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Abstract: For most cities, municipal governments have constructed basic building footprint datasets
that need to be updated regularly for the management and monitoring of urban development
and ecology. Cities are capable of changing in a short period of time, and the area of change is
variable; hence, automated methods for generating up-to-date building footprints are urgently needed.
However, the labels of current buildings or changed areas are usually lacking, and the conditions for
acquiring images from different periods are not perfectly consistent, which can severely limit deep
learning methods when attempting to learn deep information about buildings. In addition, common
update methods can ignore the strictly accurate historical labels of unchanged areas. To solve the
above problem, we propose a new update algorithm to update the existing building database to
the current state without manual relabeling. First, the difference between the data distributions of
different time-phase images is reduced using the image color translation method. Then, a semantic
segmentation model predicts the segmentation results of the images from the latest period, and, finally,
a post-processing update strategy is applied to strictly retain the existing labels of unchanged regions
to attain the updated results. We apply the proposed algorithm on the Wuhan University change
detection dataset and the Beijing Huairou district land survey dataset to evaluate the effectiveness of
the method in building surface and complex labeling scenarios in urban and suburban areas. The
F1 scores of the updated results obtained for both datasets reach more than 96%, which proves the
applicability of our proposed algorithm and its ability to efficiently and accurately extract building
footprints in real-world scenarios.

Keywords: building update; image color translation; semantic segmentation

1. Introduction

With the rapid expansion and renewal of cities around the world [1], updating existing
building databases has become routine for the generation of up-to-date building footprint
information [2]; a routine which can contribute to sustainable urban development [3] and
ecology [4]. Traditionally, a building update is performed by manually interpreting the
change area and outlining the building boundaries of the change area, which is a time-
consuming and labor-intensive process, especially when analytically dealing with large
areas (e.g., nationwide). Therefore, automation is essential for facilitating building change
detection and building database updates.

In recent years, the main challenge of the update task has been to maintain the building
detection capability of the model for unchanged areas while generating accurate segmen-
tation results for changed areas (including building additions and demolitions). There
are two main approaches to the performance of building updates: one based on building
extraction [5] and the other on building change detection [6]. The former is trained using
pre-temporal images and labels, and the model is fine-tuned on post-temporal images to
generate the latest building segmentation results. EANet [7] and SRINet [8] respectively
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propose an edge perception network and a spatial residual inception network based on seg-
mentation network for the extraction of buildings. The latter involves training the change
detection model and updating the existing database by detecting the changed buildings.
MDESNet [9] and MCDNet [10] respectively propose a difference-enhanced module and
a feature-guided module-based multitask siamese network that learns segmentation and
change detection features simultaneously for building change detection. However, the
above methods have both advantages and disadvantages. The building extraction method
can make full use of the a priori knowledge of existing labels, but it requires a small amount
of label fine-tuning for the images from the latest period to fit the data distribution, and
edge inaccuracies are present in the edges of the extraction results, which are still different
from the manual labels. The building change detection method can accurately anchor the
change region but requires the change detection labels of the given bitemporal images,
which is different from the actual application scenario. In practical applications, most cities
have already established a basic building database, so the labels of the former time phase
are easier to obtain. In addition, some scholars have proposed combining the advantages of
the above two methods [11] and using attention modules to learn the feature-level change
information of pre- and post-temporal images for the performance of building updates
based on the building extraction method. However, the accuracy decreases dramatically
when the image spatial resolution decreases and the building labeling scene becomes more
complex. Moreover, this approach still requires manual annotations of the post-temporal
images, which is time-consuming when studying large areas. In this paper, we update the
historical database using the building extraction method based on pre- and post-temporal
images and pre-temporal labels.

Semantic segmentation has become one of the most commonly used tools in remote
sensing image object extraction tasks over the past few years. Compared with earlier shal-
low feature segmentation methods (thresholding [12], edge detection segmentation [13],
and region segmentation [14]) and mid-level feature segmentation methods (cluster seg-
mentation [15], Markov random field (MRF) based model segmentation [16], and hybrid
feature combination segmentation [17]), semantic segmentation is able to learn deep fea-
tures with high-level semantic information through layer-by-layer neural networks. Fully
convolutional network (FCN) [18] is groundbreaking in the field of image segmentation
as it replaces the fully connected layer with a convolutional layer for classification tasks
and recovers the original input image size via deconvolutional up-sampling to classify
each pixel. UNet [19] is a U-shaped encoder-decoder architecture and the presence of a
skip connection between the encoder and decoder to help the decoder better recover the
details of the target object. DeepLab [20] uses atrous convolution to obtain feature maps
at different scales while ensuring that the perceptual field is not reduced, thus obtaining
more contextual information [21]. The pyramid scene parsing network (PSPNet) [22] not
only applies atrous convolution to ResNet [23] but also adds a pyramid pooling module for
better multiscale contextual aggregation and global information acquisition. In recent years,
upon witnessing the great success of transformers in natural language processing (NLP),
many scholars have tried to introduce transformers to vision tasks. The vision transformer
(ViT) [24] is a transformer architecture that was first applied to computer vision image
classification tasks. Segmentation transformer (SETR) and pyramid vision transformer
(PVT) are extensions of ViT in semantic segmentation. SwinTransformer [25] composes
local windows, which are shifted between layers, and utilizes UpperNet as a pyramid FCN
decoder. Segformer [26] employs positional encoding-free and hierarchical transformer
encoders and a lightweight all-multilayer perceptron (MLP) decoder. Transformers will
continue to be widely explored in the remote sensing field [27-30].

However, the main limitations of deep learning are its strong dependence on data
and its extreme sensitivity. Considering the current generation of satellites with diverse
types, short revisit cycle times, and large coverage areas, it cannot be assumed that the
distributions of images are always similar. In addition, depending on the times and
locations of the collected data, large intraclass variations may be encountered in remote
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sensing images. For example, significant spectral differences in vegetation can occur due
to seasonal differences. Even for images taken at different times of the day, the brightness
of the same object may vary significantly. In addition, due to atmospheric effects, in
some cases, even images collected by the same satellite sensor may have very different
radiation intensities [31], which makes the segmentation task more difficult, and image
color translation can effectively solve the problem of differences in spectral features between
images from different periods.

Image color translation involves the translation of the color style of the source domain
to the color style of the target domain. Early color translation methods included linear
and nonlinear methods [32]. The most commonly used nonlinear method is histogram
matching (HM) [33] and linear methods include the image regression (IR) method [34],
Reinhard method [35], and pseudo-invariant feature (PIF) method [36]. Although the above
methods are frequently used in color translation, traditional methods still have limitations
when addressing complex scenes and object changes in remote sensing images.

Generative adversarial networks (GANSs) [37] can align the data distributions of the
source and target domains with the aim of generating pseudo-source domain images
that are statistically indistinguishable from the target domain images [31]. Pix2Pix [38]
uses a conditional GAN to learn input-to-output image mappings that requires paired
data. Some recent works have relaxed the need to dependent on image translation learn-
ing on pairs of training data. The coupled GAN (CoGAN) [39] generates distribution
estimates using samples from the boundaries for learning joint data by forcing the dis-
criminators and generators in the source and target domains to share parameters at the
low level. UNIT [40] further extends the CoOGAN by assuming the existence of a shared
low-dimensional latent space between the source and target domains. MUNIT [41] and
DRIT [42] extend this idea to multimodal image-to-image translation by assuming two
potential representations, one for “style” and another for “content”. Then, cross-domain
image translation is performed by combining different content and style representations.
DiscoGAN [43] and CycleGAN [44] overcome the corrupted semantic structure problem by
a cycle consistency loss and encourage the generated pseudo-source domain images to be
effectively reconstructed when mapped back to the source domain. The attention-guided
GAN (AGGAN) [45] adds an attention mechanism (AM) to each generator of CycleGAN
and assigns different weights to different image positions. The attention-guided color
consistency GAN (ACGAN) [46] can extract the high-level features of images, reducing the
color distribution differences between multitemporal remote sensing images. Cycada [47]
segments the original and generated images using a classifier trained on the original data
and minimizes the cross-entropy loss between the segments. Unlike existing GANSs, the
generator in ColorMapGAN [31] does not have any convolution or pooling layers. It learns
to translate the colors of the training data to the colors of the test data by performing only
one element-by-element matrix multiplication operation and one matrix addition opera-
tion. We compare the CycleGAN, UNIT, DRIT, HM, and Reinhard image color translation
methods and analyze the effect of each method on the experimental results.

In this paper, CycleGAN is proposed to be applied to the image color translation
process for dual-temporal remote sensing images to reduce the differences among data
distributions. In addition, based on UNet with EfficientNet [48] as the encoder, we make
full use of the a priori information of the existing database to segment the buildings from the
latest period and can directly predict the added and demolished change areas. In addition,
the image color translation method does not require relabeling of the post-temporal images
for fine-tuning to fit the data distribution, which greatly saves time and costs. Finally,
a post-processing update strategy is proposed to strictly retain the historical labels for
unchanged areas, calculate the ratio between the intersection area of the prediction and
historical labels and then set an appropriate threshold to replace the segmentation results
with historical labels, which is of great significance for high-accuracy urban mapping. The
main contributions of this paper are as follows.
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1. Image color translation is performed on different-phase remote sensing images using
CycleGAN to smoothly translate the color distribution from the source domain to the
target domain in an unsupervised manner.

2. Aprioriinformation is obtained based on a historical database using UNet(EfficientNet)
to update buildings (additions and demolitions) without relabeling.

3. We propose a post-processing update strategy to replace the segmentation of un-
changed regions using strictly accurate historical labels to solve the problem of inac-
curate prediction edges.

The rest of this paper is organized as follows. Section 2 describes the approach of
this paper in detail. Section 3 verifies the effectiveness of the CycleGAN method and
UNet(EfficientNet) by comparing them with other excellent image color translation meth-
ods and semantic segmentation models, respectively, and analyzes the segmentation im-
provement yielded by the post-processing update strategies. Section 4 discusses the abla-
tion experiments and threshold selection for the post-processing update strategy. Finally,
Section 5 summarizes the paper.

2. Methods

This section is structured as follows (Figure 1). First, the architecture of CycleGAN
and its loss are described. Second, the UNet(EfficientNet) architecture and the loss are
introduced. Finally, we discuss the post-processing update strategy proposed in this paper.

2.1. Image Color Translation

CycleGAN is an unsupervised image-to-image translation method that converts infor-
mation from one form to another. Its principle is based on the idea of pairwise image style
translation, which translates the style of an image to another and preserves the semantic
information of the original image. CycleGAN uses two discriminators and two generators
to implement a mutual mapping between the source domain X and the target domain Y
(Figure 2a). The generator takes a source domain image as input and generates a synthe-
sized image with the style of the target domain. The discriminator takes an image as input
and tries to identify whether it is the original image or the generated image.

CycleGAN is implemented with a forward generator G that translates image x from
domain X to image G(x) in domain Y and another backward generator F that translates
image y in domain Y to F(y) in domain X. A discriminator Dx is used to determine whether
the image is from domain X or generator F(y), and another discriminator Dy is used to
distinguish whether the image is from domain Y or generator G(x). The training proce-
dure of CycleGAN is divided into two supervised processes, the first of which is cycle
consistency supervision, in which the image is translated from domain X to domain Y and
then translated from domain Y to domain X again. The synthesized image G(x) needs to
generate F(G(x)) by the backward generator F to make it as close as possible to the original
input x. The cycle consistency loss constrained network is used to solve the problem that
the GAN cannot output the corresponding image. Similarly, the same process is adapted to
Y. The forward cycle consistency process (Figure 2b) is x — G(x) — F(G(x)) ~ x, and the
backward cycle consistency process (Figure 2¢) is y — F(y) — G(F(y)) = y. The second
stage is to determine whether an image is original or generated, i.e., the discriminator Dy
discriminates whether the generated image i/ of generator G comes from domain Y. Sim-
ilarly, this process is also used by the discriminator Dx in domain X. In this case, the
generator uses a residual neural network (ResNet) architecture, and the discriminator is
PatchGAN [38].
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Figure 1. (Top) shows the image color translation method, which is used to generate pseudo-source
domain images. (Middle) applies synthesized images to the semantic segmentation model to learn
building information with the color distribution of the latest period. (Bottom) is the post-processing
update strategy that is used to replace some predictions that meet the threshold requirement.
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Figure 2. (a) The CycleGAN process for mapping and discriminating between two domains. (b) The

forward cycle consistency process. (c) The backward cycle consistency process.

The losses of CycleGAN include the adversarial loss and cycle consistency loss. The
adversarial loss is used to distinguish whether the generated image is real or fake. The
cycle consistency loss is used to improve the ability of the model to recover the images. The
forward process of the GAN involves the generator G translating the image in domain X
to G(X) in domain Y, and the discriminator Dy distinguishing whether it is a synthesized
image. Thus, the generator G and discriminator Dy constitute the forward loss, as shown
in Equation (1).

LGAN(GI Dy, X, Y) = Eywpdﬂm(y) [1OgDY(y)] + Ex~pdam(x) [log (1 — Dy (G(x)))} )

where Lgan(G, Dy, X, Y) is the forward adversarial loss of the mapping of domain X to
domain Y. The data distribution is defined as x ~ p,,.(x), ¥ ~ Py, (y), X denotes the
source domain, Y denotes the target domain, and E(*) denotes the expectation of the
distribution function.

Similar to the above loss is the backward process of the GAN, where the generator F
and the discriminator Dx constitute the backward loss, as shown in Equation (2).

Lean(F,Dx, Y, X) = Ey_p  (o[logDx(x)] + Eyp () [1og(1 — Dy (F(y)))] 2)

where Lgan(F, Dx, Y, X) is the backward adversarial loss when mapping domain Y to do-
main X. Both the generated image and the original image are used as inputs for discrimination.

The random combination of source and target domain images for image translation
causes the model to learn different mapping relationships; therefore, relying on the ad-
versarial loss alone does not guarantee that the function will map a single input x; to the
desired output G(x;), and there is no guarantee that the translation process will not distort
the image content even for pairs of images. Therefore, to further reduce the possible map-
ping space and guarantee the quality of the generated images, we believe that the training
process of the GAN should exhibit cycle consistency. The forward cycle consistency of
CycleGAN recovers the image x of domain X to the original image x after cycle translation,
ie, x = G(x) = F(G(x)) ~ x. Similarly, for the image y of domain Y, generators G and F
still satisfy backward cycle consistency: y — F(y) — G(F(y)) =~ y. The cycle consistency
loss is shown in Equation (3).

LcyC(G/F) = Exwpdm(x) H ‘F(G(x)) - x| ‘J + EyNPdam(y) H |G(P(y)) B ]/’U ®)

where the Ly (G, F) formula uses the L1 paradigm.
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The final loss is shown in Equation (4).
L(G,F,Dx,Dy) = Lgan(G, Dy, X,Y) + Lgan(F, Dx, Y, X) + ALcyc(G, F) 4)

where A denotes the coefficient of the cycle consistency loss. The higher the weight is, the
more important the cycle consistency loss.

2.2. Semantic Segmentation

UNet was proposed in the field of medical images and is a typical encoder—decoder
architecture. The encoder uses convolution and pooling layers to increase the number of
channels and reduce the spatial size to extract deep features and underlying representations
of the image, and the decoder is used to recover the original size and detail information of
the image. In addition, it introduces skip connections in the network to combine shallow,
low-level, and fine-grained feature maps from the encoder subnetwork and deep, semantic,
and coarse-grained feature maps from the decoder subnetwork [49]. Among these, the
encoder uses EfficientNet [50,51], which balances the three dimensions (the network depth,
width, and resolution) to capture richer, more complex, and more detailed features in
images, as shown in Figure 3. Since the image color translation method can produce both
the generated image Fake X of the pre-temporal image and the generated image Fake Y
of post-temporal images, the generated image Fake X of the pre-temporal image and the
pre-temporal label L can be used as the training data pair (Fake X, L) to learn the semantic
information of the building and test for post-temporal image Y to obtain segmentation
result P. Alternatively, the pre-temporal image and label can be used as the training data
pair (X, L) to learn the building semantic information and to test for the post-temporal
generated image Fake Y to obtain the segmentation result P. The choice of two strategies
depends on the image quality between pre-temporal images and post-temporal images,
usually, the original image is the upper bound of the image quality, and the better the image
color translation method, the closer the generated image to this upper bound. Therefore,
selecting a high-quality original image to generate the synthesized image for semantic
segmentation can acquire better results. In this paper, we adopt the scheme of data pairs
(Fake X, L) for training and data Y for testing.

Pretrained Encoder EfficientNet-B1 Decoder

Dec(32)

Block2(24)

Conv(C=16);

Dec(64)

Block3(40) Dec(128)

MBConvX
Block4(80)
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Figure 3. The top shows the UNet architecture, which consists of an encoder (green dotted box), a
decoder (purple dotted box) and skip connections (pink). The bottom panel shows the details of the
EfficientNet-b1 module, which includes seven blocks. The right side presents the submodule of the
decoder and the MBConv module of the encoder block.
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The losses for semantic segmentation include the binary cross-entropy loss Ly, and
the Dice loss L., [52]. The binary cross-entropy loss treats each pixel as an independent
sample, while the Dice loss treats it in a holistic form. The binary cross-entropy loss and
Dice loss are shown in Equation (5) and Equation (6), respectively.

Lpee = —% i}/i'log(P(]/i)) + (1 - yi)'10g<1 - P(]/i)) ®)

where N is the sum of all pixels in the image, y is the label, and p(y;) is the prediction probability.

2|IPNG|
Lijjee=1— ——F= 6
dice ‘ P| ¥ | G‘ ( )
where |P N G| denotes the common number of predictions and ground truths.
The final segmentation loss is shown in Equation (7).
Lseg: Lpee + r)/Ldice ()

where 7y controls the importance of Ljc, in Lseg.

2.3. Post-Processing Update Strategy

Since semantic segmentation is a pixel-level classification task, the central pixel is
influenced by its neighboring pixels, and if the neighboring pixels belong to the interior
of the target to be segmented, the central pixel classification is favored. Conversely, when
the neighboring pixels are at the boundary of the target to be segmented, this negatively
affects the process of correctly classifying the central pixel and thus often results in the
problem of inaccurate edges. In addition, in the building update task, the changed area
generally accounts for a smaller percentage than the unchanged area, so it is important to
strictly maintain the corrected historical labels for urban mapping. We extract the building

area contour in the prediction P and transform it into a polygon set P’ = {p ;, Ph o, P, } ;

similarly, the pre-temporal phase label L is transformed into the set L' = {I,15,..., l,’c}
Based on the set P/, we loop through the set L'. If p’ intersects with I’, we can obtain the
intersection region i’ and then calculate the ratio « = % of the area S; of the intersecting

region i’ to the area Sy of the historical label region. We set the threshold 6; if « > 6, we
use I’ to replace p’; otherwise, we keep p’. A larger 6 indicates that the update result is more
dependent on the prediction and is adapted to scenes where a longer time interval causes
more change areas and a higher image resolution, and there are local changes in buildings.
Conversely, a smaller § means that the update result is more dependent on the historical
label and is adapted to scenes where a shorter time interval causes fewer change areas, a
lower image resolution and more complex labels. The algorithm of the post-processing
update strategy is shown in Algorithm 1.

The proposed method is summarized as follows. We are given a pre-temporal image
X and its corresponding label L, as well as the post-temporal image Y. The pre-temporal
image X is translated into the generated image Fake X by the image color translation
method, a semantic segmentation model is trained based on the data pair (Fake X, L), and
the post-temporal image Y is tested to generate the building prediction P. The area of
the intersection between the building prediction P and the pre-temporal label L, Sy, is
compared to the area Sy of the previous temporal phase label L. The building segmentation
p’ with a higher ratio is replaced by the corresponding building label I from the previous
temporal phase to obtain the final updated result P.
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Algorithm 1 Post-processing update strategy

Step 1: Transform the pre-temporal label L and the post-temporal prediction P into the
polygon sets L' = {I',15,..., l,’c} andP’ = {p},ph,..., 1, }, respectively, and set
the threshold 6.

Step 2: Calculate « and update:
for p’ in P":
forl"inL':

if intersection(p’,1'):
i' = intersection(p’,1")

otherwise: p = p’

Step 3: Convert the set of polygons P = {p,p,,. .., P, } into pixel-level update results.

3. Experiments and Results Analysis

In this section, we first describe the two utilized datasets, introduce the implementation
details of the proposed algorithm in this paper, and compare it with other excellent methods
to explore the effectiveness of image color translation for the semantic segmentation of
buildings from remote sensing images with different time phases. Finally, the performance
of the proposed algorithm is evaluated by optimizing the segmentation process to achieve
building updates using post-processing update strategies.

3.1. Datasets and Experimental Details
(1)  Wuhan University Building Change Detection Dataset [53]

The study area is located in Christchurch, New Zealand, covering 20 km?Z. The datasets
of pre- and post-temporal images were obtained in 2012 and 2016, respectively, with a
spatial resolution of 0.3 m and 3-band aerial images (Figure 4). The pre-temporal building
database and post-temporal building database contain 9938 and 12,091 labels, respectively.
In the pre-processing stage, the original images and building labels are cropped into patches
of 256 x 256 pixels with 50% overlap, and the final total number of crops obtained is 30,107
(30,107 pre-temporal tiles for training and 30,107 post-temporal tiles for testing).

(b)

Figure 4. Wuhan University building change detection dataset, (a,b) show the images and the

corresponding building labels for 2012 and 2016, respectively.
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(2) Beijing Huairou district Land Survey Dataset

The study area is located in Huairou district, Beijing. The dataset contains remote
sensing images and building labels from February 2018 to October 2019, covering obvious
construction sites, rural settlements, soccer fields and other infrastructures with complex
labeling scenarios (Figure 5). The image resolution is 2 m, and the images are 3-band
images. The pre- and post-temporal databases both contain 3308 labelsand the numbers
of added and demolished buildings are small due to the short interval between the two
temporal settings of the land survey dataset and the large coverage of some labels. Similar
to the above pre-processing output, the total number of images obtained from the final
cropping operation is 8775 (8775 pre-temporal tiles for training and 8775 post-temporal
tiles for testing).

(b)

Figure 5. Beijing Huairou district land survey dataset, (a,b) show the images and the corresponding
building labels for 2018 and 2019, respectively.

In the image color translation task, the generator contains three convolutional layers,
nine residual blocks, two fractionally stride convolutional layers with % strides and one
convolutional layer that maps the feature map to RGB. The convolutional layers were
followed by instance normalization [54]. The discriminator used 70 x 70 PatchGANs to
discriminate whether a patch of overlapping images of size 70 x 70 was real or fake. The
initial learning rate was 0.0002, the optimizer was Adam with a batch size of 4, the total
number of training epochs was 100, the learning rate was linearly decayed to 0 starting
from the 50th epoch, and the data were enhanced using the flipping strategy. In addition,
we utilized the least-squares loss instead of the negative log loss to make the model training
process more stable, generate high-quality images, and to reduce model oscillations [55].
The discriminator was updated using historically generated images instead of images
generated by the current generator [56]. In the semantic segmentation task, the encoder
used EfficientNet-b1 to extract image features, and the PSPNet encoder used part of the
architecture of ResNet50 with a block depth of 3. The initial learning rate was 0.001, the
optimizer was AdamW with a batch size of 128, the total number of training epochs was
60, and the learning rate increased linearly in the first three epochs, after which the PolyLR
strategy was used to decay the rate. The data were enhanced using random cropping to
128 pixels and the flipping strategy. All experiments in this paper were performed on one
NVIDIA RTX 3090 GPU.

To quantify the experimental results, five evaluation metrics, including accuracy, inter-
section over union (IoU), precision, recall, and F1, were used to evaluate the performance
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of the proposed building update method for all buildings in the whole region. First, the
numbers of false-negative (FN), true-negative (TN), true-positive (TP) and false-positive
(FP) pixels were calculated using the prediction and ground truth. TP indicates pixels that
are correctly predicted to be positive. Conversely, FN implies pixels that are incorrectly
predicted to be negative. The above evaluation metrics were then calculated auxiliary to
the formulas shown below. In addition, to eliminate the differences in evaluation due to
image cropping size and overlap in preprocessing, all results were calculated on the merged
large map.

Accuracy — TP +TN ®)
Y = TP FP+ FN + IN
TP
oV =5 TP+ N ©)
... TP
Precision ~TP+FP (10)
TP
Recall ~TPrEN (11)
__2-Precision-Recall (12)

" Precision + Recall

3.2. Visualization of Image Color Translation

We first performed image color translation on the pre- and post-temporal images of
the two datasets and evaluated the performance of each method by visually comparing
the generated and real images, as shown in Figures 6 and 7. HM translates the whole area
of each image, and Reinhard method makes the contrast between local areas of the image
more obvious; however, for the land survey dataset, there are obvious seasonal differences
between the two temporal phases. The traditional method is not ideal for the reconstruction
of bare soil to vegetation in the image, but the deep learning method can learn the deeper
mapping relationships between images. DRIT migrates the color style of the target domain
to the source domain but causes some building roof colors in the generated image to be
close to the color of bare soil or vegetation. UNIT shares the latent space during translation,
which can enhance the similarity between the local area of the source domain and the
corresponding area of the target domain but ignores detailed information such as the edges
of buildings. CycleGAN is more stable than the other methods on both datasets and can
effectively reconstruct vegetation features and preserve the edge information of buildings.

To better analyze the effect of each method on the RGB bands of the images, we depicted
the histogram information of the different generated images, as shown in Figures 8 and 9.
HM can fit the data distribution of the target domain well, but it incurs a loss of semantic
information due to the discontinuity of the digital number (DN) of the image. The Reinhard
method makes the distribution of the DN more uniform and enhances the contrast of the
image, but the whole distribution of the fitted data is poor. The wave peak of DRIT differs
from the target domain, so it has an impact on the realism of the building roof color. The
distribution of UNIT has a wider distribution range and enhances the contrast of the local
area, but its wave response is not obvious. CycleGAN can fit the RGB distribution better
than other methods.
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Figure 6. Image color translation results obtained on the Wuhan University building change detection
dataset, (a) 2012 image, (b) 2016 image, (c) HM, (d) Reinhard method, (e) DRIT, (f) UNIT, and
(g) CycleGAN.

@)

Figure 7. Image color translation results obtained on the Beijing Huairou district land survey dataset,
(a) 2018 image, (b) 2019 image, (c) HM, (d) Reinhard method, (e) DRIT, (f) UNIT, and (g) CycleGAN.
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Figure 8. RGB histograms of the image color translation results obtained on the Wuhan University
building change detection dataset, (a) 2012 image, (b) 2016 image, (c¢) HM, (d) Reinhard method,
(e) DRIT, (f) UNIT, and (g) CycleGAN.
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Figure 9. RGB histograms of the image color translation results obtained on the Beijing Huairou
district land survey dataset, (a) 2018 image, (b) 2019 image, (c) HM, (d) Reinhard method, (e) DRIT,
(f) UNIT, and (g) CycleGAN.
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3.3. Numerical Results and Semantic Segmentation Visualization

We set the model with the original image without image color translation as the
baseline and compared the gains achieved by other image color translation methods with
the semantic segmentation model UNet(Eff-b1) in terms of five metrics.

The segmentation results obtained on the change detection dataset are shown in
Table 1. Compared with the baseline, the use of image color translation can greatly im-
prove the semantic segmentation performance for the buildings from the latest period.
CycleGAN has the best overall performance compared with that of other methods, with
IoU, precision, recall, accuracy, and F1 improvements of 10.93%, 9.22%, 2.94%, 2.43%, and
6.17%, respectively. HM achieves the optimal precision with a 9.62% improvement. In
addition, for high-resolution images and datasets with small seasonal differences, there
is little difference between the traditional and deep learning methods. Figure 10 shows
the segmentation results of different methods. Holes and edge inaccuracies exist in the
baseline results, in addition to certain degrees of false detections and missed detections,
which are caused by the different data distributions of the two temporal images. The use of
translation methods to align the data distributions can obtain better segmentation results,
especially the CycleGAN method, which can help the segmentation model learn richer and
more detailed information.

Table 1. Evaluation metrics of the semantic segmentation results obtained based on different image
color translation methods for the Wuhan University building change detection dataset.

Method IoU Precision Recall Accuracy F1
Baseline 0.8273 0.8775 0.9353 0.9635 0.9055
Histogram matching 0.9331 0.9737 0.9572 0.9871 0.9654
Reinhard method 0.9282 0.9671 0.9584 0.9861 0.9627
DRIT 0.9194 0.9601 0.9559 0.9843 0.9580
UNIT 0.9310 0.9665 0.9620 0.9867 0.9643
CycleGAN 0.9366 0.9697 0.9647 0.9878 0.9672

The bold values indicate the optimal values.
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Figure 10. Segmentation results obtained by different image color translation methods on the Wuhan
University building change detection dataset, (a) 2016 image, (b) 2016 ground truth, (c) Baseline,
(d) HM, (e) Reinhard method, (f) DRIT, (g) UNIT, and (h) CycleGAN.
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The segmentation results obtained on the land survey dataset are shown in Table 2.
Due to the low resolutions and complex building labeling scenes in this dataset, training
the model to predict the images of the latest period using only the pre-temporal data leads
to a dramatic performance decrease. Compared with other methods, CycleGAN achieves
the best results with 16.93%, 16.72%, 4.6%, 3.98%, and 11.38% improvements in the IoU,
precision, recall, accuracy, and F1 metrics, respectively. It can be seen that the deep learning
method outperforms the traditional methods in low-resolution and complex scenes and is
able to learn deeper mapping relationships between different temporal images. The ground
truths of the buildings in Figure 11 are divided using obvious roads or bare woodland. The
baseline and traditional image color translation methods make the models unable to learn
rich label information well, and the segmentation effects are poor. Deep learning-based
translations can help the segmentation model better adapt to complex scenes.

Table 2. Evaluation metrics of the semantic segmentation results obtained by different image color
translation methods on the Beijing Huairou district land survey dataset.

Method IoU Precision Recall Accuracy F1
Baseline 0.6428 0.7134 0.8665 0.9291 0.7825
Histogram matching 0.6720 0.8093 0.7984 0.9426 0.8038
Reinhard method 0.7108 0.8370 0.8250 0.9506 0.8310
DRIT 0.7777 0.8705 0.8794 0.9630 0.8749
UNIT 0.8036 0.8789 0.9036 0.9675 0.8911
CycleGAN 0.8121 0.8806 0.9125 0.9689 0.8963

The bold values indicate the optimal values.
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Figure 11. Segmentation results obtained by different image color translation methods on the Beijing
Huairou district land survey dataset, (a) 2019 image, (b) 2019 ground truth, (c) baseline, (d) HM,
(e) Reinhard method, (f) DRIT, (g) UNIT, and (h) CycleGAN.

In addition, we further investigated the effects of the images generated by Cycle-
GAN on different semantic segmentation models, such as PSPNet, DeepLabV3, OCRNet,
Segformer, SwinTransformer, UNet(ResNet50) and UNet(EfficientNet-b1). As seen from
Tables 3 and 4, UNet with EfficientNet-b1 as the encoder achieves the best performance
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in terms of most of the metrics on the change detection dataset and the land survey
dataset, outperforming the other competitive CNNs and transformer networks. On the
change detection dataset, the IoU, precision, recall, accuracy, and F1 evaluation metrics
of UNet(Eff-b1l) segmentation are 0.9366, 0.9697, 0.9647, 0.9878, and 0.9672, respectively,
while on the land survey dataset, the evaluation metrics are 0.8121, 0.8806, 0.9125, 0.9689,
and 0.8963; the precision is 2.13% lower than that of DeepLabV3. In the case that the
transformer results are lower than those of UNet(Eff-b1), we believe that the reasons for
this are as follows, since the transformer captures global contextual information in an atten-
tional manner to establish a long-distance dependence on the target object; however, the
generated image after translation still has some distortion and distribution shifts compared
with the real image, which causes errors to be accumulated several times when capturing
the global context information and thus affects the final segmentation effect. In addition,
there is more noise in low-spatial-resolution images, which further affects the application of
the transformer network in remote sensing images. We also analyzed the efficiency levels
of different models (Table 5). UNet using EfficientNet-b1 as an encoder is more efficient
than ResNet50 and achieves better FLOPs 0.637(G) compared to most models, while its
number of parameters is only 0.065(M) higher than that of the PSPNet. Compared to other
models, UNet(Eff-bl) has a better balance between accuracy and complexity, so it can meet
the needs of complex scenarios with large areas and the deployment of applications in
real situations. From the prediction results of different models (Figures 12 and 13), the
differences among the effects of different models on the change detection dataset are small,
and the advantage of UNet(Eff-b1) is shown in the more accurate edges produced by small
objects. For the land survey dataset, UNet(Eff-b1) has better visual effects; its results are
not only globally closer to the ground truth but also have less jaggedness at the local edges.
Therefore, UNet(Eff-b1) can achieve stable and accurate results under different labeling
scenes and different resolutions.

Table 3. Evaluation metrics of the results obtained by different semantic segmentation methods on
the Wuhan University building change detection dataset.

Method IoU Precision Recall Accuracy F1
PSPNet 0.9153 0.9642 0.9474 0.9836 0.9557
DeepLabV3 0.9229 0.9685 0.9514 0.9851 0.9599
OCRNet 0.9301 0.9667 0.9609 0.9865 0.9638
Segformer 0.9133 0.9651 0.9445 0.9832 0.9547
SwinTransformer 0.9272 0.9629 0.9615 0.9859 0.9622
UNet(ResNet50) 0.9316 0.9655 0.9636 0.9868 0.9646
UNet(EfficientNet-b1) 0.9366 0.9697 0.9647 0.9878 0.9672

The bold values indicate the optimal values.

Table 4. Evaluation metrics of the results obtained by different semantic segmentation methods on
the Beijing Huairou district land survey dataset.

Method IoU Precision Recall Accuracy F1
PSPNet 0.7483 0.8535 0.8586 0.9575 0.8560
DeepLabV3 0.7678 0.9019 0.8377 0.9627 0.8686
OCRNet 0.7846 0.8780 0.8805 0.9644 0.8793
Segformer 0.7478 0.8420 0.8698 0.9568 0.8557
SwinTransformer 0.7814 0.7814 0.9025 0.9628 0.8773
UNet(ResNet50) 0.7637 0.8473 0.8856 0.9596 0.8660
UNet(EfficientNet-b1) 0.8121 0.8806 0.9125 0.9689 0.8963

The bold values indicate the optimal values.

Table 5. Efficiency levels of different semantic segmentation models.

PSPNet

Model Res50 DeepLabV3 OCRNet  Segformer SwinT UNet UNet

Backbone o Res50 HR18 B2 ] Res50 Eff-b1
(Depth = 3)

Params (M) 2.238 39.634 12.026 2.478 48.746 32.521 2.303

FLOPs (G) 0.743 10.258 3.294 0.381 15.761 2.677 0.637

The bold values indicate the optimal values.
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Figure 12. Results obtained by different semantic segmentation methods on the Wuhan University
building change detection dataset, (a) 2016 image, (b) 2016 ground truth, (c) PSPNet, (d) DeepLabV3,
(e) OCRNet, (f) Segformer, (g) SwinTransformer, (h) UNet(ResNet50), and (i) UNet(EfficientNet-b1).
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Figure 13. Results obtained by different semantic segmentation methods on the Beijing Huairou
district land survey dataset, (a) 2019 image, (b) 2019 ground truth, (c) PSPNet, (d) DeepLabV3,
(e) OCRNet, (f) Segformer, (g) SwinTransformer, (h) UNet(ResNet50), and (i) UNet(EfficientNet-b1).
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3.4. Effectiveness Analysis of the Post-Processing Update Strategy

During the urban building update process, most of the buildings in the area remain un-
changed, especially when the time interval between the acquisition of the two time-phased
images is short. Moreover, the historical database is often already manually processed with



Remote Sens. 2022, 14, 5851

18 of 24

strictly accurate labels for urban mapping, and these labels will be the primary reference
for post-temporal ground truth. Therefore, we propose replacing some predictions that
meet the overlap requirement with the corresponding historical labels to optimize the final
update results. Tables 6 and 7 show the update results obtained for the two datasets using
different thresholds after executing CycleGAN and UNet(Eff-b1). The update results are
more dependent on the segmentation of the post-temporal images because of the long time
interval between the pre- and post-temporal images in the change detection dataset and
the higher image resolutions and more obvious changes in the local areas of the buildings.
The post-processing update strategy works best when a threshold of 1 is used, i.e., it
degenerates to a point where it uses only the predictions as the final update results. The
reason for this is that there are certain coordinate shifts in some buildings in the pre- and
post-temporal images, i.e., systematic errors are incurred in the topological position of
the historical database to be replaced and the ground truths of the images from the latest
period, which affects the evaluations of the update results and inhibits the effectiveness of
the post-processing update strategy (Figure 14). It is worth noting that the updated results
obtained with a threshold of 1 produce a small deviation from the accuracy above due to
the post-processing of filtering non-polygon pixels and the effect of the simplified polygon
of the contour extraction process.

Table 6. Update results obtained by post-processing update strategies with different thresholds on
the Wuhan University building change detection dataset.

Threshold (6) IoU Precision Recall Accuracy F1
0 0.8490 0.9319 0.9051 0.9699 0.9183
0.2 0.8537 0.9359 0.9067 0.9709 0.9210
0.4 0.8555 0.9375 0.9072 0.9714 0.9221
0.6 0.8576 0.9396 0.9077 0.9718 0.9233
0.8 0.8622 0.9435 0.9091 0.9728 0.9260
1 0.9363 0.9692 0.9649 0.9877 0.9671

The bold values indicate the optimal values.

Table 7. Update results obtained by post-processing update strategies with different thresholds on
the Beijing Huairou district land survey dataset.

Threshold (6) IoU Precision Recall Accuracy F1
0 0.9256 0.9477 0.9754 0.9884 0.9613
0.2 0.9272 0.9581 0.9663 0.9888 0.9622
04 0.9201 0.9609 0.9559 0.9877 0.9584
0.6 0.9104 0.9618 0.9445 0.9863 0.9531
0.8 0.8937 0.9603 0.9279 0.9837 0.9438
1 0.8120 0.8784 0.9148 0.9688 0.8962

The bold values indicate the optimal values.

- 2012 mask - 2016 mask - intersection mask ® 2012 sample 2016 sample
(a) (b)
Figure 14. Offset of the Wuhan University building change detection dataset. (a) Red sample point

and dull purple mask in 2012. (b) Yellow sample point and oxide blue mask in 2016. Light blue-purple
represents intersection mask.
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However, the update results are more dependent on the pre-temporal ground truth
due to the shorter time interval between pre- and post-temporal images with lower image
resolutions and wider label ranges. On the land survey dataset, the post-processing update
strategy with a threshold of 0.2 greatly improves the update accuracy, with IoU, precision,
recall, accuracy, and F1 metric improvements of 11.52%, 8.34%, 6.06%, 2%, and 6.6%,
respectively. Moreover, the accuracy reached the best results at a threshold of 0.4 and the
recall at a threshold of 0. As shown in Figure 15, using the post-processing update strategy
to update the historical labels that satisfy the segmentation conditions can effectively
optimize the update results by making full use of the a priori knowledge contained in the
historical database. Column 5 predicts the added buildings in the changed area based
on the accurate retention of the unchanged area, and column 6 updates the demolished
buildings in the changed area without being influenced by the historical database.

(b)

()

(d)

(e)

Figure 15. Update results obtained by the post-processing update strategies, (a) 2019 image, (b) 2018
ground truth, (c) 2019 ground truth, (d) CycleGAN, (e) CycleGAN-post-processing.

4. Discussion

Section 4.1 discusses the ablation experiments of the proposed update algorithm.
Section 4.2 explains the reasons for the differences in thresholds across datasets.

4.1. Ablation Study

Ablation experiments of the proposed update algorithm were conducted on the change
detection dataset and the land survey dataset. Here, UNet(Eff-b1) was trained on the
original images without image color translation as a baseline, then CycleGAN and post-
processing update strategy were gradually added on top of it to verify the effectiveness
of each part of the update method. The results of the ablation experiments are shown in
Tables 8 and 9.
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Table 8. Ablation experiments of the proposed update algorithm on the Wuhan University building
change detection dataset.

Methods IoU Precision Recall Accuracy F1
Baseline 0.8273 0.8775 0.9353 0.9635 0.9055
Baseline + CycleGAN 0.9366 0.9697 0.9647 0.9878 0.9672

Baseline + CycleGAN + the

Post-processing Update Strategy 0.9363 0.9692 0.9649 0.9877 0.9671

Table 9. Ablation experiments of the proposed update algorithm on the Beijing Huairou district land
survey dataset.

Methods IoU Precision Recall Accuracy F1
Baseline 0.6428 0.7134 0.8665 0.9291 0.7825
Baseline + CycleGAN 0.8121 0.8806 0.9125 0.9689 0.8963

Baseline + CycleGAN + the

Post-processing Update Strategy 0.9272 0.9581 0.9663 0.9888 0.9622

After adding CycleGAN to the baseline, the IoU, precision, recall, accuracy, and F1
of the change detection dataset and the land survey dataset improved by 10.93%, 9.22%,
2.94%, 2.43%, 6.17%, and 16.93%, 16.72%, 4.6%, 3.98%, 11.38%, respectively, indicating
that CycleGAN can mitigate the differences in the distribution of image color between
different time phases. Figures 16 and 17 show the comparison of the visualization results
from the first row to the third row, which show that the baseline can better recognize the
edges of buildings in the images after adding CycleGAN, thus validating the effectiveness
of CycleGAN.

After adding the post-processing update strategy to baseline + CycleGAN, the IoU,
precision, recall, accuracy, and F1 of the land survey dataset improved by 11.52%, 8.34%,
6.06%, 2%, and 6.6%, respectively, suggesting that retaining strictly accurate historical labels
is helpful for the improvement of the final update results. The change detection dataset,
however, is subject to systematic errors due to coordinate shifts, so the segmentation results
are used as the final update results.

Figure 16. Comparison of ablation visualization results on the Wuhan University building change
detection dataset, (a) 2016 image, (b) 2016 ground truth, (c) baseline, (d) baseline + CycleGAN,
(e) baseline + CycleGAN + the post-processing update strategy.
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Figure 17. Comparison of ablation visualization results on the Beijing Huairou district land survey
dataset, (a) 2019 image, (b) 2019 ground truth, (c) baseline, (d) baseline + CycleGAN, (e) baseline +
CycleGAN + the post-processing update strategy.

4.2. Thresholds in the Post-Processing Update Strategy

The post-processing update strategy proposed in this paper was implemented based
on intersection ratio, therefore, the intersection ratio of the pre-temporal label and the
latter temporal segmentation result will affect the threshold of the post-processing update
strategy. For the dataset with high image resolution, the semantic segmentation model
can generally predict the target better, i.e., the main part of the building can be accurately
predicted, and the error occurs more at the edges. Therefore, the high overlap between
the segmentation result and the pre-temporal label leads to a larger threshold setting.
However, for datasets with low image resolution or complex label range, it is extremely
challenging for the semantic segmentation model to accurately predict the target, because
the segmentation result is often part of the pre-temporal label or low overlap. Therefore,
the partial overlap between the segmentation result and the previous temporal label leads
to a smaller threshold setting.

In summary, different datasets need to set appropriate thresholds by considering
the image resolution, label range, and the overlap between segmentation result and pre-
temporal label. If the dataset is similar to the change detection dataset, the threshold can be
set as large as possible. Conversely, if the dataset is similar to the land survey dataset, the
threshold can be reduced appropriately.

5. Conclusions

In this paper, an update algorithm without manual relabeling is proposed to address
the problem regarding differences between the data distributions of pre- and post-temporal
images in the building update process. First, we used CycleGAN to reduce the color
differences among satellite images under different time phases in an unsupervised way,
then utilized UNet(Eff-b1) to learn the deep semantic information of buildings based on the
generated images and historical database, and used this information to predict the images
in the latest period. In addition, a post-processing update strategy is proposed to strictly
retain the historical labels of unchanged regions. In an experiment, the characteristics of
different image color translation methods, the improvements achieved by various semantic
segmentation models and the effectiveness of post-processing update strategies were
compared. The final IoU, precision, recall, accuracy, and F1 metrics of the update results
obtained on the change detection dataset and land survey dataset are 0.9363, 0.9692, 0.9649,
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0.9877, and 0.9671 and 0.9272, 0.9581, 0.9663, 0.9888, and 0.9622, respectively, which are
improvements of 10.9%, 9.17%, 2.96%, 2.42%, and 6.16% and 28.44%, 24.47%, 9.98%, 5.97%,
and 17.97%, respectively, over the baseline. However, this paper does not fully utilize the
a priori knowledge contained in existing labels when using the image color translation
method, and the post-processing update strategy needs to set appropriate thresholds
according to different datasets. In future work, we will try to utilize the label information
of the target category in the translation process to better couple it with the semantic
segmentation model and study the characteristics of the changed and unchanged regions
of different categories under multiple datasets to better utilize the label contours of the
unchanged regions. In addition, we will further attempt to explore the applicability of the
adaptive post-processing update strategy on the update task. The source code is publicly
available at https://github.com/wangzehui20/building-footprints-update.
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