Physical-Based Spatial-Spectral Deep Fusion Network for Chlorophyll-a Estimation Using MODIS and Sentinel-2 MSI Data
Abstract
:1. Introduction
- (1)
- Introduce physical constraints, including spectral response functions (SRFs) and the physical degradation model, and construct a new loss function to reconcile spatial and spectral information for avoiding spectral distortion during fusion.
- (2)
- Design a deep fusion network to fuse MODIS and MSI data for Chl-a retrieval. This combines residual connectivity and attention mechanisms to extract more effective features, and creates a high spatial-spectral data source suitable for estimating Chl-a.
- (3)
- Compare Chl-a concentrations retrieved from both the fused and MSI reflectance data (i.e., collaborative retrieval) and only the MSI reflectance data (i.e., MSI retrieval) using four machine learning (ML) models.
2. Study Area and Materials
2.1. Study Area and In Situ Observations
2.2. Satellite Data Source and Pre-Processing
3. Methods
3.1. PSSDNF
3.1.1. SRF-Guided Grouping
3.1.2. Training Dataset Construction
3.1.3. PSSDFN Structure
3.1.4. Loss Function
3.1.5. Quantitative Metrics
3.2. Chl-a Estimation
3.2.1. Band Selection
3.2.2. Model Structures
4. Results
4.1. PSSDNF Results
4.1.1. Fused Results
4.1.2. Spectral Comparisons of Fused and MSI Images
4.2. Chl-a Estimation Results
4.2.1. Accuracy Comparison of MSI and Collaborative Retrieval
4.2.2. Impact of the Degradation Model on Chl-a Retrieval
4.2.3. Spatiotemporal Distribution of Chl-a
5. Discussion
5.1. Advantages and Limitations of the PSSSDNF
5.2. Evaluation of the PSSSDNF
5.3. Influence Factors on Chl-a Retrieval
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res.-Oceans 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Papenfus, M.; Schaeffer, B.; Pollard, A.I.; Loftin, K. Exploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirs. Environ. Monit. Assess. 2020, 192, 808. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Lu, W.; Cui, X.; Li, Z.; Tao, J. Simulation of Remote-Sensed Chlorophyll Concentration with a Coupling Model Based on Numerical Method and CA-SVM in Bohai Bay, China. J. Coast. Res. 2018, 84, 1–9. [Google Scholar] [CrossRef]
- Arias-Rodriguez, L.F.; Duan, Z.; Díaz-Torres, J.d.J.; Basilio Hazas, M.; Huang, J.; Kumar, B.U.; Tuo, Y.; Disse, M.J.S. Integration of Remote Sensing and Mexican Water Quality Monitoring System Using an Extreme Learning Machine. Sensors 2021, 21, 4118. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, S.; Plowey, M. Integrating mooring and ship-based data for improved validation of OLCI chlorophyll-a products in the Baltic Sea. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102212. [Google Scholar] [CrossRef]
- Wang, M.H.; Jiang, L.D.; Mikelsons, K.; Liu, X.M. Satellite-derived global chlorophyll-a anomaly products. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102288. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Wang, S.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Chen, F.; Xu, S.; Tao, H.; et al. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. Sci. Total Environ. 2021, 778, 146271. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A.; Rundquist, D.C.; Leavitt, B.; Barrow, T.; Holz, J.C. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens. Environ. 2005, 96, 176–187. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Duan, H.; Barnes, B.B.; Ma, R. An EOF-Based Algorithm to Estimate Chlorophyll a Concentrations in Taihu Lake from MODIS Land-Band Measurements: Implications for Near Real-Time Applications and Forecasting Models. Remote Sens. 2014, 6, 10694–10715. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Kravitz, J.; Matthews, M.; Bernard, S.; Griffith, D. Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges. Remote Sens. Environ. 2020, 237, 111562. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Ma, R.; Melack, J.M.; Duan, H.; Liu, M.; Kutser, T.; Xue, K.; Shen, M.; Qi, T.; Yuan, H. Landsat observations of chlorophyll-a variations in Lake Taihu from 1984 to 2019. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102642. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Xue, K. Effects of broad bandwidth on the remote sensing of inland waters: Implications for high spatial resolution satellite data applications. J. Photogramm. Remote Sens. 2019, 153, 110–122. [Google Scholar] [CrossRef]
- Mohebzadeh, H.; Yeom, J.; Lee, T. Spatial Downscaling of MODIS Chlorophyll-a with Genetic Programming in South Korea. Remote Sens. 2020, 12, 1412. [Google Scholar] [CrossRef]
- Guo, S.; Sun, B.; Zhang, H.K.; Liu, J.; Chen, J.; Wang, J.; Jiang, X.; Yang, Y. MODIS ocean color product downscaling via spatio-temporal fusion and regression: The case of chlorophyll-a in coastal waters. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 340–361. [Google Scholar] [CrossRef]
- Shen, H.; Jiang, M.; Li, J.; Yuan, Q.; Wei, Y.; Zhang, L. Spatial–spectral fusion by combining deep learning and variational model. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6169–6181. [Google Scholar] [CrossRef]
- Liu, P.; Li, J.; Wang, L.; He, G. Remote Sensing Data Fusion with Generative Adversarial Networks: State-of-the-Art Methods and Future Research Directions. IEEE Trans. Geosci. 2022, 10, 295–328. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Tian, X.; Jiang, J.; Ma, J. Image fusion meets deep learning: A survey and perspective. Inf. Fusion 2021, 76, 323–336. [Google Scholar] [CrossRef]
- Guo, H.; Shi, Q.; Du, B.; Zhang, L.; Wang, D.; Ding, H. Scene-Driven Multitask Parallel Attention Network for Building Extraction in High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4287–4306. [Google Scholar] [CrossRef]
- Yuan, Q.; Wei, Y.; Meng, X.; Shen, H.; Zhang, L. A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 978–989. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, J.; Yuan, Q.; Jiang, M.; Zhang, L. Physics-based GAN with Iterative Refinement Unit for Hyperspectral and Multispectral Image Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6827–6841. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Xu, X.; Kong, F.; Zhang, S.; Kong, W.; Hao, J.; Shang, L. Two-Decade Reconstruction of Algal Blooms in China’s Lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef] [PubMed]
- Pyo, J.; Pachepsky, Y.; Baek, S.-S.; Kwon, Y.; Kim, M.; Lee, H.; Park, S.; Cha, Y.; Ha, R.; Nam, G.; et al. Optimizing Semi-Analytical Algorithms for Estimating Chlorophyll-a and Phycocyanin Concentrations in Inland Waters in Korea. Remote Sens. 2017, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, G.; Sun, G.; Wu, Y.; Chen, Y. Assessment of Lake water quality and eutrophication risk in an agricultural irrigation area: A case study of the Chagan Lake in Northeast China. Water 2019, 11, 2380. [Google Scholar] [CrossRef] [Green Version]
- Brivio, P.A.; Giardino, C.; Zilioli, E. Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. Int. J. Remote Sens. 2001, 22, 487–502. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 11–13 September 2017; Volume 10427, pp. 37–48. [Google Scholar]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6s: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 3, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Anderson, G.; Bernstein, L.; Chetwynd, J.J.; Richtsmeier, S.; Pukall, B. MODTRAN4 radiative transfer modeling for atmospheric correction. Proc. SPIE 1999, 3756, 348–353. [Google Scholar]
- Li, J.; Fu, Q.; Jiang, T. Remote Sensing Image Fusion Based on Spectral Response Function and Global Variance Matching. Acta Photonica Sin. 2020, 49, 1010001. [Google Scholar]
- He, J.; Li, J.; Yuan, Q.; Shen, H.; Zhang, L. Spectral Response Function-Guided Deep Optimization-Driven Network for Spectral Super-Resolution. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 4213–4227. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Cai, J. Remote Sensing Image Fusion with Deep Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1656–1669. [Google Scholar] [CrossRef]
- Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743–757. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Sagi, O.; Rokach, L. Approximating XGBoost with an interpretable decision tree. Inform. Sci. 2021, 572, 522–542. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, Y.; Zhou, J. Maximizing expected model change for active learning in regression. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 51–60. [Google Scholar]
- Ha, N.T.T.; Koike, K.; Nhuan, M.T.; Canh, B.D.; Thao, N.T.P.; Parsons, M. Landsat 8/OLI two bands ratio algorithm for chlorophyll-a concentration mapping in hypertrophic waters: An application to West Lake in Hanoi (Vietnam). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4919–4929. [Google Scholar] [CrossRef]
- Watanabe, F.; Alcantara, E.; Rodrigues, T.; Rotta, L.; Bernardo, N.; Imai, N. Remote sensing of the chlorophyll-a based on OLI/Landsat-8 and MSI/Sentinel-2A (Barra Bonita reservoir, Brazil). An. Acad. Bras. Cienc. 2018, 90, 1987–2000. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Zhang, Y.; Zhang, B.; Song, K.; Wang, Z. Assessment of chlorophyll-a concentration and trophic state for Lake Chagan using Landsat TM and field spectral data. Environ. Monit. Assess. 2007, 129, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Doña, C.; Chang, N.-B.; Caselles, V.; Sánchez, J.M.; Camacho, A.; Delegido, J.; Vannah, B.W. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain. J. Environ. Manag. 2015, 151, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Shen, Q.; Yao, Y.; Li, J.; Chen, F.; Wang, R.; Xu, W.; Gao, Z.; Wang, L.; Zhou, Y. Estimation of Chlorophyll-a Concentrations in Small Water Bodies: Comparison of Fused Gaofen-6 and Sentinel-2 Sensors. Remote Sens. 2022, 14, 229. [Google Scholar] [CrossRef]
- Yang, H.; Du, Y.; Zhao, H.; Chen, F. Water Quality Chl-a Inversion Based on Spatio-Temporal Fusion and Convolutional Neural Network. Remote Sens. 2022, 14, 1267. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Yang, Q.; Jin, C.; Li, T.; Yuan, Q.; Shen, H.; Zhang, L. Research progress and challenges of data-driven quantitative remote sensing. Nat. Remote Sens. Bull. 2021, 26, 268–285. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 9–13. [Google Scholar]
Date | MODIS | MSI | Date | MODIS | MSI |
---|---|---|---|---|---|
6 June 2018 | √ | √ | 17 April 2019 | √ | √ |
9 September 2018 | √ | √ | 8 November 2019 | √ | √ |
4 October 2018 | √ | √ | 8 December 2019 | √ | √ |
18 December 2018 | √ | √ | 2 August 2018 | √ | 31 July 2018 |
17 January 2019 | √ | √ | 27 December 2019 | 28 December 2019 | 28 December 2019 |
22 January 2019 | √ | √ | 25 June 2020 | √ | √ |
7 April 2019 | √ | √ | 2 November 2020 | √ | √ |
Group | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | ||||
---|---|---|---|---|---|---|---|---|---|
Band | B1 | B2 | B3 | B10 | B11 | B4 | B12 | B8 | B9 |
B1 | 1.000 | 0.465 | 0.658 | 0.724 | 0.717 | 0.612 | 0.647 | 0.420 | 0.623 |
B2 | 0.465 | 1.000 | −0.219 | −0.172 | −0.202 | −0.312 | −0.276 | −0.324 | −0.209 |
B3 | 0.658 | −0.219 | 1.000 | 0.915 | 0.935 | 0.923 | 0.993 | ||
B10 | 0.724 | −0.172 | 1.000 | 0.931 | 0.950 | 0.859 | 0.962 | ||
B11 | 0.717 | −0.202 | 1.000 | 0.967 | 0.982 | 0.825 | 0.937 | ||
B4 | 0.612 | −0.312 | 0.915 | 0.931 | 0.967 | 1.000 | 0.802 | 0.884 | |
B12 | 0.647 | −0.276 | 0.935 | 0.950 | 0.982 | 1.000 | 0.812 | 0.905 | |
B8 | 0.420 | −0.324 | 0.923 | 0.859 | 0.825 | 0.802 | 0.812 | 1.000 | |
B9 | 0.623 | −0.209 | 0.993 | 0.962 | 0.937 | 0.884 | 0.905 | 1.000 |
Group: MOD09 Band(s) | MODIS–MSI Image Pairs |
---|---|
Group 1: B1 | MB10–SB2, MB12–SB3 |
Group 2: B2 | MB17–SB8, MB18–SB9 |
Group 3: B3, B10, B11 | MB9–SB1, MB12–SB3 |
Group 4: B4, B12 | MB11–SB2, MB9–SB1 |
Group 5: B8, B9 | MB3–SB2, MB12–SB3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Wu, P.; Ma, X.; Wang, J.; Wu, Y. Physical-Based Spatial-Spectral Deep Fusion Network for Chlorophyll-a Estimation Using MODIS and Sentinel-2 MSI Data. Remote Sens. 2022, 14, 5828. https://doi.org/10.3390/rs14225828
He Y, Wu P, Ma X, Wang J, Wu Y. Physical-Based Spatial-Spectral Deep Fusion Network for Chlorophyll-a Estimation Using MODIS and Sentinel-2 MSI Data. Remote Sensing. 2022; 14(22):5828. https://doi.org/10.3390/rs14225828
Chicago/Turabian StyleHe, Yuting, Penghai Wu, Xiaoshuang Ma, Jie Wang, and Yanlan Wu. 2022. "Physical-Based Spatial-Spectral Deep Fusion Network for Chlorophyll-a Estimation Using MODIS and Sentinel-2 MSI Data" Remote Sensing 14, no. 22: 5828. https://doi.org/10.3390/rs14225828
APA StyleHe, Y., Wu, P., Ma, X., Wang, J., & Wu, Y. (2022). Physical-Based Spatial-Spectral Deep Fusion Network for Chlorophyll-a Estimation Using MODIS and Sentinel-2 MSI Data. Remote Sensing, 14(22), 5828. https://doi.org/10.3390/rs14225828