x¯y + C1

)(
2œxy + C2

)(
¯2
x + ¯2

y + C1

)(
œ2

x + œ2
y + C2

) (36)

where x and y reference signal and test signal; ¯x, ¯y, œx, and œy are average value and
standard variance of x and y, respectively; œxy is the covariance of x and y; C1, C2, and C3
are the contrast values. The greater PSNR and SSIM, the better the restoration results.

5.2. Experiment1: 1-D Point Target Simulation

In order to assess the performance of the proposed TVBC and TVSBC, referring to
Tuo et al. [20], we conduct a 1-D point simulation of azimuth super-resolution for radar
forward-looking imaging. The 1-D simulation scene is illustrated in Figure 4a, whose
parameters are listed in Table 1. There are four-point targets whose centers width are−1.95◦,
−0.35◦, −0.15◦ and 0.25◦, and whose widths are 0.2◦, 0.2◦, 0.1◦, and 0.1◦, respectively.
The simulated convolution kernel is illustrated in Figure 5, whose parameters can be
found in Table 1. For a more suitable actual working environment, Gaussian white noise
with different SNRs of the range from 1 dB to 25 dB with an interval of 2 dB. Three
typical simulated beam echoes affected by the noise of SNRs = 5 dB, 13 dB, and 21 dB
are demonstrated in Figure 4b,c. The obvious features are contaminated by the simulated
convolution kernel and random white noise. For example, two peaks in Figure 4b and
three peaks in Figure 4c,d are seriously disturbed by high-frequency noise, which makes
the signal unrecognizable.



Remote Sens. 2022, 14, 5792 11 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

We set up 500 independent simulation experiments with different SNRs. The de-

graded signals can be restored by these deconvolution methods, whose results can be 

evaluated by the mean PSNR, SSIM, and SSE listed in Table 2. From it, we can see that 

Blind Deconvolution, Wiener Filter, and SDBSM can have fine mean PSNR but terrible 

mean SSIM, and Regularized Filter based on L2 norm proposed for the smooth signal has 

the lowest mean PSNR and SSIM due to a loss in the accurate noise level estimation and 

smooth the significant signal features. With the decreasing SNRs during simulation, the 

noise level increases, whose effect on these above-mentioned deconvolution methods has 

been magnified accordingly. It infers that these deconvolution methods are not robust 

against noise. In addition, the Richardson–Lucy method and TSVD method can keep a 

balance between mean PSNR and SSIM and with lesser mean SSE, which maintains a mid-

dling level compared with TV, TVS, TVBC, and TVSBC. Overall, TV, TVS, TVBC, and 

TVSBC provide excellent evaluation results that are evidenced by high mean PSNR and 

SSIM and small mean SSE. By comparing the TV/TVS without and with bias correction, 

we can find that the proposed bias correction methods can effectively improve the perfor-

mance of the original TV and TVS. It seems that the proposed methods are not only rigor-

ous in theory but also feasible in practice. 

Table 1. System parameters of point target simulation. 

Parameters Value Units 

Carrier frequency 10 GHz 

Band width 75 MHz 

Pulse interval 2 × 10−6 s 

Beamwidth 2 ° 

Antenna scanning velocity 30 °/s 

Scanning area −5~5 ° 

Pulse repetition frequency 1500 Hz 

 

Figure 4. 1-D experiment scene of point target. (a) Simulated echo. (b) SNR = 5 dB. (c) SNR = 13 dB. 

(d) SNR = 21 dB. 

Figure 4. 1-D experiment scene of point target. (a) Simulated echo. (b) SNR = 5 dB. (c) SNR = 13 dB.
(d) SNR = 21 dB.

Table 1. System parameters of point target simulation.

Parameters Value Units

Carrier frequency 10 GHz
Band width 75 MHz

Pulse interval 2 × 10−6 s
Beamwidth 2 ◦

Antenna scanning velocity 30 ◦/s
Scanning area −5~5 ◦

Pulse repetition frequency 1500 Hz

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

 

Figure 5. Simulated convolution kernel with sinc2 function. 

Table 2. Mean PSNR (dB), SSIM and SSE results with 500 simulations. 

Methods Mean PSNR (dB) Mean SSIM Mean SSE 

Blind Deconvolution 17.211 0.277 0.541 

Regularized Filter 10.304 0.156 1.328 

Wiener Filter 17.310 0.499 0.531 

Richardson–Lucy 15.195 0.698 0.684 

TSVD 15.336 0.587 0.666 

SDBSM 18.644 0.270 31.292 

TV 18.510 0.801 0.469 

TVBC 18.972 0.816 0.444 

TVS 19.214 0.803 0.4309 

TVSBC 19.244 0.809 0.4305 

A group of restoration results in 500 simulations when SNR = 21 dB are illustrated in 

Figure 6. Due to the low noise level, isolated targets can be distinguished by all deconvo-

lution methods. But Blind Deconvolution, Regularized Filter, Wiener Filter, TSVD, and 

SDBSM cannot distinguish the middle two adjacent targets. From Figure 6d, the Richard-

son–Lucy method can recover the middle two adjacent targets, but an extra fake peak 

accompanies the left isolated targets. In addition, as illustrated in Figure 6g–j, TV, TVS, 

TVBC, and TVSBC have excellent capability of distinguishment to these isolated and ad-

jacent targets, and few significant fake targets are produced. 

Figure 5. Simulated convolution kernel with sinc2 function.



Remote Sens. 2022, 14, 5792 12 of 22

We set up 500 independent simulation experiments with different SNRs. The degraded
signals can be restored by these deconvolution methods, whose results can be evaluated
by the mean PSNR, SSIM, and SSE listed in Table 2. From it, we can see that Blind
Deconvolution, Wiener Filter, and SDBSM can have fine mean PSNR but terrible mean
SSIM, and Regularized Filter based on L2 norm proposed for the smooth signal has the
lowest mean PSNR and SSIM due to a loss in the accurate noise level estimation and
smooth the significant signal features. With the decreasing SNRs during simulation, the
noise level increases, whose effect on these above-mentioned deconvolution methods has
been magnified accordingly. It infers that these deconvolution methods are not robust
against noise. In addition, the Richardson–Lucy method and TSVD method can keep a
balance between mean PSNR and SSIM and with lesser mean SSE, which maintains a
middling level compared with TV, TVS, TVBC, and TVSBC. Overall, TV, TVS, TVBC, and
TVSBC provide excellent evaluation results that are evidenced by high mean PSNR and
SSIM and small mean SSE. By comparing the TV/TVS without and with bias correction, we
can find that the proposed bias correction methods can effectively improve the performance
of the original TV and TVS. It seems that the proposed methods are not only rigorous in
theory but also feasible in practice.

Table 2. Mean PSNR (dB), SSIM and SSE results with 500 simulations.

Methods Mean PSNR (dB) Mean SSIM Mean SSE

Blind Deconvolution 17.211 0.277 0.541
Regularized Filter 10.304 0.156 1.328

Wiener Filter 17.310 0.499 0.531
Richardson–Lucy 15.195 0.698 0.684

TSVD 15.336 0.587 0.666
SDBSM 18.644 0.270 31.292

TV 18.510 0.801 0.469
TVBC 18.972 0.816 0.444

TVS 19.214 0.803 0.4309
TVSBC 19.244 0.809 0.4305

A group of restoration results in 500 simulations when SNR = 21 dB are illustrated
in Figure 6. Due to the low noise level, isolated targets can be distinguished by all de-
convolution methods. But Blind Deconvolution, Regularized Filter, Wiener Filter, TSVD,
and SDBSM cannot distinguish the middle two adjacent targets. From Figure 6d, the
Richardson–Lucy method can recover the middle two adjacent targets, but an extra fake
peak accompanies the left isolated targets. In addition, as illustrated in Figure 6g–j, TV,
TVS, TVBC, and TVSBC have excellent capability of distinguishment to these isolated and
adjacent targets, and few significant fake targets are produced.

To better compare TV and TVS methods with and without bias correction, we display
three groups of results in Figure 7 with high, middle, and low SNRs. With the increase
in the simulated SNRs, these results of TV and TVS methods can restore better-qualified
images, and these main targets can be distinguished better. Furthermore, these results after
bias correction by TVBC and TVSBC can be higher restoration quality than those of TV and
TVS methods. The intensity of these significant targets recovered from TVBC and TVSBC is
higher than that of TV and TVS, as demonstrated in Figure 7 with red rectangles. Similarly,
the restored contour information is illustrated in Figure 7 with gray rectangles, whose
intensities of TVBC and TVSBC are lower than those of TV and TVS. It proves that bias
correction can effectively improve the restored quality of the 1-D targets scene in visual.
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when SNR = 21 dB. (a) Blind deconvolution; (b) Regularized method; (c) Wiener Filter; (d) Richardson–
Lucy method; (e) TSVD method; (f) SDBSM; (g) TV; (h) TVBC; (i) TVS; (j) TVSBC.

Furthermore, for better quantitative comparison, the line charts of PSNR, SSIM, and
SSE with the increase of simulation SNRs ranging from 1~25 dB with 2 dB interval are
shown in Figure 8. As expected, the results of partial bias correction of TVBC and TVSBC
are improved. Among them, the PSNRs and SSIMs of TVBC and TVSBC are greater than
those of TV and TVS, while the SSEs of TVBC and TVSBC are less than those of TV and
TVS. The mean improvement ratio of PSNR, SSIM, and SSE of TV and TVS relative to TVBC
and TVSBC are 3.00% and 1.00%, 1.94% and 0.70%, 6.00%, and 2.08%, respectively.
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Figure 8. Different evaluated results under different SNRs. (a–c) PSNR, SSIM, and SSE for TV and
TVBC, respectively. (d–f) PSNR, SSIM, and SSE for TVS and TVSBC, respectively.

In addition, the statistical results of PSNR, SSIM, and SSE with 500 simulations when
the noise of SNR is 15 dB are presented in Figure 9 and Table 3, and the results of TVBC and
TVSBC are finer than those of TV and TVS. Specifically, the mean improvement ratios of
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TVBC and TVSBC with regards to TV and TVS are 1.61% and 2.82%, 1.72% and 1.08, 3.57%,
and 6.23%, respectively. In summary, the application of bias correction can effectively
improve the quality of the restored signals when based on TVS or TV.
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(b) PSNR for TVS and TVSBC. (c) SSIM for TV and TVS. (d) SSIM for TVS and TVSBC. (e) SSE for TV
and TVS. (f) SSE for TVS and TVSBC.

Table 3. Mean PSNR (dB), SSIM and SSE results with 500 simulations of Figure 8.

Methods PSNR (dB) SSIM SSE

TV 19.322 0.808 0.422
TVBC 19.633 0.822 0.407

TVS 19.800 0.814 0.399
TVSBC 20.358 0.823 0.374

5.3. Experiment2: 2-D Area Data Processing

In this section, we simulate the 2-D data to discuss the performance of the proposed
bias-corrected methods TVBC and TVSBC. The convolution kernel is the same as the
1-D target simulation. The scanning region is ±5◦, and the range of breadth is 500 m.
Nine random-size targets are designed and distributed in the area scene, as illustrated
in Figure 10a. Additionally, the noise under high-, middle- and low-SNR conditions are
simulated (5 dB, 15 dB, and 25 dB, respectively). Comparing with Figures 10a and 10b–d,
we can see that the adjacent targets at the first and second lines are distinguishable, but
those at the third line are blurred.
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Figure 10. Simulated surface targets with convolution and noise degradation with different SNRs of
simulated noise. (a) Simulated echo. (b) SNR = 5 dB. (c) SNR = 15 dB. (d) SNR = 25 dB.

The results generated by these different methods are demonstrated in Figures 11–13.
As shown in Figure 11 with SNR = 5 dB, for the Blind Deconvolution method, improvement
is poor, whose shapes are blurred, and the noise still exists. Regularized Filter, Wiener
Filter, TSVD, and SDBSM can remove noise sufficiently, but the obvious targets are fuzzy.
In particular, TSVD and SBDSM produce more fake targets, and even partially recognizable
targets are replaced with these fake targets. It shows that these methods are vulnerable to
noise. Richardson–Lucy methods have a balance between denoising and deconvolution. In
other words, it restores fairly clear targets, which can be helpful in positioning the targets.
However, the shape of targets is lost by comparison with the original real echo. As shown
in Figure 11g–j, the restored results of TV, TVBC, TVS, and TVSBC can not only distinguish
all adjacent targets and suppress the noise but also maintain clear shapes and similar sizes.
In particular, for the low intensity of the target, TVBC can get a more obvious rectangle
shape than that of TV. TVS and TVSBC have similar results without significant differences
in visual, but the size of TVSBC is closer than that of TVBC to the simulated echo. As listed
in Table 4, all evaluation results of TVBC and TVSBC are superior to those of TV and TVS,
respectively. And the improvement ratios of PSNR, SSIM, and SSE with TVBC, TVSBC,
and TV, TVS are 5.2% and 0.3%, 6.6% and 1.5%, 10.0%, and 0.7%, respectively.

Table 4. PSNR, SSIM, and SSE evaluation results of Figures 11–13.

Methods

SNR = 5 dB SNR = 15 dB SNR = 25 dB

PSNR
(dB) SSIM SSE PSNR

(dB) SSIM SSE PSNR
(dB) SSIM SSE

TV 17.462 0.595 29.978 19.999 0.773 22.387 0.773 0.882 20.152
TVBC 18.377 0.634 26.981 20.431 0.798 21.299 0.798 0.888 19.882

TVS 18.922 0.612 25.341 20.771 0.807 20.481 0.807 0.888 19.796
TVSBC 18.986 0.621 25.153 20.992 0.813 19.967 0.813 0.894 18.979

Similarly, the increases in SNRs in Figures 12 and 13 have fewer effects on these
restored results, but the results of Blind Deconvolution, Regularized Filter, Wiener Filter,
TSVD, and SDBSM are relatively poor by comparison with those of TV, TVBC, TVS, and
TVSBC. The results of the Richardson–Lucy method can get better with the decrease of the
noise level, but the shape of it cannot be restored as well as TV, TVBC, TVS, and TVSBC.
The line chart of assessment for PSNRs, SSIM, and SSE of these methods is demonstrated
in Figure 14. It can be seen that the Richardson–Lucy method is ranked only second to TV,
TVBC, TVS, and TVSBC, which is consistent with what is displayed in Figures 11–13. For
middle SNR, the improvement ratios of PSNR, SSIM, and SSE with TVBC, TVSBC, and TV,
TVS are 2.2% and 1.1%, 3.2% and 0.8%, 4.9%, and 2.5%, respectively. For high SNR, the
improvement ratios of PSNR, SSIM, and SSE with TVBC, TVSBC, and TV, TVS are 0.6% and
1.7%, 0.6% and 0.7%, 1.3%, and 4.1%, respectively. For middle and high SNRs of noise, TV,
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TVBC, TVS, and TVSBC can get fine restored results superior to the others. In particular,
bias-corrected methods can have better results than those without bias correction, which
demonstrates that this work is meaningful and feasible.
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6. Discussion

An ill-posed inversion problem is usually solved by the regularization methods with
different regularization terms to constrain the parameter space for stable solutions. In
typical Tikhonov regularization based on the L2 norm, the biases of solutions are paid
more attention to be analyzed and better corrected. For example, the fully-, partially-
and adaptively- bias-corrected methods are raised [36,37,42]. In contrast, the sparsity
regularization terms based on the L1 norm are utilized to address the ill-posed sparsity
inversion problems, but the biases of its solution are seldom involved and analyzed. To this
end, this paper places emphasis on the analysis of the biases of regularization solutions
based on the L1 norm. From the perspective of the formulae comparison and derivation,
the differences between regularization solutions based on the L1 norm and L2 norm are
obtained. The partially-biased property of the regularization solution based on the L1 norm
is revealed herein, the bias of which is less than that of the L2 norm by analysis in Section 2
when both are without bias correction. It reflects that the results of the L1 norm will be
better than the L2 norm, which is consistent with the restored results from TV and TVS
displayed in Section 4. The improvements of TVBC and TVSBC for PSNR, SSIM, and SSE
overall are 2.15%, 1.8%, and 4.14% to those of TV and TVS, respectively.

Additionally, for the partially biased property, we derive the piecewise form of the
partially bias-corrected solution in Section 3. In other words, the proposed partial bias
correction can retain original information in low frequency and reduce the negative effect in
the high frequency of the coefficient matrix. The corresponding flowchart for the proposed
TVSBC and TVBC is designed for better implementation. The idea of bias analysis and
correction for the L1 norm solution is rigorously extended in theory. In practice, for different
prior regularization terms based on the L1 norm, the biases of its solutions can be analyzed
and corrected, referring to ours.

Inspired by [36,37,42,43], the quality of the regularization solution is relative to the
sparsity regularization parameters selection, which is empirically determined, however,
which is empirically selected in this paper. Therefore, we will investigate the relation
between parameters selection criterion and bias correction in future works.

7. Conclusions and Outlook

In this paper, an analysis of the bias of the ill-posed sparsity inversion problem
based on the L1 norm is implemented. The partially biased property of the L1 norm is
revealed. Without bias correction, the solution of the L1 norm is superior to that of Tikhonov
regularization because of its own partially biased nature. Furthermore, on the basis of
it, we give the partially bias-corrected solutions of the TVS and TV methods, which are
dependent on the sparsity property L1 norm. In a word, the partial bias correction method
avoids modifying the part of the unbiased solution, which improves the rigor of the theory.
In addition, the bias-corrected method of TVBC and TVSBC are helpful in improving the
quality of restored signals by retaining more signals in low-frequency and suppressing noise
in high-frequency more effectively. The robustness of TV and TVS has also been enhanced.

Two experimental examples have been presented to demonstrate the performance
of the proposed methods, including 1-D point target and 2-D area simulation for super
azimuth resolution of radar forward-looking imaging. The bias-corrected methods can
preserve higher quality than the corresponding methods without bias correction, whose
results not only distinguish the adjacent targets, suppress the noise, and preserve the shape
and size of targets in visual, but also have excellent statistical results of PSNR, SSIM, and
SSE assessment indexes. It infers that the partially bias correction idea is worth being
promoted to improve the theoretic rigor of sparse regularization solution and the quality of
the restored signals.
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