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Abstract: Given the advantages of remote sensing, an increasing number of satellite aerosol optical
depths (AOD) have been utilized to evaluate near-ground PM2.5. However, the spatiotemporal
relationship between AODs and PM2.5 still lacks a comprehensive investigation, especially in some
regions with severe pollution within China. Here, we investigated the spatiotemporal relationships
between several satellite AODs and the near-surface PM2.5 concentration across China and its
14 representative regions during 2016–2018 using the correlation coefficient (R), the PM2.5/AOD ratio
(η), the geo-detector (q), and the different aerosol-dominated regimes. The results showed that the
MODIS AOD from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm
strongly correlates with PM2.5 (R > 0.6) in China, particularly in the Chengyu (CY), Beijing-Tianjin-
Hebei (BTH), and Yangtze River Delta (YRD) regions. The close correlations (R = 0.7) exist between
PM2.5 and MODIS and VIIRS AOD from the deep blue (DB) algorithm in the CY, BTH, and YRD
regions. Under the key aerosols affecting China (e.g., sulfate and dust), there is a strong correlation
(R > 0.5) between the PM2.5 and MODIS and VIIRS AODs from the MAIAC and DB algorithms, with
the higher concentration of ground-level PM2.5 per unit of these AODs (η > 130). The MAIAC AOD
(Terra/Aqua) can better explain the spatial distribution (q > 0.4) of PM2.5 than those of AODs from
the dark target (DT) and DB algorithms applied to the MODIS over China and its specific regions
across seasons. The performance of the Advanced Himawari Imager (AHI) AOD (R > 0.5, q > 0.3)
was close to that of the MAIAC AOD during the spring and summer; however, it was far less than
the MAIAC AOD in the autumn and winter seasons. The investigation provides instructions for
estimating the near-surface PM2.5 concentration based on AOD in different regions of China.

Keywords: aerosol optical depth; PM2.5; MODIS; MISR; VIIRS; AHI

1. Introduction

As solid particles or droplets suspended in the atmosphere, atmospheric aerosol
significantly impacts global climate and human health [1–4], which has been a wide
focus of climate change and air quality communities [5–9]. Fine aerosol particles with
an aerodynamic diameter of less than 2.5 µm (PM2.5) have a substantial influence on human
health. Epidemiological studies have demonstrated that long-term or short-term exposure
to PM2.5 increases morbidity and mortality [10,11], including through respiratory diseases,

Remote Sens. 2022, 14, 5841. https://doi.org/10.3390/rs14225841 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14225841
https://doi.org/10.3390/rs14225841
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4190-137X
https://orcid.org/0000-0003-4505-6684
https://orcid.org/0000-0003-2115-9005
https://doi.org/10.3390/rs14225841
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14225841?type=check_update&version=1


Remote Sens. 2022, 14, 5841 2 of 20

cardiovascular diseases, and brain neurological diseases [12–14]. Aerosol optical depth
(AOD) retrievals from satellite remote sensing are frequently employed as proxies for
estimating the near-ground PM2.5 concentration and its spatial heterogeneity.

AOD, an important optical parameter for aerosol remote sensing retrievals, depicts
the integration of the aerosol extinction coefficient from the surface to the top of the
atmosphere and is used to represent the aerosol content of the whole atmospheric column.
In the air quality community, AOD (unitless parameter) is frequently used to evaluate the
spatial and temporal variability of the near-surface PM2.5 concentration at the regional
and global scale due to the scarcity and uneven distribution of PM2.5 (µg/m3) ground-
based monitoring stations [15,16]. Nevertheless, satellite AODs and the near-surface PM2.5
concentration are fundamentally two distinct variables. In addition, ambient aerosols and
their sources are highly heterogenous at both the spatial and temporal scale across many
urban agglomerations in China, where air pollution has been severe in the last decades.
Hence, before estimating the near-ground PM2.5 concentration using the satellite AOD
retrievals, it is crucial to ensure that there is a close correlation between satellite AODs and
the near-ground PM2.5 concentration at different spatial and temporal scales, as well as
that the AOD retrievals can explain the spatial heterogeneity of the ground-level PM2.5
concentration to the greatest extent possible.

As a foundation for estimating PM2.5 using satellite AOD, several studies investigated
the spatial and temporal relationships between AOD and PM2.5, as well as their affecting
factors [17–24]. Koelemeijer et al. (2006) explored the spatial and temporal variation of the
MODIS AOD-PM2.5 relation in Europe, revealing a significant spatial correlation (correla-
tion coefficient (R) > 0.6) but a poor temporal correlation (hourly R = 0.3, daily R = 0.2) [25].
According to Guo et al. (2009), compared to the daily mean PM2.5, MODIS AOD showed
a stronger correlation with an hourly mean PM2.5 concentration within ±1 h of MODIS
overpass [26]. Based on a ground-based observation across China, Xin et al. (2016) analyzed
the relationship between AOD and PM2.5, and their findings suggest that the correlation
coefficient ranged from 0.06 to 0.75 across regions and seasons [27]. Using MODIS AOD
and near-surface PM2.5 concentration data, Yang et al. (2019) revealed a high correlation
over the Beijing-Tianjin-Hebei and Chengdu-Chongqing regions, especially between May
and September compared to the other months [28]. Xu et al. (2021) demonstrated that
the association between hourly Advanced Himawari Imager (AHI) AOD and PM2.5 was
highly variable, especially in eastern China [29]. However, these investigations only eval-
uated the relationship between specific satellite AODs and the PM2.5 concentration. In
addition, there are presently more satellite AODs accessible, such as low-earth orbit (LEO)
and geostationary earth orbit (GEO) satellites. These satellite AODs have been widely
used for PM2.5 estimation [30–35]. Therefore, as the foundation for evaluating the PM2.5
concentration using these satellite AODs, a comprehensive analysis and comparison of
the spatial-temporal relationships between various satellite AODs and the near-ground
PM2.5 mass concentration are essential to select better satellite AOD products and develop
accurate PM2.5 estimate models.

In this study, we aimed to comprehensively investigate the spatial and temporal rela-
tionships between PM2.5 and various satellite AODs and the variation of these relationships
under different aerosol types, particularly over typical heavily polluted urban agglomer-
ations in China. These satellite AOD products include MODIS Dark Target (DT), Deep
Blue (DB), Multi-Angle Implementation of Atmospheric Correction (MAIAC), Multi-angle
Imaging Spectroradiometer (MISR), Visible Infrared Imaging Radiometer Suite (VIIRS)
DT/DB, and Advanced Himawari Imager (AHI) AOD. Section 2 introduces the study
area and data collecting and analysis methods. In Section 3, we illustrate the spatial and
temporal relationships between multi-source satellite AODs and PM2.5 in 14 typical urban
clusters in China, as well as the relation between these AODs and PM2.5 under the various
aerosol types. In addition, we explore the difference in multi-AOD retrieval availability. In
Section 4, the conclusions are presented.
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2. Materials and Methods
2.1. Study Region

As shown in Figure 1, the study area covers 368 cities and 14 typical urban agglom-
erations in China [29]. The fourteen urban agglomerations depicted in Figure 1b are all
national urban agglomerations authorized by the State Council of China and span the
majority of mainland China, including inland and coastal regions that are heavily inhab-
ited and have a developed economy. With the continuous development of the economy,
most urban agglomerations have been subjected to severe air pollution in the last decades,
especially BTH, CP, GZP, YRD, YRM, and CY. Therefore, we chose them for regional-scale
research. Descriptions of the fourteen urban agglomerations are presented in detail in
Supplemental Table S1.
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Figure 1. Study area: (a) the 1523 monitoring sites for surface air quality and (b) the fourteen urban
agglomerations in China [29].

2.2. Data Collection
2.2.1. Satellite AOD

Based on Level 2 (L2) and Level 3 (L3) aerosol retrieval algorithms [36,37], the Japan
Meteorological Agency (JMA) released two operational aerosol products in July 2015,
including L2 min and L3 hourly AOD with a 5 km spatial resolution covering the western
Pacific, East Asia, Southeast Asia, and Australia. AHI AOD products have been updated
from version 010 to version 031 since 2015. In this study, we used version 031 of the
AHI L3 AOD.

MAIAC was developed as a general-purpose algorithm on MODIS [38–40], which
enables simultaneous aerosol retrieval and atmospheric correction at dark and bright
surfaces by analyzing remote sensing image time series. Lyapustin et al. (2018) released
Collection 6 (C6) of the MAIAC algorithm, which provides a complete set of atmospheric
and terrestrial outputs, including AOD in both blue and green bands [41]. The spatial
resolution was extended to 1 km, and the algorithm’s precision was enhanced with the
addition of smoke and dust detection and enhanced cloud identification. In this study, the
green band at 550 nm AOD was selected.

MISR aboard the Terra satellite is equipped with nine cameras positioned at fixed
angles (0◦, ±26.1◦, ±45.6◦, ±60.0◦, ±70.5◦) along the spacecrafts’ track, which enhance
its sensitivity to aerosol and clouds. The MISR AOD development team released ver-
sion 23 (V23) in 2020 [42], which increased spatial coverage and spatial resolution (from
17.6 km to 4.4 km), improved agreement with ground-based AERONET AOD, mitigated
the underestimation of high terrestrial AOD values, and more accurately captured the
highest and lowest AOD.
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MODIS carries 36 bands ranging from 0.4 to 14.4 µm onboard the Terra and Aqua
satellites. By assuming the relationship between two visible bands (0.47 µm and 0.65 µm)
and one short-wave infrared band (2.12 µm) over dense vegetation and dark soil targets,
the dark target (DT) algorithm retrieves aerosol properties over these surfaces [43,44],
which fully utilizes the strong spectral dependence at visible-near infrared bands of most
aerosol types to decouple land-atmosphere signals. For bright surfaces, such as deserts
and urban areas, the deep blue (DB) algorithm retrieves the aerosol properties based on
the lower reflectance of bright surfaces in the blue band relative to longer bands [45–47].
Collection 6.1 (C6.1), the latest version, enhanced the MODIS radiometric calibrations,
the cloud contamination screen, and the surface reflectance modeling in the high-latitude
terrain complex regions, which makes DB/DT AOD products more accurate and covers
more regions.

In 2011, VIIRS on the Suomi National Polar-orbiting Partnership (Suomi-NPP) was
launched to maintain the MODIS data archive. Applications were transferred using the
MODIS DT/DB algorithms [48,49]. The VIIRS DB and DT AOD products were initially
provided with a 6 km spatial resolution in 2018 and 2019, respectively.

As shown in Table 1, the following satellite AOD products were collected for this
study: AHI L3 AOD, MODIS MAIAC AOD, MISR AOD, MODIS DT/DB AOD, and VIIRS
DT/DB AOD. Except for the Himawari-8 (GEO) AOD covering the entire study area with
a disk, the AOD products for the other satellites (LEO) are released as granules and do
not cover the entire study region. Therefore, the MODIS, MISR, and VIIRS AODs must be
reprojected and stitched before use. Among all satellites, the AHI L3 product has a high
temporal resolution while MCD19A2 has a high spatial resolution.

Table 1. Summary of the satellite AOD products used in this work.

AOD Sensor Platform Spatial
Resolution

Temporal
Resolution

MOD04_L2 MODIS Terra 10 km daily
MYD04_L2 MODIS Aqua 10 km daily
MCD19A2 MODIS Terra/Aqua 1 km daily

AHI L3 AHI Himawari-8 5 km hourly
AERDT_L2_VIIRS_SNPP VIIRS SNPP 6 km daily
AERDB_L2_VIIRS_SNPP VIIRS SNPP 6 km daily

2.2.2. Near-Surface PM2.5 Concentration

Ground-level hourly PM2.5 mass concentration data for 2016–2018 were obtained from
the Data Center of the Ministry of Environmental Protection of China (http://datacenter.
mep.gov.cn/index, accessed on 7 July 2020). The PM2.5 concentration is measured by either
a tapered element oscillating microbalance (TEOM) or a beta attenuation monitor. Figure 1a
depicts the sites, which contain a total of 1536 stations.

2.2.3. Assimilated AOD

M2T1NXAER (or tavg1 2d aer Nx) is a collection of two-dimensional hourly time-
averaged data in Modern-Era Retrospective analysis for Research and Applications version
2 (MERRA-2). This collection comprises aerosol diagnostics that have been assimilated. The
aerosol components are black carbon, dust, sea salt, sulfate, and organic carbon. MERRA-2
is the most recent version of global atmospheric reanalysis for the satellite era developed by
NASA’s Global Modeling and Assimilation Office (GMAO) leveraging the Goddard Earth
Observing System (GEOS) version 5.12.4 [50]. The dataset spans the years 1980 through
the present. The dataset has a spatial resolution of 0.5◦ × 0.625◦ and a temporal resolution
of 1 h. In this study, we used the extinction aerosol optical thickness at 550 nm of the
aerosol components.

http://datacenter.mep.gov.cn/index
http://datacenter.mep.gov.cn/index
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2.3. Methodology
2.3.1. Spatial-Temporal Matchup

To investigate the spatial-temporal relationship between the LEO/GEO satellite AODs
and the near-ground PM2.5 concentration, the primary task is to perform the spatial and
temporal collocation of these AODs and PM2.5. Spatially, the satellite AODs (MODIS
MAIAC AOD, MISR AOD, MODIS DT/DB AOD, and VIIRS DT/DB AOD) pixel closest to
the PM2.5 monitoring station was extracted for the LEO satellite. Temporally, the average
PM2.5 concentration within ±1 h of a satellite overpass was calculated. For the GEO
satellite (Himawari-8), the spatial matching method was the same as the LEO satellite AOD.
Nevertheless, for the temporal collocation, the AHI L3 AOD corresponding to the PM2.5
monitoring hour was chosen.

Furthermore, to explore the differences in the relationship between satellite AODs
and near-surface PM2.5 under different aerosol-dominated regimes, using the same spatial-
temporal collocation method as the GEO satellite AOD, we also extracted the extinction
aerosol optical thickness of black carbon, organic carbon, sulfate, dust, and sea salt from
the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2)
product collection. We then used the maximum of five aerosol extinction thicknesses of
MERRA-2 as the dominant aerosol for the analysis. The following evaluation metrics were
all calculated based on the spatial and temporal collocations of this subsection. Additionally,
the sample size of the spatial-temporal collocations per site must be at least 10%, and the
correlation coefficients and q-statistics must be statistically significant (p < 0.05) when
calculating the metrics of the evaluation presented below.

2.3.2. Evaluation Metrics
AOD-PM2.5 Correlation Analysis

Due to the non-linear relationship between satellite AODs and near-ground PM2.5 and
the fact that the Spearman correlation coefficient is more robust than the Pearson correlation
coefficient [51], the Spearman’s correlation coefficient was chosen for this study’s correlation
analysis and is calculated as follows:

R =
∑n

i=1
(
τsatellitei

− τsatellite
)(

PM2.5 − PM2.5
)√

∑n
i=1
(
τsatellitei

− τsatellitei

)2
∑n

i=1
(
PM2.5 − PM2.5

)2
(1)

PM2.5/AOD Ratio

The ratio between PM2.5 and AOD was first proposed by Van Donkelaar et al. (2010),
who used the ratio as a conversion factor to explain the spatial and temporal variability of
AOD and PM2.5 [52]. This metric indicates the near-surface dry mass concentration of fine
particles per unit of AOD [22]. Moreover, the PM2.5/AOD ratio is influenced by several
factors, including aerosol size, aerosol type, daily aerosol variability, relative humidity,
and the vertical structure of aerosol extinction [53]. Previous studies have demonstrated
that this ratio is an excellent parameter for measuring the relationship between PM2.5
concentration and ambient AOD [22,52,53]. The ratio is commonly denoted by η and is
computed as follows:

η =
PM2.5

AOD
(2)

Since PM2.5 is the mass concentration in µg/m3 and AOD (dimensionless) is the
integral of aerosol extinction coefficient, the unit of η is the same as PM2.5.

AOD-PM2.5 Spatial Similarity Metrics

The geo-detector is a quantitative tool for measuring the similarity of the spatial
distribution of a geostatistical variable (e.g., PM2.5) and its covariates (e.g., AOD) [54,55]. If
the independent variable (AOD) is correlated with the dependent variable (PM2.5), then
the spatial distributions of AOD and PM2.5 will be comparable. That is, if the satellite AOD
can substitute the spatial variation of the near-ground PM2.5 concentration, then the spatial
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distribution of the satellite AOD and near-ground PM2.5 is similar. The geo-detector uses
the q-statistic to determine how well the satellite AOD explains the spatial variance of the
near-surface PM2.5 concentration. This is performed as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (3)

where N is the sample size in the study area; Nh is the sample size in stratum h; σ2 is
the variance of PM2.5 in the study area; σ2

h represents the variance of PM2.5 in stratum h;
L (h = 1, 2, . . . , L) is the total number of strata of PM2.5. The strata of PM2.5 are a partition
of PM2.5 by satellite AOD, which is a categorical variable. AOD should be stratified if it
is a numerical variable. The number of strata (L) might be determined according to prior
knowledge. The q-statistic ranges from 0 to 1. q = 0 indicates that there is no association
between PM2.5 and satellite AOD; q = 1 indicates that PM2.5 is completely determined by
satellite AOD; the value of the q-statistic indicates that AOD explains q*100% of PM2.5. The
q-statistic measures the association between AOD and PM2.5, both linearly and nonlinearly.

In this work, the q-statistic was determined by stratifying the satellite AOD first.
Generally, 0 < AOD ≤ 0.2 stands for clean; 0.2 < AOD ≤ 0.4 represents some degree
of aerosol pollution; 0.4 < AOD ≤ 0.6 characterizes relatively severe aerosol pollution;
0.6 < AOD ≤ 1.5 denotes extremely severe biomass burning or dust aerosol pollution;
1.5 < AOD ≤ 3 and greater than 3 indicate extremely severe aerosol pollution with limited
visibility of the sun [56]. The classifications can partially represent the spatial interpretation
of satellite AOD on the near-surface PM2.5 concentration at various aerosol pollution levels.
The AOD values were divided into six groups, and then the q-statistic was calculated using
the factor detector function (FDF measures the determinant power of a covariate AOD of
PM2.5) provided by the R language package.

3. Results and Discussion
3.1. Spatial Variation of the Association between Multiple AODs and PM2.5

Figure 2 depicts the distribution of correlation coefficients between the nine AODs and
PM2.5 for the morning (Terra) and afternoon (Aqua/Suomi-NPP) satellites. For satellites
overpassing in the morning, the Terra MISR AOD was the most strongly correlated with
PM2.5, with an average correlation coefficient (R) above 0.5, followed by the Terra MAIAC
AOD, with correlation coefficients of 0.6 or higher in the CY and YRD regions. For the
satellite overpassing in the afternoon, the correlation between Aqua MAIAC AOD and
PM2.5 was higher than that of other AODs. There was a substantial difference between
the correlation in the morning (Terra) and afternoon (Aqua) for MAIAC AOD, suggesting
that MAIAC AOD may capture the daily variation, as Xu et al. (2021) found in the
relationship between AHI hourly AOD and PM2.5 [29]. For the Suomi-NPP satellite, the
correlations for VIIRS DB AOD were significantly higher than that of the VIIRS DT AOD at
the national scale, indicating that VIIRS DB AOD may be more appropriate for evaluating
near-surface PM2.5 than VIIRS DT AOD. This is likely due to the fact that the majority
of PM2.5 monitoring stations are located in urban areas, where the DB AOD has more
retrievals and higher accuracy than the DT AOD.
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PM2.5 concentration. Terra_MAIAC and Aqua_MAIAC represent the distribution of the R for MODIS
AOD retrieved by the MAIAC algorithm on the Terra and Aqua satellites; Terra_DB, Aqua_DB,
Terra_DT, and Aqua_DT are for MODIS AOD retrieved by the DB, and DT algorithms on the Terra
and Aqua satellites; Terra_MISR is for MISR AOD for version 23 on the Terra satellite. The VIIRS_DB
and VIIRS_DT are for VIIRS AOD retrieved by the DB and DT algorithms on the Suomi-NPP satellite.
Note that the points in the map are filtered by statistical significance (p-value < 0.05).

Figure 3 displays the distribution of the PM2.5/multi-AOD ratios in the morning
and afternoon. There is a significant discrepancy in the ratio (η) of PM2.5 to satellite
AODs. The η values for the MODIS AODs (MAIAC, DT, and DB algorithms) show a
considerable decreasing trend from morning (Terra) to afternoon (Aqua) in the eastern
region of China. Moreover, a similar spatial pattern is present for the η values of the AOD
using the same algorithm, such as DT and DB AOD retrieval algorithms applied to MODIS
and VIIRS. There are high-value hotspots of the η for the DB AODs (MODIS and VIIRS)
in the southwest and northwest regions. There are low-value hotspots (η < 100) of the η

for DT AODs (MODIS and VIIRS) in the CY, YRD, PRD, and SP regions. One probable
explanation is that the DT algorithm retrieves effectively in areas with favorable vegetation
cover [43,44,48,49]. The results indicate good consistency in applying the DT and DB
algorithms on the two sensors (MODIS and VIIRS). After the MODIS decommissioning, it
is anticipated that the VIIRS AOD will continue to be used for long-term remote sensing
observations of PM2.5. Additionally, the spatial distribution of the η for the Terra MAIAC
AOD and MISR AOD is also similar, indicating that MAIAC and MISR might adequately
explain the spatial variance of PM2.5.

3.2. Temporal Variation of the Relationship between Multiple AODs and PM2.5

Based on the spatial-temporal collocations of AOD and PM2.5 for the years 2016–2018,
Figure 4 shows the daily variation of the correlation coefficients between the LEO/GEO
satellite’s AODs and PM2.5. Since the AHI L3 AOD is an hourly aerosol product, it is possi-
ble to determine the correlation coefficients with the ground-level PM2.5 at the hourly scale
using the collocations for the three years. In contrast, the maximum temporal resolution
for the LEO satellite AODs, such as MODIS on the Terra and Aqua satellites, is only twice
per day. It demonstrates that over the 14 typical urban agglomerations, the correlation
coefficient between MAIAC AOD (Terra and Aqua) and PM2.5 is consistently higher than
the other satellite AODs, during both 10:00–13:00 and 12:00–15:00 local time (Figure 4). In
addition, there is a comparable daily variation for the R for MAIAC AOD (Terra and Aqua)
and AHI hourly AOD (showing a distinct daily variation as found in Xu et al. (2021) [29]),
suggesting that it could be used to evaluate the daily variation of PM2.5 more accurately by
merging the LEO and GEO satellite AODs (increasing the observations in a day).

As shown in Figure 5, for the GEO satellite (AHI AOD), the η increases and then
decreases throughout the day, reaching a peak around 11:00 a.m. across China, especially for
the YRM, PRD, WCTS, and BG regions. This is most likely due to the combination of local
traffic emissions and boundary layer variation during the day. There is no apparent daily
pattern of variation for the LEO satellites (Terra/Aqua MAIAC, DT and DB AOD, MISR
AOD, VIIRS DT/DB AOD). One possible explanation is that the observed frequency of the
LEO satellites is insufficient to capture the daily variation pattern properly. Nevertheless,
the PM2.5/MAIAC AOD ratio showed a slight decreasing trend from 10:00 to 15:00 local
time (overpass time of Terra and Aqua satellite). In addition, the η for LEO satellite AODs
was much lower than that of the GEO satellite AOD during the morning period, whereas
the η for the LEO and GEO satellite AODs was more similar during the afternoon period
in regions such as YRD, PRD, CP, CY, YRM, and BG. This demonstrates a substantial
discrepancy between the LEO satellite AODs (Terra MAIAC, DB, DT AODs) and the
GEO AOD (AHI AOD) in the morning period. These findings suggest that this ratio
(PM2.5/AOD) can be an important influence factor in the near-surface PM2.5 estimation
model, especially on a daily scale, and at least two AOD observations per day are required
to determine the daily variance of the PM2.5 concentration.
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file is the local time hour. The Terra’s overpass time in various regions of China is typically between
10:00 and 13:00, while the Aqua’s time is typically between 12:00 and 15:00.
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There is a seasonal variance for the atmospheric aerosol extinction capacity (AOD)
and near-surface PM2.5 concentration. Figure 6 illustrates the seasonal variations of the
relationship between LEO-GEO satellite AODs and the near-surface PM2.5 mass concen-
tration and the number of spatial-temporal collocations between them over China and its
14 representative regions during the different seasons. In general, the AODs of MAIAC
and DB algorithms (MODIS and VIIRS) are highly correlated with PM2.5 (R > 0.5) and
adequately describe its spatial distribution (q-value ≥ 0.4) across seasons and typical re-
gions, particularly in the BTH, YRD, PRD, and CY regions. During the summer, the R and
q are up to 0.5 and 0.4, respectively, for the DT AODs (MODIS and VIIRS) over China,
especially the Aqua MODIS DT AOD. This may be due to the denser vegetation covered in
summer, when the DT algorithm can obtain higher retrieval accuracy and more retrievals
(as shown in Figure 6b). During the winter, the MODIS DT AOD (Aqua) and MISR AOD
can better interpret the spatial distribution of PM2.5 over the MSL and HBEY, suggesting
that MODIS and MISR AOD can be integrated for a more accurate estimation of PM2.5 near
the surface. Moreover, given the same aerosol retrieval algorithms (MAIAC, DB, and DT),
the AOD-PM2.5 correlation for the Aqua satellite is always more robust than that of the
Terra satellite over most typical regions of China during various seasons. This is consistent
with the differences between them in the morning and afternoon described previously.

3.3. Relation for the AODs-PM2.5 under the Different Aerosol Types

AOD is the measurement of extinction (scattering and absorption) of solar radiation
by aerosols in the atmospheric column. AOD quantifies the aerosol concentration in the
atmospheric column, which is a concept of total aerosol, without distinguishing between
different types of aerosol. In order to further investigate the relationship between LEO/GEO
AODs and near-surface PM2.5 under different aerosol-dominated regimes, Table 2 displays
the metrics based on the aerosol types derived using MERRA-2 data. In terms of the
spatial-temporal collocations (N) of AOD-PM2.5 under different aerosol dominating types,
the most important aerosols affecting China are sulfate and dust (N > 100,000 for the most
AODs in Table 2). Under sulfate aerosol domination, there is a strong correlation (R > 0.5)
between near-surface PM2.5 and MODIS and VIIRS AODs from MAIAC and DB algorithms
and the higher concentration of ground-level PM2.5 per unit of these AODs (η > 130). For
dust aerosol domination, these AODs still have a robust correlation with PM2.5, and the η

is over 150. The results revealed that MODIS and VIIRS AODs retrieved from the MAIAC
and DB algorithms have a well-defined strength in near-surface PM2.5 modeling in China.
Moreover, during the domination of black carbon aerosols, there is a strong correlation
between all AODs and PM2.5 and a very high concentration of near-surface PM2.5 per unit
AOD (η around 300). For the four aerosol types, AHI AOD correlates best with PM2.5 only
when black carbon aerosols dominate. This demonstrates that, in the future, AOD with
a combination of high temporal (AHI AOD) and spatial resolution (MAIAC AOD) may
be able to more accurately capture the spatial and temporal variation of the near-ground
PM2.5 concentration.
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Table 2. The association between satellite AODs and PM2.5 under different aerosol dominant types
over China. R (correlation coefficient), η (PM2.5/AOD), and N (spatial-temporal collocations).

Aerosol Type Satellite AOD R η (µg/m3) N

Sulfate aerosol

AHI AOD 0.35 114 508,232
Aqua MAIAC

AOD 0.61 112 266,727

Terra MAIAC
AOD 0.56 133 293,141

MISR AOD 0.47 129 34,445
Aqua DB AOD 0.57 116 328,969
Aqua DT AOD 0.46 84 190,107
Terra DB AOD 0.51 135 379,815
Terra DT AOD 0.42 91 225,592
VIIRS DB AOD 0.55 137 426,305
VIIRS DT AOD 0.46 83 318,539
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Table 2. Cont.

Aerosol Type Satellite AOD R η (µg/m3) N

Black carbon

AHI AOD 0.52 338 1030
Aqua MAIAC

AOD 0.83 312 539

Terra MAIAC
AOD 0.74 314 833

MISR AOD 0.83 366 22
Aqua DB AOD 0.69 278 604
Aqua DT AOD 0.97 219 31
Terra DB AOD 0.70 298 919
Terra DT AOD 0.56 212 78
VIIRS DB AOD 0.58 327 747
VIIRS DT AOD 0.75 268 214

Organic carbon

AHI AOD 0.15 86 12,045
Aqua MAIAC

AOD 0.51 113 14,164

Terra MAIAC
AOD 0.40 150 17,165

MISR AOD 0.42 110 1111
Aqua DB AOD 0.44 96 15,643
Aqua DT AOD 0.40 87 8987
Terra DB AOD 0.40 130 17,723
Terra DT AOD 0.24 111 10,040
VIIRS DB AOD 0.54 105 19,073
VIIRS DT AOD 0.34 78 16,342

Dust aerosol

AHI AOD 0.26 142 208,068
Aqua MAIAC

AOD 0.60 166 139,892

Terra MAIAC
AOD 0.58 210 157,236

MISR AOD 0.38 174 14,912
Aqua DB AOD 0.53 177 143,339
Aqua DT AOD 0.57 103 61,204
Terra DB AOD 0.47 229 166,827
Terra DT AOD 0.45 130 73,160
VIIRS DB AOD 0.52 179 185,676
VIIRS DT AOD 0.42 112 102,039

3.4. Discussion

MAIAC, DT, DB MODIS AOD, and AHI L3 AOD are the only satellite AOD products
with at least two observations per day included in this study. In Figures 7 and 8, we quan-
titatively estimate the association between MAIAC, DT, DB MODIS AOD (Terra/Aqua),
AHI AOD, and PM2.5 in different seasons, using PM2.5 monitoring stations and MODIS
overpass time as a spatial-temporal benchmark. There is no available collocation between
PM2.5 and the four AODs simultaneously, such as the MSL, HC, LX, and HBEY regions;
thus, specific statistics were not calculated. For the MODIS sensor aboard the Aqua satellite,
AOD retrieved from the MAIAC algorithm correlates more strongly with PM2.5 and can
better explain the spatial distribution of PM2.5 than AODs from the DT and DB algorithms
applied to the same sensor (Aqua MODIS) throughout China during all four seasons
(Figure 7a). This demonstrates the reliability of MAIAC AOD for estimating the near-
surface PM2.5 concentration over China. For instance, the Aqua MAIAC AOD has an
excellent association with PM2.5 (R > 0.6) in the spring of PRD and GZP regions; in the
summer of YRD, HBEY, and GZP regions; in the autumn of CY, HC, BG, and WCTS regions;
and in the winter of BTH, CP, and SP regions. In addition, for the AHI and MODIS aboard
the GEO and LEO satellites, the performance of AHI AOD (R > 0.5, q > 0.3) is comparable
to that of the MAIAC AOD over China during the spring and summer. As demonstrated in
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Figure 7b, the values of AHI AOD and MODIS AODs (MAIAC, DT, DB) are comparable
between spring and summer. However, in the fall and winter seasons, it is less significant
than MAIAC AOD.

Figure 8a indicates that, for the MODIS sensor aboard the Terra satellite, the correlation
between MAIAC AOD and PM2.5 is stronger than DT and DB AODs over China during
the summer, autumn, and winter. Nonetheless, DT and DB AODs perform better than
MAIAC AOD in some regions, including the spring in YRD, YRM, GZP, HBEY, and LX
regions; the summer in YRD, YRM, and CY; the autumn in BTH, YRD, YRM, SP, HC, BG,
and WCTS regions; and the winter in BTH, CY, and GZP. Additionally, under the different
sensor, satellite, and aerosol algorithm conditions, the correlation between AHI AOD and
PM2.5 is more significant in the spring than MODIS AOD (MAIAC, DT, and DB).

Furthermore, in Figure 8b, when calculating the PM2.5/AOD ratio in the same season
and region, PM2.5 is the same for all AODs. Consequently, we may indirectly compare
the magnitude of LEO and GEO AOD over typical regions of China by using the metric.
AHI AOD is much smaller than the MODIS AOD (MAIAC, DT, DB) during the fall and
winter seasons. However, there is no significant difference between AHI AOD and MODIS
AOD (MAIAC, DT, DB) in Figure 7b, implying the AHI AOD differences in the morning
and afternoon, as discovered by Xu et al. (2020) [57]. With respect to the same sensor
(Terra MODIS), the AOD of the DB algorithm is lower than the AOD of the MAIAC and
DT algorithms in the GZP, HBEY, and LX regions. In addition, the ratio for MAIAC AOD
is close to the ratio for DT AOD in CY and YRM regions. This is also the same case in
Figure 7b, suggesting that the MAIAC and DT algorithms may have comparable MODIS
AOD retrieval performance across these regions. The ratio metric can be used not only as an
independent variable in PM2.5 modeling but also to qualitatively compare the magnitude
of different satellite AODs to complement the scarce observations of ground-based AOD
(Aerosol Robotic Network). Overall, these results provide general instructions for selecting
the appropriate AOD or merging the different AODs for the PM2.5 estimation in various
regions of China.

Satellite AOD retrievals suffer from missing data frequently due to the influence of
clouds and heavy haze. Therefore, in Figure 9, we investigate the percentage of available
days for matching LEO-GEO satellite AODs with near-surface PM2.5 concentration during
2016–2018 (1096 days in total). For the GEO satellite AOD (AHI AOD), when limiting
at least three AOD retrievals per day, the percentage of available days is up to 20–30%
in the BTH, CP, SP, and YRD regions, which is a similar spatial distribution with Aqua
MAIAC AOD. When setting at least five retrievals per day, the proportion of AHI AOD
can approach 10% in the BTH, CP, and SP regions. When limiting at least one retrieval per
day, the percentage of AHI AOD is 40–50% in the North China Plain (BTH, CP and SP).
The increased frequency of observations facilitates the statistical representation of PM2.5
estimate models.

For the LEO satellite AODs, MAIAC AODs (Terra/Aqua) show a considerable north-
south difference in the valid match with PM2.5, with the proportion in northern China
reaching up to 30%. Thus, the MAIAC algorithm should be improved to increase the
number of AOD retrievals in China, especially in the south. For AODs from the DB
algorithm, the effective match with PM2.5 has a similar spatial distribution between different
sensors (MODIS and VIIRS). In all regions outside CY, PRD, and BG, the percentage reaches
20%, and in the BTH region, it even gets to 40%. For AODs derived from the DT algorithm,
the percentage of VIIRS DT AOD is 20% over China, which is greater than MODIS DT
AOD (Aqua). Additionally, the percentage of available days for matching MISR AOD
with near-surface PM2.5 is less than 10% due to the observation frequency of nine days. In
general, when more AODs match up with PM2.5 every day, there is a stronger correlation
between AOD and PM2.5. This means that estimates of the near-surface PM2.5 concentration
are more statistically significant.
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and the ground-level PM2.5 concentration over China and its typical regions during different seasons.
(a) The correlation coefficient (bar) and the q statistic (black dots); (b) the ratio (η). Note that when
calculating the η, the PM2.5 is the same for all AODs.

We investigated the spatio-temporal relationship between various satellite AODs
and the near-surface PM2.5 concentration over China, but there were a few limitations.
The boundary layer height and relative humidity influence the hygroscopic growth of
aerosols [58], which in turn affects the correlation between PM2.5 and AOD. In the future,
we will pay more attention to the influence of meteorological factors on the relationship
between PM2.5 and various satellite AODs. In addition, some episodes of high AOD may
be linked to photochemical processes. The volatile organic compounds (VOCs) and NOx
are precursors for tropospheric ozone and secondary aerosols [59]. In the future, we would
also like to make more investigations on the PM2.5-AODs relationships in perspective of
photochemical processes.
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and the ground-level PM2.5 concentration over China mainland and its typical regions over various
seasons. (a) The correlation coefficient (bar) and the q statistic (black dots); (b) the ratio (η). Note that
when calculating the η, the PM2.5 concentration is the same for different AODs.



Remote Sens. 2022, 14, 5841 17 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 21 
 

 

AOD. When setting at least five retrievals per day, the proportion of AHI AOD can ap-
proach 10% in the BTH, CP, and SP regions. When limiting at least one retrieval per day, 
the percentage of AHI AOD is 40–50% in the North China Plain (BTH, CP and SP). The 
increased frequency of observations facilitates the statistical representation of PM2.5 esti-
mate models. 

For the LEO satellite AODs, MAIAC AODs (Terra/Aqua) show a considerable north-
south difference in the valid match with PM2.5, with the proportion in northern China 
reaching up to 30%. Thus, the MAIAC algorithm should be improved to increase the num-
ber of AOD retrievals in China, especially in the south. For AODs from the DB algorithm, 
the effective match with PM2.5 has a similar spatial distribution between different sensors 
(MODIS and VIIRS). In all regions outside CY, PRD, and BG, the percentage reaches 20%, 
and in the BTH region, it even gets to 40%. For AODs derived from the DT algorithm, the 
percentage of VIIRS DT AOD is 20% over China, which is greater than MODIS DT AOD 
(Aqua). Additionally, the percentage of available days for matching MISR AOD with near-
surface PM2.5 is less than 10% due to the observation frequency of nine days. In general, 
when more AODs match up with PM2.5 every day, there is a stronger correlation between 
AOD and PM2.5. This means that estimates of the near-surface PM2.5 concentration are 
more statistically significant. 

 
Figure 9. The percentage availability of the LEO-GEO satellite AODs with valid matches to the PM2.5 
concentration in each monitoring site for 2016–2018. AHI_Day1 represents at least one AHI AOD 
match to PM2.5 per station per day, AHI_Day3 denotes at least 3 matches per station per day, and 
AHI_Day5 stands for at least 5 AODs per station per day. The remaining are the LEO satellite AODs. 

We investigated the spatio-temporal relationship between various satellite AODs 
and the near-surface PM2.5 concentration over China, but there were a few limitations. The 
boundary layer height and relative humidity influence the hygroscopic growth of aerosols 
[58], which in turn affects the correlation between PM2.5 and AOD. In the future, we will 

Figure 9. The percentage availability of the LEO-GEO satellite AODs with valid matches to the PM2.5

concentration in each monitoring site for 2016–2018. AHI_Day1 represents at least one AHI AOD
match to PM2.5 per station per day, AHI_Day3 denotes at least 3 matches per station per day, and
AHI_Day5 stands for at least 5 AODs per station per day. The remaining are the LEO satellite AODs.

4. Conclusions

In this paper, we comprehensively evaluated and compared the spatiotemporal re-
lationships between LEO/GEO satellite AODs and the ground-level PM2.5 concentration
for 2016–2018 across China and its 14 typical urban agglomerations, providing a reference
for the PM2.5 estimation based on the AODs in different regions of China. The following
findings were drawn:

Although AHI AOD can clearly capture the daily variation of the near-ground PM2.5
concentration and MISR AOD has a stronger correlation with PM2.5, we still prefer to
recommend MAIAC AOD (Terra/Aqua) with 1 km resolution for estimating the near-
ground PM2.5 concentration on a daily scale in China, followed by DB AOD of MODIS
(Terra/Aqua) and VIIRS with 10 km and 6 km resolutions, respectively. The MODIS AOD
from the MAIAC algorithm closely correlates with the near-surface PM2.5 concentration,
especially in the CY, BTH, and YRD regions, with a correlation coefficient of >0.6. In the
CY, BTH, and YRD regions, the correlation coefficient is as high as 0.7 between the MODIS
and VIIRS AOD retrieved from the DB algorithm and the near-surface PM2.5 concentration.
Under the most important aerosols affecting China (sulfate and dust), there is a strong
association (R > 0.5) between near-surface PM2.5 and MODIS and VIIRS AODs from the
MAIAC and DB algorithms, as well as a higher concentration of ground-level PM2.5 per
unit of these AODs (η > 130). Moreover, MAIAC AOD in the morning (Terra) and afternoon
(Aqua) can capture the daily variation of the PM2.5 concentration near the surface.

For MODIS AOD from MAIAC, DB, and DT retrieval algorithms, MAIAC AOD
(Terra/Aqua) can better explain the spatial distribution (q > 0.4) of PM2.5 than those of
AODs from DT and DB algorithms applied to the same sensor over China and its specific
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regions across seasons. For instance, during the spring of PRD and GZP regions; in the
summer of YRD, HBEY, and GZP regions; during the autumn of CY, HC, BG, and WCTS
regions; in the winter of BTH, CP, and SP regions. In addition, by quantitative analysis
of the PM2.5/AOD ratio metric, we found that the AOD value of the DB algorithm was
less than that of the MAIAC and DT algorithms in the GZP, HBEY, and LX regions. The
MAIAC and DT algorithms may have comparable performance retrieving MODIS AOD in
CY and YRM regions. Our findings provide instructions for selecting the appropriate AOD
or merging various AODs for developing models with the statistical representativeness for
the near-surface PM2.5 concentration in different regions of China.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14225841/s1, Table S1: The detailed information for 14 urban
agglomerations in our study.
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