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Abstract: There is increasing demand for more detailed soil maps to support fine-scale land use
planning, soil carbon management, and precision agriculture in Saskatchewan. Predictive soil
mapping that incorporates a combination of environmental covariates provides a cost-effective tool
for generating finer resolution soil maps. This study focused on mapping soil properties for multiple
soil horizons in Saskatchewan using historical legacy soil data in combination with remote sensing
band indices, bare soil composite imagery, climate data, and terrain attributes. Mapped soil properties
included soil organic carbon content (SOC), total nitrogen, cation exchange capacity (CEC), electrical
conductivity (EC), inorganic carbon (IOC), sand and clay content, and total profile soil organic carbon
stocks. For each of these soil properties, a recursive feature elimination was undertaken to reduce
the number of features in the overall model. This process involved iteratively removing features
such that random forest out-of-bag error was minimized. Final random forest models were built for
each property and evaluated using an independent test dataset. Overall, predictive models were
successful for SOC (R2 = 0.71), total nitrogen (R2 = 0.65), CEC (R2 = 0.46), sand content (R2 = 0.44)
and clay content (R2 = 0.55). The methods used in this study enable mapping of a greater geographic
region of Saskatchewan compared to those previously established that relied solely on bare soil
composite imagery.

Keywords: Saskatchewan; predictive soil mapping; bare soil composite imagery; multi-temporal
remote sensing; random forest

1. Introduction

Extensive soil surveying and mapping took place historically in the Province of
Saskatchewan, however, most of these mapping efforts ended by 1998. These histori-
cal 1:100,000 soil survey maps are easily accessible in the Saskatchewan Soil Information
System digital platform (SKSIS.ca) [1]. The soil survey maps were widely used for agri-
cultural management and land use planning in Saskatchewan throughout the late 20th
century. There is now increasing demand for more detailed soil maps to support fine-tuned
land use planning, soil carbon management, and precision agriculture. An extensive lit-
erature exists regarding using predictive soil mapping (PSM) to generate finer scale soil
data [2]. Particularly, PSM using machine-learning tools in combination with a suite of
environmental covariates has been an increasing focus of research around the world [3].

One promising tool for generating environmental covariate data for PSM is the use of
multi-temporal remote sensing data. Recent developments in cloud computing (i.e., Google
Earth Engine [4]) and data processing have enabled collections of multi-temporal data to
be accessed and processed more easily. Multi-temporal statistics of remote sensing band
indices such as normalized difference vegetation index (NDVI) have improved PSM work in
the southwestern United States for mapping soil texture and coarse fragments [5]. Research
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focused on soil organic carbon mapping at fine spatial scales has found multispectral time
series to be a useful environmental covariate [6]. Multi-temporal statistics of remote sensing
band indices have also improved PSM efforts for mapping soil properties other than carbon,
such as sand content and cation exchange capacity in Iran [7].

The processing of multi-temporal remote sensing data enables the generation of bare
soil environmental covariate data, typically referred to as bare soil composite imagery
(BSCI) [8]. Bare soil composite imagery is particularly necessary for PSM in the Canadian
Prairies, and other regions with extensive conservation tillage, because when dead plant
residue cover exceeds 20 percent of a remotely sensed image pixel, then direct estimation
of soil properties becomes difficult [9,10]. Vegetation and dead plant residue-free pixels
are now rare in Saskatchewan due to extensive conservation tillage practices [11]. The
availability of BSCI imagery is also dependent on bare soils being present, which is not
the case for permanent pasture or forested land. With the use of historical remote sensing
datasets such as Landsat 5, it is possible to generate historical BSCI for Saskatchewan,
although present day BSCI cannot be generated [12]. Bare soil composite imagery has been
used for a variety of projects including work in Germany [13], Brazil [14], and globally [15]
for predicting soil properties such as soil organic carbon. Bare soil composite imagery has
already been used successfully to generate historical soil carbon and clay content maps for
regions of Saskatchewan [12].

Predictive soil mapping studies tend to focus on mapping soil properties as a two-
dimensional surface by providing a single prediction per x and y coordinate-defined pixel.
However, soil is a three-dimensional body, with variation in the third dimension: depth.
The variation in soil properties by depth is largely dependent on soil horizons. To better
account for soil variation in all spatial directions, three-dimensional machine learning
approaches have been developed [16,17]. Three-dimensional predictive soil mapping
includes depth as a model covariate, thereby training the model to account for multiple
soil depths and enabling prediction at multiple soil depths [17]. This approach has the
advantage of maximizing the total training dataset along with accounting for variation in
depth profiles [18]. This approach has been used to predictively map soil organic carbon in
three dimensions across Australia [19] and Canada [20].

The overall objective of this research was to use a horizon based three-dimensional
predictive soil mapping approach to map the entire agricultural portion of the province of
Saskatchewan for a range of soil properties. Previous work was restricted to only those re-
gions where bare soil was present at some time, which left areas unmapped [12]. This study
aimed to apply a process that included BSCI that was capable of mapping regions where
bare soils never occurred. Specifically, using historical multi-temporal remote sensing data
along with BSCI, including a range of remote sensing features and indices and determine
which were most important for predicting the various soil properties in Saskatchewan’s
agricultural regions. Overall, the eventual use of the soil data generated from this project
will be to provide baseline historic carbon data for the province of Saskatchewan for change
over time comparisons, as well as finer spatial resolution maps of more stable soil properties
such as soil texture for applications such as agricultural land management.

2. Materials and Methods
2.1. Study Area

The study area for this project included the entire agricultural region of the Canadian
Province of Saskatchewan. The soils of Saskatchewan are characterized by development
in glacial deposits because of the Pleistocene glaciation. Saskatchewan has a continental
climate, with agriculture a dominant land use in the southern portion of the province [21].
Major crops include wheat, barley, Canola, lentils, field peas, and flax. A significant portion
of the southern portion of the province is also used for pasture and forages [21]. The
dominant soil type in this region are Chernozemic soils, with significant proportions of
Solonetzic and Luvisolic soils (Table 1).



Remote Sens. 2022, 14, 5803 3 of 22

Table 1. Soil orders present in the legacy soil survey data [22]. Soil orders are presented according to
the Canadian System of Soil Classification [23], the World Reference Base [24], and the United States
Department of Agriculture Soil Classification System [25].

Canadian System of Soil
Science Classification World Reference Base United States Department of Agriculture

Soil Classification System n

Brunisol Cambisol Inceptisol 3

Chernozem
Kastanozem, Chernozem,

Greyzem,
Phaeozem

Borolls 398

Gleysol Gleysol Aqu suborders 7

Luvisol Luvisol Boralfs, Udalfs 66

Regosol Regosol Entisol 25

Solonetz Solonetz Natric Great Groups 73

Vertisol Vertisol Haplocryerts 5

2.2. Soil Data

Historical soil survey data was the sole point data source used in this study (Table 1)
due to the limited amount of publicly available soil point data in Saskatchewan. The
data was collected as part of historical soil mapping and survey efforts conducted during
the 1990s and earlier [22]. The samples were collected to represent modal soils from the
dominant soil types in a region and were collected by horizon with analyses performed on
the homogenized horizon samples. Sample locations were estimated relative to landmarks
by the soil surveyors, and the location accuracy is estimated as approximately ±300 m.
The soil point data was retrieved from the National Pedon Database [22]. The sampling
locations were in modal slope positions and typically represent the dominant soil conditions
for a quarter section. As a result, they represent the average conditions associated typically
with mid slope positions.

As the samples were analyzed by horizon, with multiple A, B, or C horizons sometimes
present, soil property weighted averages were calculated for each master horizon. The
weighted average A, B, and C horizon values (including all A, B, and C horizons for the
profile) were calculated for soil organic carbon, total nitrogen, cation exchange capacity,
electrical conductivity, inorganic carbon, sand, and clay content (Table S1). The weighted
averages of each parameter were calculated by multiplying soil property values by the
proportion they accounted for of the entire master horizon type (A, B, or C) and then
summing the resulting values for the master horizon type.

The total profile soil organic carbon stocks were also determined for each soil point.
As bulk density values were not available for each sample, a pedotransfer function was
generated to predict bulk density values using the entire National Pedon Database, includ-
ing samples from outside Saskatchewan. Using the ranger package in R [26], a random
forest model was generated to predict bulk density as a function of soil organic carbon,
sand, and clay contents. The pedotransfer function had an R2 of 0.52 and a root mean
square error of 0.2 g cm−3 (Table 2), based on an independent validation test set generated
with a 75–25 train-test split (further explained in the model validation section). Based on
a root mean square error of 0.2 g cm−3, there is an estimated median error of 3 Mg ha−1

in the soil organic carbon stock results due to the pedotransfer function. These predicted
bulk density values were used to calculate total profile soil organic carbon stocks from soil
organic carbon and horizon thicknesses, on a kilogram per square meter basis.
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Table 2. Predictive model and null model results for each soil property. The null model RMSE values
reflect the performance of a model where every soil property prediction value is equal to the mean
property value for the entire training data set. It represents a base performance to compare the
predictive model performance against.

Soil Property Horizon
Null Model
Root Mean

Square Error

Predictive
Model R2

Predictive
Model Root

Mean Square
Error

Predictive Model
Concordance
Correlation
Coefficient

S

Soil Organic
Carbon (%)

Overall 1.14 0.71 0.61 0.83 −0.07
A 1.39 0.49 0.85 0.64 −0.11
B 0.77 0.21 0.40 0.39 −0.06
C 1.09 0.11 0.31 0.25 −0.01

Total Nitrogen
(%)

Overall 0.10 0.65 0.06 0.76 0.00
A 0.12 0.48 0.07 0.60 0.01
B 0.07 0.25 0.05 0.39 0.00
C 0.09 0.36 0.04 0.44 0.00

Inorganic
Carbon (%)

Overall 8.09 0.65 4.79 0.79 −0.25
A 5.66 0.11 3.07 0.29 −0.75
B 7.08 0.16 5.67 0.25 −0.10
C 10.88 0.56 5.42 0.73 0.18

Electrical
Conductivity

(dS m−1)

Overall 2.50 0.36 2.18 0.57 −0.61
A 1.94 0.08 1.67 0.23 −0.28
B 1.94 0.26 1.67 0.47 −0.50
C 3.40 0.34 3.00 0.53 −1.09

Cation
Exchange

Capacity (meq
100 g−1)

Overall 11.27 0.46 8.18 0.63 −0.42
A 12.09 0.47 8.80 0.63 −0.61
B 10.12 0.41 7.81 0.61 −0.22
C 11.37 0.36 7.81 0.51 −0.40

Clay (%)

Overall 15.62 0.55 10.47 0.70 −0.47
A 14.36 0.65 8.23 0.76 −1.05
B 15.77 0.50 11.10 0.67 0.43
C 16.81 0.49 12.00 0.66 −0.68

Sand (%)

Overall 22.55 0.44 16.99 0.64 −0.61
A 21.46 0.52 14.89 0.70 0.57
B 22.45 0.44 17.03 0.64 −1.84
C 23.82 0.37 19.07 0.58 −0.74

Horizon
Thickness (%)

Overall 0.55 0.76 0.27 0.86 0.00
A 0.38 0.06 0.10 0.21 −0.03
B 0.30 0.06 0.23 0.21 −0.01
C 0.80 0.66 0.39 0.79 0.03

Bulk Density
(g cm−3) Overall 0.3 0.52 0.20 0.66 <0.01

Soil Organic
Carbon Stock

(kg m−2)
Overall 5.83 0.27 4.84 0.47 0.31

The soil orders (based on the Canadian System of Soil Classification [23]) of the
Saskatchewan portion of the National Pedon Database consisted primarily of Chernozemic
soils (398 out of 577 total profiles), with the next most common soil order being Solonetzic
soils with 73 profiles (Table 1), then Luvisols with 66 profiles, followed by Regosols with
25 profiles. The remainder of the soils included seven Gleysols, five Vertisols, and three
Brunisols. The equivalent soil orders in the World Reference Base [24] and the United States
Department of Agriculture Soil Classification System [25] are provided in Table 1.
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2.3. Remote Sensing Data

Historical multi-temporal remote sensing data was retrieved using Google Earth
Engine [4] for the agricultural regions of Saskatchewan (Figure 1). Landsat 5 Tier 1 surface
reflectance data was acquired from 1984 to 1995, with several band indices calculated
(Table S2). Data from this time period was used to correspond to the general time period
that the soil data was collected. While the training data was collected largely in the 1980s
and earlier, remote sensing data up to 1995 was included to ensure enough bare soil pixels
were available for more reliable averages for the BSCI, as discussed in the BSCI section. The
same date range was used for the other remote sensing indices. The median anthocyanin
reflectance index (ARI), which is associated with anthocyanin pigments [27], was calculated
for data from the months of July and August. The median canopy response salinity index
(CRSI) for July and August was also determined [28], along with the median NDVI and
median soil adjusted vegetation index (SAVI) for July and August and separately for
September and October. Data from July and August was selected as this corresponds
to peak photosynthetic activity in this region. Data from September and October was
retrieved as the majority of arable cropland would be harvested during this time period,
helping to separate soil properties that would be associated with different land use types
such as wetlands or pastureland. The standard deviation of NDVI was determined using
data from May to October, to account for the entire growing season. Each of these indices
were calculated using all available pixels for the given time period after filtering the image
collections to only include pixels with vegetation coverage (i.e., not bare soil) based on
the methodology described in [12]. Only those pixels with NDVI values greater than 0.3,
normalized difference index 7 (NDI7; normalized differences of Landsat 5 near-infrared and
shortwave infrared 2 bands) values greater than zero, and normalized burn ratio (NBR2;
normalized differences of Landsat 5 near-infrared and shortwave infrared 2 bands) values
greater than 0.1 were included. Clouds, shadows, and low-quality pixels were filtered using
the Landsat quality assessment band (pixel_qa). Each band was spatially filtered using a
circular 10 × 10 median focal filter. This focal filtering was done to account for the ±300 m
location uncertainty associated with the soil point data. The final filtered images were then
aggregated to a spatial resolution of 100 m. Mapping with 3 × 3 median focal filtering and
30 m pixels produced significantly worse results in previous work that incorporated the
National Pedon Database data [12]. The Google Earth Engine scripts for calculating remote
sensing indices have been made available on GitHub [29].

To account for larger-scale climate-related factors, temperature and precipitation data
was retrieved from the Copernicus Climate Change Service [30]. Daily mean average air
temperature data was obtained for the months of May to September from 1979 to 2020.
The mean temperature was calculated for each pixel in the data’s native resolution (pixel
size = 27,830 m). Average annual precipitation was also calculated for 1979 to 2020. The
precipitation data included both rain and snowfall data, as all 12 months were included
in the calculation. The coarse spatial resolution of the climate data meant it accounted for
larger-scale climatic gradients. The resulting temperature and precipitation rasters were
resampled to 100 m to match the band index rasters using bicubic interpolation. Bicubic
interpolation was used over simpler interpolation methods, such as nearest neighbor,
because nearest neighbor interpolation caused straight-line artifacts along the original pixel
boundaries in the resulting predictive soil maps.
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for Saskatchewan from 1984–1995 is on the right. The white areas correspond to areas either without 
bare soil pixels present or permanent pasture areas that have been masked. The black points indicate 
the location of the National Pedon Database sample locations used for model training and valida-
tion. Coordinates are in UTM Zone 13N NAD83. 
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with Landsat 5 Tier 1 surface reflectance imagery for the months of July and August from 
1984 to 1995. Data from this period was used to ensure that sufficient bare soil pixels with 
minimal crop residue were present in the imagery. The months of July and August were 
selected to increase the likelihood that crop residues from previous years had time to de-
compose. Clouds, shadows, and low-quality pixels were filtered using the Landsat quality 
assessment band (pixel_qa). 

The image collection was filtered using NDVI, NBR2, NDI7, and the normalized dif-
ference water index (NDWI) calculations. Pixels were included as representing the bare 
soil surface if NDVI values were less than 0.3 [15], NBR2 was less than 0.1 [15], NDWI was 
less than 0.5 [31], and NDI7 was less than 0 [32]. Areas that were mapped as pasture or 
grassland in Agriculture and Agri-Food Canada’s 2019 Annual Crop Inventory [21] were 
masked to further reduce the likelihood of non-bare soils being included in the final im-
agery. The bare soil imagery collections included data from much earlier than 2019; how-
ever, as both pasture and grasslands tend to be managed long-term, the use of this data 
for masking is considered appropriate. Once pixels in the collection had been filtered and 
masked, median reflectance values were calculated for each pixel. The resulting pixels 
were then spatially filtered using a circular 10 × 10 median focal filter. This focal filtering 
was done to account for ±300 m location uncertainty associated with the soil point data. 
The final filtered composite image was then aggregated to a spatial resolution of 100 m. 
The BSCI is illustrated in Figure 1. Pixels that did not have bare soil present were assigned 

Figure 1. True colour red-green-blue median surface reflectance image (Landsat 5 red, green and blue
bands) for Saskatchewan from May to October from 1984–1995 is on the left. True colour red-green-
blue median reflectance bare soil pixel composite image (Landsat 5 red, green and blue bands) for
Saskatchewan from 1984–1995 is on the right. The white areas correspond to areas either without
bare soil pixels present or permanent pasture areas that have been masked. The black points indicate
the location of the National Pedon Database sample locations used for model training and validation.
Coordinates are in UTM Zone 13N NAD83.

2.4. Bare Soil Composite Imagery

Bare soil composite imagery was generated using the methodology described in [12]
with Landsat 5 Tier 1 surface reflectance imagery for the months of July and August from
1984 to 1995. Data from this period was used to ensure that sufficient bare soil pixels
with minimal crop residue were present in the imagery. The months of July and August
were selected to increase the likelihood that crop residues from previous years had time
to decompose. Clouds, shadows, and low-quality pixels were filtered using the Landsat
quality assessment band (pixel_qa).

The image collection was filtered using NDVI, NBR2, NDI7, and the normalized
difference water index (NDWI) calculations. Pixels were included as representing the bare
soil surface if NDVI values were less than 0.3 [15], NBR2 was less than 0.1 [15], NDWI
was less than 0.5 [31], and NDI7 was less than 0 [32]. Areas that were mapped as pasture
or grassland in Agriculture and Agri-Food Canada’s 2019 Annual Crop Inventory [21]
were masked to further reduce the likelihood of non-bare soils being included in the final
imagery. The bare soil imagery collections included data from much earlier than 2019;
however, as both pasture and grasslands tend to be managed long-term, the use of this
data for masking is considered appropriate. Once pixels in the collection had been filtered
and masked, median reflectance values were calculated for each pixel. The resulting pixels
were then spatially filtered using a circular 10 × 10 median focal filter. This focal filtering
was done to account for ±300 m location uncertainty associated with the soil point data.
The final filtered composite image was then aggregated to a spatial resolution of 100 m.
The BSCI is illustrated in Figure 1. Pixels that did not have bare soil present were assigned
a null value of zero for model development. The Google Earth Engine used scripts for
calculating BSCI have been made available on GitHub [33].



Remote Sens. 2022, 14, 5803 7 of 22

2.5. Terrain Attributes

Terrain attributes were derived from the 30 m digital surface model from the Advanced
Land Observation Satellite (ALOS) [34]. Terrain attributes to account for local elevation
variability and landscape-scale morphometric features were generated. Features related to
elevation variability were the terrain ruggedness index (TRI) and the standard deviation
of elevation. Multiple versions of these variables were generated by using a range of
focal window sizes and elevation model median focal filtering sizes (Table S2). The input
digital surface model was filtered using 3 × 3, 5 × 5, and 9 × 9 filter sizes. The TRI was
calculated with window sizes of 10 × 10 and 20 × 20, and standard deviation of elevation
was calculated with 3 × 3, 5 × 5, 9 × 9, 21 × 21 and 101 × 101 window sizes. These
variables were selected as they represent coarser scale patterns in landscape variability and
were hypothesized to be useful predictors given the relatively coarse scale of the elevation
model relative to the short-range landscape variability of the prairies. Landscape-scale
morphometric features, which included slope height, valley depth, mid slope position,
normalized height, standardized height, and SAGA Wetness Index [35] were also included
as they have been useful environmental covariates in other Saskatchewan PSM studies [36].

All TRI calculations were done using the system for automated geoscientific analyses
(SAGA; SAGA Development Team 2011). The TRI values were calculated using either a
window size of 10 or 20 pixels (Table S2) and were calculated for DEMs that had been
filtered using median focal filtering with window sizes of either 3 × 3, 5 × 5, 9 × 9, or
not filtered. All standard deviation of elevation rasters were calculated in Google Earth
Engine with window sizes of 3 × 3, 5 × 5, 9 × 9, and 21 × 21 following 3 × 3 median focal
filtering of the DEM. The standard deviation of elevation attribute was also calculated with
window sizes of 21 × 21 and 101 × 101 following 9 × 9 median focal filtering of the DEM.
The landscape-scale morphometric features were calculated using the Relative Heights
and Slope Positions module in SAGA [35]. Module parameter values were left at default
settings except for the t-value, which was set at 1000 to prioritize the importance of finer
scale local depressions and peaks. All terrain attributes were aggregated to 100 m spatial
resolution to match the resolution of the other covariates. It is important to note that for this
region, slope positions often vary at finer scales than 30-m, and therefore so do important
hydrological processes associated with relief that drive soil property variation. As a result,
30 m is often not fine enough resolution for landscape position scale mapping in this region.

2.6. Validation Data

To create an independent testing dataset for validation, the data was split into training
and testing datasets using conditioned Latin Hypercube Sampling (cLHS) with the clhs
package in R [37]. A principal component analysis was performed on the entire list of
environmental covariates (Table S2), and the first and second principal components were
included as the inputs to the cLHS analysis. The cLHS was used to select 144 points
(25 percent of the dataset) from the total dataset to be used as a testing dataset. The
remaining 433 points (75 percent) were used as the training data for the study. The use of
cLHS for creating the train-test split was to help ensure similar distributions of datasets
across feature space [38]. The same training and testing datasets were used for each of the
soil property models to remove differences in the training and testing data composition as
a factor when comparing relative model performance. Profile observations with A-horizon
total nitrogen values above 0.5 (95th percentile value was 0.43) were removed from the
total nitrogen training and testing datasets. This was done to prevent rarely occurring
outlier points from influencing the model, as they would unlikely be predicted reliably.
Performance of the predictive model built for A-horizon total nitrogen without removing
outliers had poor performance with an R2 value of 0.09.

2.7. Model Development

The same predictive model development process was followed for each soil property,
with recursive feature elimination as the first step. For each soil parameter, except for soil
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organic carbon stocks, a three-dimensional predictive soil mapping approach was used [17].
In this study, values were predicted per soil horizon (A, B, and C) rather than for fixed
depths. Soil horizon was included as a categorical covariate for the model to account for
horizon variation in soil properties within one model. Profile soil organic carbon stocks
were modelled without accounting for horizons. Predictive models were developed for the
following soil properties:

• Soil organic carbon,
• Total nitrogen,
• Cation exchange capacity,
• Electrical conductivity,
• Inorganic carbon,
• Sand content,
• Clay content,
• Horizon thickness,
• Soil organic carbon stock

Using the ranger package in R [26], recursive feature elimination, using only the
training data, was used to select the features to be included in the models for each soil
property. The feature selection process was initially conducted separately on three groups of
covariates: (1) BSCI bands, (2) band indices, and (3) terrain attributes to ensure that features
from all three categories were included in the final models. First, a random forest model
was built that included the BSCI visible light, near-infrared, and shortwave infrared bands,
along with precipitation and temperature covariates to account for large-scale gradients.
Feature importance was determined based on the variance of responses [26], and were then
divided by the sum of the total feature importance values to make comparisons easier. The
feature importance values indicate the relative effect a feature has on the overall model.
Features were selected using a process where random forest models were iteratively built
using sequentially less features based on their feature importance ranking. After each
round, the feature importance values were determined and the least important feature
was removed. The final BSCI features were selected based on where out-of-bag error was
minimized across the iteratively built models. This process was repeated for the band
indices and the terrain attribute groups of covariates.

Following feature selection per category of covariates, collinearly related features
were managed: when two variables had a correlation above 0.9, only one was kept. The
variable with the largest mean absolute correlation was then removed. Following recursive
feature elimination for each covariate category, the variables selected for category where
then subjected to a recursive feature elimination process was conducted that included all
subsets of features from each category to select the features used in the final model. The
list of features included in the final models for each soil property is listed in Table 3. Code
for the feature selection process, model building, and mapping is available on GitHub [39].
Following feature selection, the ranger package in R [26] was used to build a final random
forest model using the training dataset with 500 trees and the split rule as variance. A flow
chart illustrating this process is provided in the supplemental material (Figure S1).

2.8. Model Validation

Model performance was validated using the independent test dataset which was
withheld from the feature selection and model parameter optimization processes. The
independent test dataset consisted of full profiles set aside from the training dataset so
that predictions for individual horizons could not be informed by the adjacent horizons
of the same profile. Values for the test dataset were predicted for each soil property and
compared against the observed values. Performance was evaluated based on R2, root
mean square error (RMSE), Lin’s Concordance Correlation Coefficient (CCC), and Bias.
Additionally, model performance was compared to a null model approach to evaluate
model performance relative to an approach where no spatial pattern or environmental
covariate relationships were modelled. This approach involved assigning the test dataset
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soil property predictions values equal to the average soil property value of the entire
training dataset (Table 2).

Table 3. Feature importance values for the final features included in each soil property model. The
relative feature importance is the variance of responses for a given covariate by the sum of the all
the variance of responses for all parameters in the model. Soil Adjusted Vegetation index is listed as
SAVI, Canopy Response Salinity Index as CRSI, Normalized Difference Vegetation Index as NDVI,
Anthocyanin Reflectance Index is ARI, and Topographic Roughness Index is TRI.

Soil Property Features Relative Feature Importance

Soil Organic Carbon (%)

Horizon 0.46
ARI No Bare Soil Pixels 0.15

Standard Deviation of NDVI 0.09
September and October NDVI 0.08

Precipitation 0.08
Temperature 0.07

Bare Soil Band 7 0.07

Bulk Density (g cm−3)

Soil Organic Carbon 0.26
Sand Content 0.26
Silt Content 0.25

Clay Content 0.24

Profile Soil Organic Carbon Stocks
(kg m2)

Standard Deviation of NDVI 0.18
Precipitation 0.14
Temperature 0.14

September and October NDVI 0.13
CRSI No Bare Soil Pixels 0.12

CRSI 0.12
Bare Soil Band 2 0.11

SAGA Wetness Index 0.05

Total Nitrogen (%)

Horizon 0.52
Bare Soil Band 7 0.09

September and October NDVI 0.08
Standard Deviation of NDVI 0.08

Temperature 0.08
Precipitation 0.07

CRSI No Bare Soil Pixels 0.07

Cation Exchange Capacity
(meq 100 g−1)

Standard Deviation of NDVI 0.17
Bare Soil Band 5 0.17

Horizon 0.17
July and August SAVI No Bare Soil Pixels 0.16

Temperature 0.14
Precipitation 0.13

Standard Deviation of Elevation (101 × 101 focal
window with 9 × 9 median focal filter of the input

surface model)
0.06

Electrical Conductivity (dS m−1)

Horizon 0.18
Temperature 0.16

September and October NDVI 0.15
CRSI 0.14

Precipitation 0.12
Bare Soil Band 5 0.12

Standard Deviation of Elevation (21 × 21 focal
window with 3 × 3 median focal filter of the input

surface model)
0.07

Standard Deviation of Elevation (3 × 3 focal
window with 3 × 3 median focal filter of the input

surface model)
0.06
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Table 3. Cont.

Soil Property Features Relative Feature Importance

Inorganic Carbon (%)

Horizon 0.49
Precipitation 0.21
Temperature 0.11

ARI No Bare Soil Pixels 0.10
July and August NDVI 0.09

Clay (%)

Bare Soil Band 5 0.20
Standard Deviation of NDVI 0.18

September and October NDVI 0.17
Temperature 0.13
Precipitation 0.13

CRSI No Bare Soil Pixels 0.13
Horizon 0.05

Sand (%)

Standard Deviation of NDVI 0.20
September and October of NDVI 0.17

Bare Soil Band 7 0.15
Temperature 0.14

ARI No Bare Soil Pixels 0.13
Precipitation 0.06

Standardized Height 0.06
Horizon 0.02

Horizon Thickness

Horizon 0.48
Precipitation 0.14
Temperature 0.13

ARI 0.07
Standard Deviation of NDVI 0.07

Bare Soil Band 7 0.06
Standard Deviation of Elevation (3 × 3 focal

window with 3 × 3 median focal filter of the input
surface model)

0.04

Performance of the models for each individual horizon was evaluated by separating
the validation prediction results by horizon and calculating the model performance metrics
separately, in addition to overall where values for all three horizons were included. This
was done to determine how much of the overall model performance was driven by depth
gradient trends present for some soil parameters. All predictions were determined using a
single multi-horizon model for each soil parameter. Separate horizon specific models were
not generated.

3. Results

The average historical A-horizon soil organic carbon contents ranged from 0 to 20.85%
with median values of 2.30% (Table S1). Based on the independent validation data, the
soil organic carbon model for all horizons had an R2 value of 0.71 and an RMSE of 0.61%
(Figure 2) compared to the null model RMSE value of 1.14% (Table 2). However, the model
performance is variable across horizons, with A-horizon specific performance being lower
at an R2 of 0.49 (Table 2). The predictive model included seven features with horizon as the
most important, followed by the ARI with bare soil pixels removed, standard deviation of
NDVI and September and October median NDVI (Table 3). The performance for the profile
soil organic carbon stock model was worse, with an R2 of 0.27 and RMSE of 4.8 kg m−2

(Figure 3) with the null model having an RMSE of 5.8 kg m−2 (Table 2). The model included
eight features in total, with standard deviation of NDVI, precipitation, temperature, and
September and October NDVI as the most important features (Table 3).
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capacity (meq 100 g−1), electrical conductivity (dS m−1), clay content (%), sand content (%), and rela-
tive horizon thickness (%) predicted versus observed independent validation results. Model perfor-
mance was assessed based on R2 values, root mean square error (RMSE), Lin’s Concordance Corre-
lation Coefficient (ρc) and bias. The solid black line indicates the 1:1 line to illustrate deviations 
between predicted and measured data. The Bare_Soil_Data legend indicates if bare soil composite 
imagery data was available for a point (Y) or not (N). The point shapes indicate which type of hori-
zon the points are from. 

Figure 2. Average soil organic carbon (%), total nitrogen (%), inorganic carbon (%), cation exchange
capacity (meq 100 g−1), electrical conductivity (dS m−1), clay content (%), sand content (%), and
relative horizon thickness (%) predicted versus observed independent validation results. Model
performance was assessed based on R2 values, root mean square error (RMSE), Lin’s Concordance
Correlation Coefficient (ρc) and bias. The solid black line indicates the 1:1 line to illustrate deviations
between predicted and measured data. The Bare_Soil_Data legend indicates if bare soil composite
imagery data was available for a point (Y) or not (N). The point shapes indicate which type of horizon
the points are from.
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independent validation results. Model performance was assessed based on R2 values, root mean 
square error (RMSE), Lin’s Concordance Correlation Coefficient (ρc) and bias. The solid black line 
indicates the 1:1 line to illustrate deviations between predicted and measured data. The 
Bare_Soil_Data legend indicates if bare soil composite imagery data was available for a point (Y) or 
not (N). 

Figure 3. Bulk density (g cm−3) and soil organic carbon stock (kg m−2) predicted versus observed
independent validation results. Model performance was assessed based on R2 values, root mean
square error (RMSE), Lin’s Concordance Correlation Coefficient (ρc) and bias. The solid black line in-
dicates the 1:1 line to illustrate deviations between predicted and measured data. The Bare_Soil_Data
legend indicates if bare soil composite imagery data was available for a point (Y) or not (N).



Remote Sens. 2022, 14, 5803 13 of 22

Historical A-horizon total nitrogen values ranged from 0 to 2.72% with a median value
of 0.20% (Table S1). The overall performance of the total nitrogen predictive model for
all horizons based on the independent validation test was an R2 of 0.65 and an RMSE of
0.06% (Figure 2). The null model had an RMSE of 0.10% (Table 2). As with the soil organic
carbon model, part of the overall model performance was driven by average concentration
differences amongst the soil horizons (Table 2). There were seven features included in the
final A-horizon total nitrogen model: horizon, bare soil shortwave infrared two, September
and October NDVI, standard deviation of NDVI, temperature, precipitation, and CRSI with
bare soil pixels removed (Table 3). A-horizon cation exchange capacity ranged from 0 to
104.8 meq 100 g−1 with a median value of 23.3 meq 100 g−1 (Table S1). There were seven
features in the final overall cation exchange capacity model: Standard Deviation of NDVI,
bare soil shortwave infrared one, horizon, July and August SAVI with bare soil pixels
removed, temperature, precipitation, and standard deviation nine by nine median focal
filtered elevation with a 101 by 101 focal window (Table 3). The overall model performance
based on independent validation was an R2 of 0.46 and a RMSE of 8.18 meq 100 g−1

(Figure 2). The cation exchange capacity null model had an RMSE of 11.27 meq 100 g−1

(Table 2).
The A-horizon clay contents ranged from 0 to 80% with a median value of 23%, the

A-horizon sand contents ranged from 0 to 95.8% with a median value of 35% (Table S1).
The overall clay predictive model had an R2 of 0.55 and an RMSE of 10.47% (Figure 2). The
overall sand model had an R2 of 0.44 and an RMSE of 16.99% (Figure 2). The null model
RMSE values were 15.62% for clay and 22.55% for sand (Table 2). Model performance
was better for the A-horizon compared to the overall model (Table 2). The clay model
used seven features, including BSCI band 5, standard deviation of NDVI, September and
October NDVI, precipitation, temperature, CRSI with bare soil pixels removed, and horizon
(Table 3). The sand model differed with ARI compared to CRSI, BSCI band 7 instead of
BSCI band 5, although the order of importance varied (Table 3).

Historical electrical conductivity values ranged from 0 to 18.0 dS m−1 for the A-
horizon, 0 to 24.9 dS m−1 for the B-horizon, and 0 to 18.3 dS m−1 for the C-horizon
(Table S1). Overall, performance of the electrical conductivity predictive models was
poor (Figure 2), with the model performing best for C horizons (Table 2). The electrical
conductivity model had an R2 value of 0.36 and an RMSE of 2.18 dS m−1. For comparison
the null model RMSE was 2.5 dS m−1 (Table 2). The profile electrical conductivity model
included eight features in the final model, with the most important features being horizon,
temperature, September and October NDVI, and (Table 3).

Inorganic carbon concentrations in the A-horizon ranged from 0 to 29.5% with a
median value of 0% (Table S1). For the B-horizon, the inorganic carbon values ranged from
0 to 53.20% with a median value of 0.7%, and 0 to 66.91% for the C-horizon (Table S1).
Model performance for the model was an R2 of 0.65 and RMSE of 4.79% (Figure 2). The null
model RMSE was equal to the predictive model RMSE at 8.09% (Table 2). The majority of
the performance was driven by the C-horizon values, with poor results for A and B horizons.
This is likely because on average the A and B horizon inorganic carbon concentrations were
low. The model only included five features, with horizon, precipitation, temperature, ARI
with bare soil pixels removed, and July and August NDVI as the final selected features
(Table 3).

4. Discussion

The results for historical soil organic carbon, clay content, and cation exchange capacity
are similar to previously published results that used only BSCI as a predictor, and excluded
areas without BSCI present [12]. The performance of the soil organic carbon and cation
exchange capacity models were slightly poorer compared to those of the previous study
(R2 of 0.49 compared to 0.55 for A-horizon SOC and R2 of 0.46 compared to 0.50 for A-
horizon CEC). There was, however, an improvement in the clay model performance (R2

of 0.65 for A-horizons compared to 0.44). The slight decrease in the soil organic carbon
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and cation exchange capacity models R2 values is likely a result of worse performance in
locations where BSCI was not available (Figures 2 and 4). The clay content model may have
performed better because coarser textured soil is often associated with non-arable cropland
and remote sensing features that help characterize non-arable cropland were included in
this study’s models and were not included in those of the previous study (Figure 5). Clay
content and sand content are typically inversely related in this region; soils with higher
clay contents usually have lower sand contents and therefore, clay content can be related to
the same remote sensing characteristics indicative of non-arable cropland.
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Figure 4. Maps for average A-horizon soil organic carbon (%), profile soil organic sarbon stocks
(Mg ha−1), average A-horizon total nitrogen (%), and average A-horizon cation exchange capac-
ity (meq 100 g−1) for Saskatchewan’s agricultural region. White areas are masked water bodies.
Coordinates are in UTM Zone 13N NAD83.

Overall, the results for soil organic carbon content models generated in this study
compare reasonably well with other predictive mapping studies, particularly considering
the ±300 m location uncertainty associated with the point data (Figure 4). Performance was
similar to another Canadian study that mapped soil organic carbon concentrations near
Ottawa, Ontario, which achieved an R2 value of 0.46 and a CCC of 0.61 [40]. A previous
study in France developed predictive models that achieved an R2 of 0.59 for soil organic
carbon content [41]. Whereas research focused on mapping soil organic matter on a smaller
test area in Brazil had an R2 of 0.38 [42], and ranged from 0.06 to 0.24 for a European-wide
study [14].
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The results of the historical profile soil organic carbon stock model were poorer than
some other studies (R2 of 0.27). Previous work predicting soil organic carbon stocks
by using terrain, climate, and remote sensing variables and accurate spatial data in the
Liaoning Province of China had R2 values ranging from 0.6 to 0.7 [43]. A study in Australia
on predicting soil organic carbon stocks in rangelands achieved R2 values of 0.32 for 0–5 cm
and 0.44 for 0–30 cm [44] and a study in South Australia’s agricultural zone achieved values
between 0.40 and 0.45 [45]. The poorer results of the soil organic carbon stock model in this
study could be due to the use of a pedotransfer function to estimate bulk density rather
than direct measurements; that pedotransfer function achieved only an R2 of 0.52 and a
root mean square error of 0.2 (Figure 3). Additionally, accounting for the stocks to one
meter may have also reduced accuracy due to the poorer performance of the soil organic
carbon concentration model for B and C horizons (Table 2).

Models for other soil properties in this study achieved similar performance to those
of other studies. In terms of clay content (R2 values of 0.65 for A-horizon clay content in
this study), other studies have achieved R2 values of 0.34 [41], 0.23 to 0.37 [46], 0.62 [42],
0.44 [14] and 0.62 [47]. Cation exchange capacity model results reported in the literature
have been quite variable with results ranging from being insufficient to report [41], to
0.24 [14], and 0.436 [46] compared to the R2 value of 0.43 achieved in this study. Of note
is that similar with this study, another study also had slightly lower results for predicting
sand content compared to clay content [14]. This could be because the shortwave infrared
BSCI directly responds to clay content, and not sand content, due to the location of clay
shortwave infrared absorption features [48].

The results of the historical electrical conductivity predictive models in this study were
poor (R2 values ranging from 0.08 to 0.34 depending on horizon) and better results have
been achieved in other studies. Research that has taken place in Iran achieved R2 values
of 0.57 for electrical conductivity and 0.54 for sodium adsorption ratio [49]. Additionally,
other work in Iran had correlation coefficients ranging from 0.85 to 0.91 for predicting
electrical conductivity [50]. The poor result for salinity in this study is not interpreted to be
reflective of the overall potential for soil salinity mapping in the Canadian Prairies. The
reason for the poor performance in this study can be attributed to the non-optimal training
and validation dataset, specifically with regard to its limited number of profile observations
with higher than average salinity values. The distribution of data is highly skewed towards
low values, with a limited number of higher salinity data points (Figure 2). The sampling
locations for the National Pedon Database were chosen to represent modal soil conditions,
therefore there is underrepresentation of soils that typically occur as inclusions in larger
soil polygons, such as saline soils in this region. The inclusion of synthetic aperture radar
from Sentinel-1 may also help improve prediction results, as it has improved soil salinity
mapping in other studies [51].

The historical profile electrical conductivity map appears to have significant areas
where salinity values were overpredicted, which is not surprising given the large number
of points in the salinity testing dataset that had low observed values but were predicted to
have high values (Figure 6). While the model performance of the inorganic carbon model
was adequate (Figure 2), the resulting map appears to have low utility (Figure 6). The map
is largely a result of climatic gradients, with precipitation and temperature having a strong
effect on the final model (Table 3). The utility of the map is low, especially as carbonates
can vary at finer spatial scales in Saskatchewan than what will be captured in the map [52].

While the performance of the soil organic carbon and cation exchange capacity models
was slightly worse than the BSCI only model [12], the approach in this study enables
mapping of the entire agricultural area of Saskatchewan because it is not limited to only
areas where BSCI is available. In total, 44 million hectares were mapped for Saskatchewan
in this study. Mapping results for predictive models are presented in Figure 4 (A-horizon
soil organic carbon, soil organic carbon stocks, A-horizon total nitrogen, and A-horizon
cation exchange capacity), Figure 5 (A-horizon clay, A-horizon sand, and A-horizon texture
class), and Figure 6 (C-horizon electrical conductivity and inorganic carbon). The scale
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of the resulting mapping products needs to be interpreted with consideration of the focal
filtering that was conducted prior to mapping. While variation at the 100 m pixel scale is
evident in the maps, these trends have been smoothed by the 300 × 300 m filtering of the
input data. This filtering was required given the uncertainty of the soil profile locations.
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Figure 6. Maps for average C-horizon electrical conductivity (dS m−1) and average C-horizon
inorganic carbon content (%) for Saskatchewan’s agricultural region. White areas are masked water
bodies. Coordinates are in UTM Zone 13N NAD83.

Of note is that overall model performance for soil organic carbon and total nitrogen
was influenced by the depth gradients present for some soil properties (Table 2). As
there is a significantly higher concentration of soil organic carbon and total nitrogen in
the A horizon as compared to the B and C horizon (Table S1), part of the overall model
performance is driven by the models having different ranges of values to predict depending
on soil horizon. For that reason, horizon by horizon comparisons are fairer for evaluating
overall model utility for these parameters. On the contrary, the A horizon performance for
the clay and sand model was higher (Table 2) than the overall model performance. This is
likely because variations in B and C horizon soil textures was less closely correlated with
environmental covariate data and no consistent depth trend was present, as observed with
the soil organic carbon and total nitrogen data.

Several features were consistently important in the models for a range of soil properties.
Of note is that models with poor performance and weaker relationships had more features
included in the final model (Table 3), likely because there were no critical features that
substantially improved performance during the recursive feature elimination. Overall,
the climate variables of total precipitation and temperature were consistently important.
Climate has long been understood to be an important soil forming factor [53]. These
climatic variables influence the models for two reasons. The first reason is that climate
affects plant growth and decomposition which in turn influences soil properties such as soil
organic carbon directly. Indirectly, climate features help model performance by enabling
the model to calibrate the influence of other covariates to climatic conditions. Of note is the
low importance for many terrain attributes in the final models. This is likely a result of the
available 30 m digital elevation model being too coarse to characterize landscape features in
the study region. A higher resolution digital elevation model would likely improve model
performance. Additionally, the 300 m location uncertainty associated with the training data
is greater than the variation in slope positions, and as the training data typically was from
modal slope positions data from upper and lower slope positions are underrepresented in
the dataset.

In terms of remote sensing variables, September and October NDVI and Standard
Deviation of NDVI were generally most important. The September and October NDVI vari-
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able was important likely because arable cropland has very low NDVI by this time period,
and so this feature helps to distinguish different longer term land uses, which is expected to
be correlated with many soil properties. Additionally, while total photosynthetic activity is
low in September and October in this region overall, the importance of the median Septem-
ber and October NDVI variable may be due to different NDVI responses from senescing
vegetation in forests and grasslands. Standard deviation of NDVI has been shown to be a
useful remote sensing variable for land use monitoring and land classification [54]; areas
with higher NDVI standard deviations indicate more change in NDVI over the growing
season. This is expected to be influenced by factors such as management practices, which in
turn are influenced by soil and parent material type. Both standard deviation of NDVI and
September and October NDVI variables are likely indirectly helping predict soil properties
that are correlated with different land uses.

Bare soil composite imagery was a consistently important predictor as bare soil com-
posite imagery bands were selected for the soil organic carbon, soil organic carbon stocks,
total nitrogen, cation exchange capacity, electrical conductivity, clay content, sand content,
and horizon thickness models. As the training data included points where bare soil imagery
was not present, the absence of bare soil imagery itself is likely useful information as soil
properties is tied to land use decisions, such as maintaining land as permanent pasture,
in this region. The bare soil composite imagery near-infrared band was important for
predicting soil organic carbon, likely because organic carbon has absorption features within
the range of that band [48]. BSCI shortwave infrared one was important for soil organic
carbon, total nitrogen, cation exchange capacity, and clay content. This is likely because
soil organic carbon and clay have absorption features within the range of this band [48].
BSCI shortwave infrared two was important for the clay and sand models, as this band
also includes clay absorption features [48]. However, given the bandwidths of the Landsat
5 bands are wide and include absorption features from a range of soil properties, it is
difficult to conclusively decide if these are the reasons why the bands are important.

While less consistently important, July and August SAVI and the CRSI were also
important for modelling cation exchange capacity (Table 3). This feature is highly correlated
with leaf area index [55]. Cation exchange capacity is positively associated with crop
yields [56] and the importance of this feature could be due to that relationship. The CRSI
variable was important for a number of soil parameters. Canopy response salinity index
has been documented to be related to salinity in other contexts [28]. It was important for the
salinity models; however, it is difficult to draw conclusions about the feature importance in
those models due to their overall poor performance. This feature is likely helping to predict
clay content due to an overall correlation with plant activity, as clay content, at least in the
Canadian Prairies, has been documented to be associated with increased yield [57].

Bare soil composite imagery has been shown to be a valuable dataset for mapping
soil properties in contexts such as Europe [14] and in Brazil [42]. Recently it has also
been used to produce maps of soil organic carbon, clay content, and cation exchange
capacity in the Canadian Prairies [12]. However, one of the limitations of models that rely
primarily on bare soil composite imagery is that they cannot be used to map soil properties
in locations where bare soil was never exposed, such as the grasslands of the Canadian
Prairies. Previous work has shown that inclusion of bare soil composite imagery with other
datasets was useful for mapping soil properties in the middle east [47]. The results of this
study indicate that the inclusion of bare soil imagery with other climate, remote sensing,
and terrain attributes can be used to generate more extensive mapping in regions where
bare soil pixels are not consistently present across the area of interest. Additionally, the
bare soil composite imagery generation process [8] can be inverted to produce band ratio
rasters that exclude bare soil pixels to help ensure the images were derived from pixels
where vegetation is present, which also led to valuable predictors for historical soil property
mapping in Saskatchewan.

The approach used in this study was successful for some, but not all, of the soil prop-
erties mapped in this study. The models for soil organic carbon, total nitrogen, cation
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exchange capacity, clay content, and sand content were satisfactory. However, the electrical
conductivity and inorganic carbon mapping was not successful in this study. Bare soil
composite imagery was an important contributor to model success for each of the successful
models, specifically the shortwave infrared bands. The bare soil composite imagery bands
were not the most important bands for any of these variables. The overall model perfor-
mance of the inorganic carbon model was satisfactory, however the artifacts in the final map
made it unsuitable for use. While the bare soil composite imagery combined with other
remote sensing variables did not lead to successful electrical conductivity and inorganic
carbon maps, it is not fair to conclude these variables cannot be mapped. Potentially the
poor model performance could be the result of training data values skewed towards low
values. A training dataset with a higher number of samples with higher concentrations
and a finer resolution digital elevation model could improve results.

5. Conclusions

Overall, historical soil maps were successfully generated for multiple soil properties
including soil organic carbon, total nitrogen, cation exchange capacity, and sand and clay
content. The resulting maps can be used to support change over time assessments of
soil organic carbon concentrations in Saskatchewan. Additionally, the more detailed soil
texture maps can be used to support applications such as hydrological modelling and
agricultural land management. The mapping process used in this study will be applicable
to the rest of the Canadian Prairies and the Northern Great Plains more broadly. The general
process can be expected to be useable in other regions and climates, however additional
or alternative remote sensing variables may need to be considered. While the predictive
model performance was slightly lower for soil organic carbon and cation exchange capacity
compared to previous work that used only BSCI data, the approach used in this study
had the benefit of being capable of mapping Saskatchewan’s entire agricultural region.
Overall, the approach used in this study can be applied to areas where bare soils do not
occur. However, the tradeoff is slightly lower accuracy and a less explainable model
compared to using BSCI only. Generally, terrain attributes were not important features
for the more successful models, which is likely due to the relatively coarse scale DEM
available for Saskatchewan. Topographic variation occurs over fine spatial scales with low
relief in the Saskatchewan prairies, which cannot be captured in the available coarse-scale
DEMs. Terrain attributes derived from a finer resolution DEM would be more likely to
improve predictive mapping efforts. The poor performance of the electrical conductivity
and inorganic carbon models was likely due both to the coarse DEM used to generate
terrain derivatives and because the range of values for these properties present within the
training dataset did not encompass the range of values found on the landscape. Further
work focused on modelling these soil properties using higher resolution DEMs is needed
to identify successful approaches for predictively mapping them in Saskatchewan.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14225803/s1, Figure S1: Predictive soil mapping process diagram
illustrating feature selection and model building process; Table S1: Soil property characteristics for
the legacy soil survey data. The A-horizon values are the weighted average for all A-horizon values
in a profile. Solum values are the weighted average for the A- and B-horizons, and the profile values
are the weighted average for all horizons.; Table S2: Complete list of features included in the analysis
prior to feature selection. Band ratio equations for each band ratio used as an environmental covariate
in the analysis correspond to Landsat 5. Environmental covariate rasters are available on Zenodo at
DOI: 10.5281/zenodo.7311804.
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