Distance Measures of Polarimetric SAR Image Data: A Survey
Abstract
:1. Introduction
- (1)
- Distance measures of PolSAR image data are summarized systematically from different perspectives. They are mainly divided into seven categories, including the norm distances, geodesic distances, maximum likelihood (ML) distances, generalized likelihood ratio test (GLRT) distances, stochastic distances and two other distances. In addition, many distances are categorized for different objects, including individual pixels, pixel sets (i.e., regions, segments, superpixels, patches, etc.), and classes that are represented by probability density functions (PDFs). Moreover, we also discuss many of these distance measures separately for the single-look and multi-look PolSAR image data. These contents are detailed described in Section 3, Section 4, Section 5, Section 6, Section 7 and Section 8.
- (2)
- The relations between many distance measures of PolSAR image data are analyzed in detail. We show the relations with graphs to make them clearer. Moreover, some relations are proven in this paper, such as that between the modified Rényi distance and the KL distance, the geodesic distance, and the generalized similarity parameters. These make it easier to choose distance measures in algorithm design. These contents are mainly presented in Section 9.1.
- (3)
- The properties and characteristics of the main distance measures of PolSAR image data are summarized, and some advice for choosing distances in algorithm design is also provided. These contents are summarized in Section 9.2.
2. Background
2.1. PolSAR Image Data
2.1.1. Single-Look PolSAR Image Data
2.1.2. Multi-Look PolSAR Image Data
2.2. Distributions of PolSAR Image Data
2.2.1. Complex Gaussian Distribution
2.2.2. Complex Wishart Distribution
2.2.3. SIRV Model and Product Model
2.3. Distance Definition and Notations
2.3.1. Definition of Distance Measure
- Non-negativity:
- Identity:
- Symmetry:
- Triangle inequality:
2.3.2. Distance Notations for PolSAR Image Data
- (1)
- Inter-pixel distance. The objects of this distance are two individual pixels.
- (2)
- Pixel-set/class distance. The objects of this distance are a pixel and a pixel set that can be an image region, segment, superpixel, pixel cluster, or class PDF.
- (3)
- Inter-set/class distance. The objects of this distance are two pixel sets or classes as explained previously.
- (4)
- Inter-patch distances. The objects of this kind of distance are two image patches.
3. Norm Distances
3.1. Basic Knowledge of Norm Distances
3.1.1. Norms of Vectors and Matrices
3.1.2. Norm Distances
3.2. Norm Distances for Polarimetric Matrices
3.3. Norm Distances for Diagonal Elements
3.3.1. Diagonal Euclidean Distance
3.3.2. Normalized Diagonal Euclidean Distance
3.3.3. Normalized Diagonal Manhattan Distance
3.3.4. Diagonal Revised Wishart Distance
3.3.5. Diagonal Relative Distance
3.4. Norm Distances for Features
3.4.1. Feature Euclidean Distance
3.4.2. Weighted Feature Euclidean Distance
3.4.3. Modified Tensor Distance
3.5. Conclusion of Norm Distances
4. Geodesic Distances
4.1. Affine Invariant Riemannian Metric (AIRM)
4.2. Log-Euclidean Riemannian Metric (LERM)
4.3. Jensen–Bregman LogDet Divergence (JBLD)
4.4. Cosine Geodesic Distance
4.5. Conclusion of Geodesic Distances
5. Maximum Likelihood Distances
5.1. Gaussian Distance
5.2. Wishart Distance
5.2.1. Pixel-Class/Set Wishart Distance
5.2.2. Inter-Pixel Wishart Distance
5.2.3. Inter-Set Wishart Distance
5.3. KP Distance
5.4. Distance
5.5. KummerU Distance
5.6. Conclusions of ML Distances
6. GLRT Distances
6.1. Bartlett Distances
6.1.1. Inter-Set Bartlett Distance
6.1.2. Pixel-Set Bartlett Distance
6.1.3. Inter-Pixel Bartlett Distance
6.2. Revised Wishart Distances
6.2.1. Inter-Set Revised Wishart Distance
6.2.2. Pixel-Class/Set Revised Wishart Distance
6.2.3. Inter-Pixel Revised Wishart Distance
6.3. SIRV Distances
6.3.1. Pixel-Class/Set SIRV Distance
6.3.2. Inter-Pixel SIRV Distance
6.3.3. Inter-Set SIRV Distance
6.4. Conclusions of GLRT Distances
- (1)
- They measure different objects. The SIRV distance is used to measure the single-look polarimetric vectors, while the Bartlett distance and RWD are for multi-look polarimetric matrices.
- (2)
- They use data in different ways. In the SIRV model, the NCM estimation of each pixel needs to use its neighborhood data, which can be seen as a process of data filtering. The product model for multi-look data directly describes the given polarimetric matrices themselves, without the neighborhood data.
- (3)
- They focus on different information. The SIRV distances are defined by pixels’ NCMs, which contain only polarimetric information and no texture component. In contrast, the Bartlett distance and RWD focus on the difference between both polarimetric and texture information. In particular, since the polarimetric information is normalized, the SIRV distances are power-invariant, i.e., their values do not change with the original data energy. Therefore, SIRV distances are useful in applications where only the polarimetric information is concerned, such as the change detection. However, if the texture information is also important in the application, it is better to include the texture distance as done in [3,86] or to use the distances like the Bartlett distance and RWD.
- (4)
- Their computational efficiency is quite different. To calculate the SIRV distances, the NCMs of pixels need to be estimated by the FP method in advance, which is a very time-consuming iterative process. In contrast, the Bartlett distance and RWD are calculated directly with the given polarimetric matrices, which is more efficient.
7. Stochastic Distances
7.1. Typical Stochastic Distances
7.2. Gaussian Stochastic Distances
7.3. Wishart Stochastic Distances
7.4. Stochastic Distances
7.5. Stochastic Distance of Features
7.6. Conclusions of Stochastic Distances
8. Other Distances
8.1. Inter-Patch Distances
8.1.1. Inter-Patch Bartlett Distance
8.1.2. Inter-Patch SIRV Distance
8.2. Distances Based on Metric Learning
8.2.1. Feature Mahalanobis Distance
8.2.2. Distances Based on Deep Metric Learning
9. Distance Analysis and Discussion
9.1. Relations between Different Distances
9.2. Property Analysis of Distances
9.3. Advice for Choosing Distances
- (1)
- More information or domain knowledge is advised to be used if the precision of distance is more important. For example, to measure the distance between a pixel and a set, the ML distance may be a good choice, since the distribution of the set can be learned and used. If the neighboring samples of the pixel are available, the GLRL distances should be used, since the distribution information of the neighboring samples is important. For the distribution-based distances, if the data samples are sufficient, the more generalized distributions (i.e., , , and KummerU distributions) are superior to the complex Gaussian and Wishart distributions. If there are labeled samples, the distances based on metric learning are suggested to be used. In addition, the combination of different distances with complementary information can be a good choice. For example, the cosine geodesic distance and the Euclidean distance are complementary, as they describe different information; therefore, it may be useful to combine them in practice.
- (2)
- Simpler distances with acceptable accuracy are recommended if the computation efficiency is more important. For example, the norm distances on diagonal elements may be good choices [123]. Moreover, the distribution-based distances using complex Wishart distribution may be superior to those using the , , and KummerU distributions, of which the latter have complicated forms and require many time-consuming numerical computations. Moreover, the distances requiring the inverse operation of a matrix are usually more time-consuming than those without it, so they are not recommended.
- (3)
- In some practical applications, it may be important to have both the accuracy and computational efficiency of the distance. In this case, a distance that better balances these two factors will be preferred, such as the JBLD and RWD used in much of the literature. Furthermore, combining different distances can also be considered. Some simple distances can be calculated quickly but may have relatively low accuracy. In contrast, some distances describe the data difference precisely while often having complicated forms. Therefore, it is also interesting to use them in different stages of the algorithms [124].
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Relation between Geodesic Distance and GSP
Appendix B. Proof of Relation between Modified Rényi Distance and KL Distance
References
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From BASICS to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Ren, Y.; Yang, J.; Zhao, L.; Li, P.; Shi, L. SIRV-Based High-Resolution PolSAR Image Speckle Suppression via Dual-Domain Filtering. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5923–5938. [Google Scholar] [CrossRef]
- D’Hondt, O.; Guillaso, S.; Hellwich, O. Iterative Bilateral Filtering of Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1628–1639. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, Y.; An, W.; Cui, Y.; Yang, J. Nonlocal Filtering for Polarimetric SAR Data: A Pretest Approach. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1744–1754. [Google Scholar] [CrossRef]
- Schou, J.; Skriver, H.; Nielsen, A.A.; Conradsen, K. CFAR edge detector for polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Ban, Y.; Wang, W.; Tang, T.; Su, Y. Edge Detector for Polarimetric SAR Images Using SIRV Model and Gauss-Shaped Filter. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1661–1665. [Google Scholar] [CrossRef]
- Liu, F.; Jiao, L.; Tang, X. Task-Oriented GAN for PolSAR Image Classification and Clustering. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2707–2719. [Google Scholar] [CrossRef]
- Bi, H.; Sun, J.; Xu, Z. Unsupervised PolSAR Image Classification Using Discriminative Clustering. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3531–3544. [Google Scholar] [CrossRef]
- Qin, X.; Zou, H.; Yu, W.; Wang, P. Superpixel-Oriented Classification of PolSAR Images Using Complex-Valued Convolutional Neural Network Driven by Hybrid Data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10094–10111. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; Kwok, R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution. Int. J. Remote Sens. 1994, 15, 2299–2311. [Google Scholar] [CrossRef]
- Kersten, P.R.; Jong-Sen, L.; Ainsworth, T.L. Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering. IEEE Trans. Geosci. Remote Sens. 2005, 43, 519–527. [Google Scholar] [CrossRef]
- Ratha, D.; Pottier, E.; Bhattacharya, A.; Frery, A.C. A PolSAR Scattering Power Factorization Framework and Novel Roll-Invariant Parameter-Based Unsupervised Classification Scheme Using a Geodesic Distance. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3509–3525. [Google Scholar] [CrossRef]
- Wang, S.; Hua, W.; Liu, H.; Jiao, L. Unsupervised classification for polarimetric SAR images based on the improved CFSFDP algorithm. Int. J. Remote Sens. 2018, 40, 3154–3178. [Google Scholar] [CrossRef]
- Zhong, N.; Yang, W.; Cherian, A.; Yang, X.; Xia, G.-S.; Liao, M. Unsupervised Classification of Polarimetric SAR Images via Riemannian Sparse Coding. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5381–5390. [Google Scholar] [CrossRef]
- Conradsen, K.; Nielsen, A.A.; Schou, J.; Skriver, H. A test statistic in the complex wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 4–19. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Hong, Z.; Chao, W.; Fan, W. Change Detection of Multilook Polarimetric SAR Images Using Heterogeneous Clutter Models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7483–7494. [Google Scholar] [CrossRef]
- Novak, L.M.; Owirka, G.J.; Netishen, C.M. Performance of a high-resolution polarimetric SAR automatic target recognition system. Linc. Lab. J. 1993, 6, 11–24. [Google Scholar]
- Cui, X.-C.; Su, Y.; Chen, S.-W. A Saliency Detector for Polarimetric SAR Ship Detection Using Similarity Test. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3423–3433. [Google Scholar] [CrossRef]
- Huang, X.; Huang, P.; Dong, L.; Song, H.; Yang, W. Saliency Detection Based on distance between patches in Polarimetric SAR Images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 4572–4575. [Google Scholar]
- Chen, S.-W.; Wang, X.-S.; Sato, M. Urban Damage Level Mapping Based on Scattering Mechanism Investigation Using Fully Polarimetric SAR Data for the 3.11 East Japan Earthquake. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6919–6929. [Google Scholar] [CrossRef]
- Jong-Sen, L.; Grunes, M.R.; Ainsworth, T.L.; Li-Jen, D.; Schuler, D.L.; Cloude, S.R. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2249–2258. [Google Scholar] [CrossRef]
- Ji, Y.; Sumantyo, J.T.S.; Chua, M.Y.; Waqar, M.M. Earthquake/Tsunami Damage Level Mapping of Urban Areas Using Full Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2296–2309. [Google Scholar] [CrossRef]
- Anfinsen, S.N.; Jenssen, R.; Eltoft, T. Spectral clustering of polarimetric SAR data with Wishart-derived distance measures. In Proceedings of the POLINSAR, Frascati, Italy, 22–26 January 2007. [Google Scholar]
- Yang, W.; Song, H.; Xia, G.-S.; López-Martínez, C. Dissimilarity measurements for processing and analyzing PolSAR data: A survey. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 1562–1565. [Google Scholar]
- Pan, T.; Yang, X.; Song, H.; Yang, W. Dissimilarity Measures in PolSAR Image Interpretation. Radio Eng. 2019, 49, 649–656. [Google Scholar] [CrossRef]
- Goodman, N. Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). Ann. Math. Stat. 1963, 34, 152–177. [Google Scholar] [CrossRef]
- Kong, J.A.; Swartz, A.A.; Yueh, H.A.; Novak, L.M.; Shin, R.T. Identification of Terrain Cover Using the Optimum Polarimetric Classifier. J. Electromagn. Waves Appl. 1988, 2, 171–194. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government printing office: New York, NY, USA, 1964. [Google Scholar]
- Wu, Y.; Ji, K.; Yu, W.; Su, Y. Region-based classification of polarimetric SAR images using Wishart MRF. IEEE Geosci. Remote Sens. Lett. 2008, 5, 668–672. [Google Scholar] [CrossRef]
- Silva, W.B.; Freitas, C.C.; Sant’Anna, S.J.S.; Frery, A.C. Classification of Segments in PolSAR Imagery by Minimum Stochastic Distances Between Wishart Distributions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1263–1273. [Google Scholar] [CrossRef] [Green Version]
- Vasile, G.; Ovarlez, J.P.; Pascal, F.; Tison, C. Coherency Matrix Estimation of Heterogeneous Clutter in High-Resolution Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1809–1826. [Google Scholar] [CrossRef]
- Yueh, S.; Kong, J.A.; Jao, J.; Shin, R.; Novak, L. K-distribution and polarimetric terrain radar clutter. J. Electromagn. Waves Appl. 1989, 3, 747–768. [Google Scholar] [CrossRef]
- Lee, J.; Schuler, D.; Lang, R.; Ranson, K. K-distribution for multi-look processed polarimetric SAR imagery. In Proceedings of the Geoscience and Remote Sensing Symposium, 1994. IGARSS’94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, International, Pasadena, CA, USA, 8–12 August 1994; pp. 2179–2181. [Google Scholar]
- Freitas, C.C.; Frery, A.C.; Correia, A.H. The polarimetric G distribution for SAR data analysis. Environmetrics 2005, 16, 13–31. [Google Scholar] [CrossRef]
- Bombrun, L.; Beaulieu, J.-M. Fisher distribution for texture modeling of polarimetric SAR data. Geosci. Remote Sens. Lett. IEEE 2008, 5, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; López-Martínez, C.; Chen, J.; Han, P. Statistical Modeling of Polarimetric SAR Data: A Survey and Challenges. Remote Sens. 2017, 9, 348. [Google Scholar] [CrossRef] [Green Version]
- Anfinsen, S.N. Statistical Analysis of Multilook Polarimetric Radar Images with the Mellin Transform. Ph.D. Thesis, University of Tromsø, Tromsø, Norway, 2010. [Google Scholar]
- Ontañón, S. An overview of distance and similarity functions for structured data. Artif. Intell. Rev. 2020, 53, 5309–5351. [Google Scholar] [CrossRef]
- Yang, L.; Jin, R. Distance Metric Learning: A Comprehensive Survey; Michigan State University Technical Report: East Lansing, MI, USA, 2006. [Google Scholar]
- Zerzucha, P.; Walczak, B. Concept of (dis)similarity in data analysis. TrAC Trends Anal. Chem. 2012, 38, 116–128. [Google Scholar] [CrossRef]
- Cha, S.-H. Comprehensive survey on distance/similarity measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 2007, 1, 300–307. [Google Scholar]
- Deledalle, C.-A.; Denis, L.; Tupin, F.; Reigber, A.; Jager, M. NL-SAR: A Unified Nonlocal Framework for Resolution-Preserving (Pol)(In)SAR Denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2021–2038. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Matrix Analysis and Applications; Tsinghua University Press: Beijing, China, 2004. [Google Scholar]
- Baraniuk, R.; Davenport, M.A.; Duarte, M.F.; Hegde, C. An Introduction to Compressive Sensing. Available online: http://legacy.cnx.org/content/col11133/1.5/ (accessed on 22 September 2022).
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Tsagkarakis, N.; Markopoulos, P.P.; Sklivanitis, G.; Pados, D.A. L1-Norm Principal-Component Analysis of Complex Data. IEEE Trans. Signal Process. 2018, 66, 3256–3267. [Google Scholar] [CrossRef] [Green Version]
- Hänsch, R.; Hellwich, O. Skipping the real world: Classification of PolSAR images without explicit feature extraction. ISPRS J. Photogramm. Remote Sens. 2018, 140, 122–132. [Google Scholar] [CrossRef]
- Alonso-Gonzalez, A.; Lopez-Martinez, C.; Salembier, P. Filtering and Segmentation of Polarimetric SAR Data Based on Binary Partition Trees. IEEE Trans. Geosci. Remote Sens. 2012, 50, 593–605. [Google Scholar] [CrossRef]
- Thaj, T.; Viterbo, E. Low Complexity Iterative Rake Detector for Orthogonal Time Frequency Space Modulation. In Proceedings of the IEEE Wireless Communications and Networking Conference, Seoul, Republic of Korea, 25–28 May 2020. [Google Scholar]
- Qin, F.; Guo, J.; Lang, F. Superpixel Segmentation for Polarimetric SAR Imagery Using Local Iterative Clustering. IEEE Geosci. Remote Sens. Lett. 2015, 12, 13–17. [Google Scholar] [CrossRef]
- Hou, B.; Yang, C.; Ren, B.; Jiao, L. Decomposition-Feature-Iterative-Clustering-Based Superpixel Segmentation for PolSAR Image Classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1239–1243. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, T.; Shang, F.; Liu, Y.; Lv, D.; Yang, S. Deep Fuzzy Graph Convolutional Networks for PolSAR Imagery Pixelwise Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 504–514. [Google Scholar] [CrossRef]
- Yin, Q.; Hong, W.; Zhang, F.; Pottier, E. Optimal Combination of Polarimetric Features for Vegetation Classification in PolSAR Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3919–3931. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, F.; Yin, Q.; Li, H.-C. Robust Weighting Nearest Regularized Subspace Classifier for PolSAR Imagery. IEEE Signal Process. Lett. 2019, 26, 1496–1500. [Google Scholar] [CrossRef]
- Ren, B.; Hou, B.; Chanussot, J.; Jiao, L. Modified Tensor Distance-Based Multiview Spectral Embedding for PolSAR Land Cover Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2095–2099. [Google Scholar] [CrossRef]
- Lin, L.-Q.; Song, H.; Huang, P.-P.; Yang, W.; Xu, X. Unsupervised classification of PolSAR data using large scale spectral clustering. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2814–2817. [Google Scholar]
- Dabboor, M.; Yackel, J.; Hossain, M.; Braun, A. Comparing matrix distance measures for unsupervised POLSAR data classification of sea ice based on agglomerative clustering. Int. J. Remote Sens. 2012, 34, 1492–1505. [Google Scholar] [CrossRef]
- Song, H.; Yang, W.; Xu, X.; Liao, M. Unsupervised PolSAR Imagery Classification Based On Jensen-Bregman LogDet Divergence. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014. [Google Scholar]
- Wang, Y.-H.; Han, C.-Z. PolSAR Image Segmentation by Mean Shift Clustering in the Tensor Space. Acta Autom. Sin. 2010, 36, 798–806. [Google Scholar] [CrossRef]
- Alonso-González, A. Multidimensional and Temporal SAR Data Representation and Processing Based on Binary Partition Trees; Universitat Politècnica de Catalunya: Barcelona, Spain, 2014. [Google Scholar]
- Pham, M.-T. Fusion of Polarimetric Features and Structural Gradient Tensors for VHR PolSAR Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3732–3742. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lai, X.; Xie, Y.; Qu, Y.; Li, C. Geometry-Aware Discriminative Dictionary Learning for PolSAR Image Classification. Remote Sens. 2021, 13, 1218. [Google Scholar] [CrossRef]
- Moakher, M. On the Averaging of Symmetric Positive-Definite Tensors. J. Elast. 2006, 82, 273–296. [Google Scholar] [CrossRef]
- Moakher, M. A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices. SIAM J. Matrix Anal. Appl. 2005, 26, 735–747. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yang, W.; Song, H.; Huang, P. Polarimetric SAR Image Classification Using Geodesic Distances and Composite Kernels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1606–1614. [Google Scholar] [CrossRef]
- Cherian, A.; Sra, S.; Banerjee, A.; Papanikolopoulos, N. Jensen-Bregman LogDet divergence with application to efficient similarity search for covariance matrices. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2161–2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Liu, X.; Zhan, Z.; Niu, G.; Meen, T.-H. Hilbert–Schmidt Independence Criterion Regularization Kernel Framework on Symmetric Positive Definite Manifolds. Math. Probl. Eng. 2021, 2021, 2402292. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Niu, G. Mixed Region Covariance Discriminative Learning for Image Classification on Riemannian Manifolds. Math. Probl. Eng. 2019, 2019, 1261398. [Google Scholar] [CrossRef] [Green Version]
- Coelho, D.F.G.; Cintra, R.J.; Frery, A.C.; Dimitrov, V.S. Fast matrix inversion and determinant computation for Polarimetric Synthetic Aperture Radar. Comput. Geosci. 2018, 119, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Ratha, D.; De, S.; Celik, T.; Bhattacharya, A. Change Detection in Polarimetric SAR Images Using a Geodesic Distance between Scattering Mechanisms. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1066–1070. [Google Scholar] [CrossRef]
- An, W.; Zhang, W.; Yang, J.; Hong, W.; Cao, F. On the Similarity Parameter Between Two Targets for the Case of Multi-Look Polarimetric SAR. Chin. J. Electron. 2009, 18, 545–550. [Google Scholar]
- Ratha, D.; Bhattacharya, A.; Frery, A.C. Unsupervised Classification of PolSAR Data Using a Scattering Similarity Measure Derived From a Geodesic Distance. IEEE Geosci. Remote Sens. Lett. 2018, 15, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Sun, J.; Xu, Z. A Graph-Based Semisupervised Deep Learning Model for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2116–2132. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, H.; Qin, X. Classification of Polarimetric SAR Image Based on the RBF Neural Network. Mod. Radar. 2013, 35, 24–27. [Google Scholar]
- Liu, H.; Wang, S.; Wang, R.; Fei, S.; Zhang, E.; Yang, S.; Jiao, L. A framework for classification of urban areas using polarimetric SAR images integrating color features and statistical model. J. Infrared Millim. Waves 2016, 35, 398–406. [Google Scholar] [CrossRef]
- Harant, O.; Bombrun, L.; Gay, M.; Fallourd, R.; Trouvé, E.; Tupin, F. Segmentation and Classification of Polarimetric SAR Data based on the KummerU Distribution. In Proceedings of the 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 26–30 January 2009. [Google Scholar]
- Gui, G.; Gongtao, S.; Gangyao, K. Statistical Modeling of SAR Images: Models and Applications; National Defense Industry Press: Beijing, China, 2013. [Google Scholar]
- Wanying, S.; Ming, L.; Peng, Z.; Yan, W.; Lu, J.; Lin, A. The WGΓ Distribution for Multilook Polarimetric SAR Data and Its Application. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2056–2060. [Google Scholar] [CrossRef]
- Liu, C.; Li, H.-C.; Sun, X.; Emery, W.J. H Distribution for Multilook Polarimetric SAR Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 489–493. [Google Scholar] [CrossRef]
- Cao, F.; Hong, W.; Wu, Y.; Pottier, E. An Unsupervised Segmentation With an Adaptive Number of Clusters Using the SPAN/H/α/A Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3454–3467. [Google Scholar] [CrossRef]
- Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, W. Superpixel-Based Classification with an Adaptive Number of Classes for Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 907–924. [Google Scholar] [CrossRef]
- Lang, F.; Yang, J.; Li, D. Adaptive-Window Polarimetric SAR Image Speckle Filtering Based on a Homogeneity Measurement. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5435–5446. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, H.; Luo, T.; Qin, X.; Zhou, S.; Ji, K. A Fast Superpixel Segmentation Algorithm for PolSAR Images Based on Edge Refinement and Revised Wishart Distance. Sensors 2016, 16, 1687. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Ban, Y.; Wang, W.; Su, Y. Adaptive Superpixel Generation for Polarimetric SAR Images with Local Iterative Clustering and SIRV Model. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3115–3131. [Google Scholar] [CrossRef]
- Trouve, N.; Colin-Koeniguer, E. SIRV based Distance for Polarimetric SAR Image Segmentation. In Proceedings of the EUSAR, Aachen, Germany, 7–10 June 2010; pp. 489–492. [Google Scholar]
- Xiang, D.; Wang, W.; Tang, T.; Guan, D.; Quan, S.; Liu, T.; Su, Y. Adaptive Statistical Superpixel Merging with Edge Penalty for PolSAR Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2412–2429. [Google Scholar] [CrossRef]
- Wang, W.; Xiang, D.; Ban, Y.; Zhang, J.; Wan, J. Superpixel Segmentation of Polarimetric SAR Images Based on Integrated Distance Measure and Entropy Rate Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4045–4058. [Google Scholar] [CrossRef]
- Gil, M.; Alajaji, F.; Linder, T. Rényi divergence measures for commonly used univariate continuous distributions. Inf. Sci. 2013, 249, 124–131. [Google Scholar] [CrossRef]
- Frery, A.C.; Nascimento, A.D.C.; Cintra, R.J. Analytic Expressions for Stochastic Distances Between Relaxed Complex Wishart Distributions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Xu, G.; Meng, H.; Wang, M. Progressive neighbors pursuit for radar images classification. Appl. Soft Comput. 2021, 109, 107194. [Google Scholar] [CrossRef]
- Bouhlel, N.; Meric, S. Multilook Polarimetric SAR Change Detection Using Stochastic Distances Between Matrix-Variate Gd0 Distributions. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6823–6843. [Google Scholar] [CrossRef]
- Dabboor, M.; Collins, M.J.; Karathanassi, V.; Braun, A. An Unsupervised Classification Approach for Polarimetric SAR Data Based on the Chernoff Distance for Complex Wishart Distribution. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4200–4213. [Google Scholar] [CrossRef]
- Dabboor, M.; Howell, S.; Shokr, M.; Yackel, J. The Jeffries–Matusita distance for the case of complex Wishart distribution as a separability criter. Int. J. Remote Sens. 2014, 35, 6859–6873. [Google Scholar] [CrossRef]
- Werner, E.M. Rényi divergence and Lp-affine surface area for convex bodies. Adv. Math. 2012, 230, 1040–1059. [Google Scholar] [CrossRef] [Green Version]
- Van Erven, T.; Harremoës, P. Rényi divergence and majorization. In Proceedings of the IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010. [Google Scholar]
- Van Erven, T.; Harremoes, P. Rényi Divergence and Kullback-Leibler Divergence. IEEE Trans. Inf. Theory 2014, 60, 3797–3820. [Google Scholar] [CrossRef] [Green Version]
- Negri, R.G.; da Silva, E.A.; Casaca, W. Inducing Contextual Classifications with Kernel Functions Into Support Vector Machines. IEEE Geosci. Remote Sens. Lett. 2018, 15, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Negri, R.G.; Casaca, W.C.O.; Silva, E.A. Region-Based Classification of PolSAR Data Through Kernel Methods and Stochastic Distances. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Lecture Notes in Computer Science: Valparaíso, Chile, 2018; pp. 433–440. [Google Scholar]
- Kailath, T. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans. Commun. 1967, 15, 52–60. [Google Scholar] [CrossRef]
- Johnson, D.H.; Sinanovi´c, S. Symmetrizing the Kullback-Leibler Distance; Department of Electrical and Computer Engineering, Rice University: Houston, TX, USA, 2001; pp. 1–10. [Google Scholar]
- Lee, K.Y.; Bretschneider, T.R. Derivation of separability measures based on central complex Gaussian and Wishart distributions. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 3740–3743. [Google Scholar]
- Anfinsen, S.N.; Doulgeris, A.P.; Eltoft, T. Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3795–3809. [Google Scholar] [CrossRef]
- Yin, Q.; Cheng, J.; Zhang, F.; Zhou, Y.; Shao, L.; Hong, W. Interpretable POLSAR Image Classification Based on Adaptive-Dimension Feature Space Decision Tree. IEEE Access 2020, 8, 173826–173837. [Google Scholar] [CrossRef]
- Nie, Y.; Zeng, Q.; Zhang, H.; Wang, Q. Building Damage Detection Based on OPCE Matching Algorithm Using a Single Post-Event PolSAR Data. Remote Sens. 2021, 13, 1146. [Google Scholar] [CrossRef]
- Dong, H.; Xu, X.; Sui, H.G.; Xu, F.; Liu, J.Y. Copula-Based Joint Statistical Model for Polarimetric Features and Its Application in PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5777–5789. [Google Scholar] [CrossRef]
- Bellet, A.; Habrard, A.; Sebban, M. Metric Learning. Synth. Lect. Artif. Intell. Mach. Learn. 2015, 9, 1–139. [Google Scholar]
- Deledalle, C.-A.; Denis, L.; Poggi, G.; Tupin, F.; Verdoliva, L. Exploiting Patch Similarity for SAR Image Processing: The nonlocal paradigm. IEEE Signal Process. Mag. 2014, 31, 69–78. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 2, 49–55. [Google Scholar]
- Shah Hosseini, R.; Entezari, I.; Homayouni, S.; Motagh, M.; Mansouri, B. Classification of polarimetric SAR images using Support Vector Machines. Can. J. Remote Sens. 2014, 37, 220–233. [Google Scholar] [CrossRef]
- Paladini, R.; Martorella, M.; Berizzi, F. Classification of Man-Made Targets via Invariant Coherency-Matrix Eigenvector Decomposition of Polarimetric SAR/ISAR Images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3022–3034. [Google Scholar] [CrossRef]
- Gou, S.; Li, D.; Hai, D.; Chen, W.; Du, F.; Jiao, L. Spectral Clustering with Eigenvalue Similarity Metric Method for POL-SAR Image Segmentation of Land Cover. J. Geogr. Inf. Syst. 2018, 10, 150–164. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Liu, M.; Wang, Y.F.; Gao, H. Learning a Mahalanobis Distance-Based Dynamic Time Warping Measure for Multivariate Time Series Classification. IEEE Trans. Cybern. 2016, 46, 1363–1374. [Google Scholar] [CrossRef]
- Moen, M.A.N.; Anfinsen, S.N.; Doulgeris, A.P.; Renner, A.H.H.; Gerland, S. Assessing polarimetric SAR sea-ice classifications using consecutive day images. Ann. Glaciol. 2017, 56, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Nie, F.; Zhang, C. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognit. 2008, 41, 3600–3612. [Google Scholar] [CrossRef]
- Kaya, M.; Bilge, H.Ş. Deep Metric Learning: A Survey. Symmetry 2019, 11, 1066. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Jia, Y.; Yin, Q.; Zhou, Y.; Zhang, F. Metric Learning Based Fine-Grained Classification for PolSAR Imagery. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 716–719. [Google Scholar]
- Liu, H.; Luo, R.; Shang, F.; Meng, X.; Gou, S.; Hou, B. Semi-Supervised Deep Metric Learning Networks for Classification of Polarimetric SAR Data. Remote Sens. 2020, 12, 1593. [Google Scholar] [CrossRef]
- Tan, X.; Li, M.; Zhang, P.; Wu, Y.; Song, W. Deep Triplet Complex-Valued Network for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10179–10196. [Google Scholar] [CrossRef]
- Yang, C.; Hou, B.; Chanussot, J.; Hu, Y.; Ren, B.; Wang, S.; Jiao, L. N-Cluster Loss and Hard Sample Generative Deep Metric Learning for PolSAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Schaaf, J.W. Fish and Shrink. A next step towards efficient case retrieval in large scaled case bases. In Proceedings of the European Workshop on Advances in Case-Based Reasoning, Lausanne, Switzerland, 14–16 November 1996; pp. 362–376. [Google Scholar]
- Qin, X.; Yu, W.; Wang, P.; Chen, T.; Zou, H. Superpixel Generation for PolSAR Images with Global Weighted Least-Squares Filtering and Linear Spectral Clustering. In Proceedings of the IEEE 4th International Conference on Signal and Image Processing, Wuxi, China, 19–21 July 2019; pp. 891–895. [Google Scholar]
- Li, M.; Zou, H.; Qin, X.; Dong, Z.; Sun, L.; Wei, J. Efficient Superpixel Generation for Polarimetric SAR Images with Cross-Iteration and Hexagonal Initialization. Remote Sens. 2022, 14, 2914. [Google Scholar] [CrossRef]
- Songgui, W.; Mixia, W.; Zhongzhen, J. Matrix Inequality; Science Press: Beijing, China, 2006. [Google Scholar]
Category | Name | Notations | |
---|---|---|---|
Single-Look Data | Multi-Look Data | ||
Objects | Pixels | , | |
Pixel sets | , | , | |
Patch pair | |||
Class PDFs | , , | , , | |
Distances | Inter-pixel distance | ||
Pixel-set/class distance | , | , | |
Inter-set/class distance | , | , | |
Inter-patch distance |
Category | Name | Expression | Reference |
---|---|---|---|
Norm Distances for Polarimetric Matrices | Manhattan Distance | [12] | |
Euclidean Distance | [12] | ||
Norm Distances for Diagonal Elements | Diagonal Euclidean Distance | [48] | |
Normalized Diagonal Euclidean Distance | [49] | ||
Normalized Diagonal Manhattan Distance | [51] | ||
Diagonal Revised Wishart Distance | [49] | ||
Diagonal Relative Distance | [49] | ||
Norm Distances for Features | Feature Euclidean Distance | [52,53,54] | |
Weighted Feature Euclidean Distance | [55] | ||
Modified Tensor Distance | [56] |
Name | Expression | Reference |
---|---|---|
Gaussian Distance | ; | [28] |
Wishart Distance | ; | [2,11] |
Symmetric Wishart Distance | [24] | |
Distance | [9,14,75] | |
Distance | [76,77] | |
KummerU Distance | [78] |
Name | Expression | Reference |
---|---|---|
Bartlett Distance | [12] | |
Revised Wishart Distance (RWD) | [12] | |
Symmetric RWD | [24] | |
SIRV Distance | [32,86] | |
Symmetric SIRV Distance | [86,87] |
Name | Expression | Reference |
---|---|---|
KL divergence | [91] | |
KL Distance | [91] | |
(Original) Rényi Distance | [93] | |
(Modified) Rényi Distance | [91] | |
Bhattacharyya Distance | [91] | |
Hellinger Distance | [91] | |
Chernoff Distance | [94] | |
JM Distance | [95] |
Name | Expression | Reference |
---|---|---|
KL Distance | [91] | |
(Modified) Rényi Distance | [91] | |
Bhattacharyya Distance | [91] | |
Hellinger Distance | [91] | |
Chernoff Distance | [94] | |
JM Distance | [95] |
Distance | Expression | Reference | Properties | Characteristics | ||||
---|---|---|---|---|---|---|---|---|
Category | Name | P1 | P2 | P3 | P4 | |||
Norm Distances | Manhattan Distance | (16) | [12] | √ | √ | √ | √ | Defined on all elements of the data. Often leads to unsatisfactory results (possibly because their structures are quite different from the manifold of PolSAR data). |
Euclidean Distance | (18) | [12] | √ | √ | √ | √ | ||
Diagonal Euclidean (DE) Distance | (19) | [48] | √ | √ | √ | √ | Defined only on matrix diagonal elements; Discard some information while improving computation efficiency; The value ranges of NDE and NDM distances are and [0, 1], respectively. | |
Normalized DE (NDE) Distance | (21) | [49] | √ | √ | √ | ○ | ||
Normalized Diagonal Manhattan (NDM) Distance | (22) | [51] | √ | √ | √ | ○ | ||
Diagonal Revised Wishart Distance | (26) | [49] | √ | × | √ | ○ | Simplified revised Wishart distance; The value range is [0, 4q]. | |
Diagonal Relative Distance | (29) | [49] | √ | √ | √ | ○ | Related to the ratio of the corresponding diagonal elements. | |
Feature Euclidean (FE) Distance | (30) | [52,53,54] | √ | √ | √ | √ | Defined on features that represent more refined PolSAR information; Often superior to the norm distances on original data. | |
Weighted FE Distance | (31) | [55] | √ | √ | √ | √ | ||
Modified Tensor Distance | (32) | [56] | √ | √ | √ | √ | ||
Geodesic Distances | Affine Invariant Riemannian Metric | (34) | [60,61,62] | √ | √ | √ | ○ | Defined on the HPSD manifold of PolSAR image data or features; Requires matrix logarithm and inversion; Time-consuming. |
Log-Euclidean Riemannian Metric | (37) | [4,62] | √ | √ | √ | ○ | Equivalent to Euclidean distance of matrices after logarithmic transformation; More efficient than AIRM. | |
Jensen-Bregman LogDet Divergence | (39) | [59,67] | √ | √ | √ | × | Equivalent to the Bartlett distance; Simple and high-efficiency; The square root of JBLD meets the triangle inequality property [67]. | |
Cosine Geodesic Distance | (40) | [13,72,74] | √ | √ | √ | × | Angle between the data vectors; Omit the amplitude information of data; Scale-invariant. | |
ML Distances | Gaussian Distance | (43) | [28] | × | × | × | × | For single-look data. The earliest ML distance for PolSAR data; |
Wishart Distance | (46) | [2,11] | × | × | × | × | For multi-look data; Widely used. | |
Symmetric Wishart Distance | (47) | [24] | × | × | √ | × | Symmetric version of Wishart distance. | |
Distance | (52) | [9,14,75] | × | × | × | × | Generalizations of Wishart distance; Take heterogeneous texture into account and suitable for heterogeneous PolSAR image data; Relatively complicated expression and more time-consuming. | |
Distance | (54) | [76,77] | × | × | × | × | ||
KummerU Distance | (57) | [78] | × | × | × | × | ||
GLRT Distances | Bartlett Distance | (67) | [12,16] | √ | √ | √ | × | Equivalent to the JBLD for Wishart distribution. |
Revised Wishart Distance (RWD) | (74) | [12] | √ | √ | × | × | Equivalent to the KL divergence for Wishart distribution. | |
Symmetric RWD | (74) | [24] | √ | √ | √ | × | Equivalent to the KL distance for Wishart distribution. | |
SIRV Distance | (80) | [32,86] | √ | × | √ | ○ | For single-look data; The NCM of each pixel is required in advance; Speckle influence is alleviated by using neighborhood data; Texture difference of data is ignored. | |
Symmetric SIRV Distance | (81) | [86] | √ | × | √ | ○ | Symmetric version of SIRV Distance. | |
Stochastic Distances | -KL Distance | Table 6 | [91] | √ | √ | √ | × | Equivalent to RWD when n = 1. |
-Bhattacharyya Distance | [91] | √ | √ | √ | × | Equivalent to Bartlett distance or JBLD when n = 1. | ||
-Hellinger Distance | [91] | √ | √ | √ | × | Can be easily transformed from Bhattacharyya distance. | ||
-(Modifed) Rényi Distance | [91] | √ | √ | √ | × | Generalization of KL, Bhattacharyya, and Chernoff distances; An appropriate order is required in the application. | ||
-Chernoff Distance | [94] | √ | √ | √ | × | Generalization of KL and Bhattacharyya distances; An appropriate order is required in the application. | ||
-JM Distance | [95] | √ | √ | √ | × | Equivalent to Hellinger Distance. | ||
-KL Distance | (90) | [93] | √ | √ | √ | × | Generalization of Wishart stochastic distances; More accurate than Wishart distance for heterogeneous data; Distribution parameters need to be estimated in advance; Complicated expressions; Calculation is time-consuming. | |
-Rényi Distance | See [93] | [93] | √ | √ | √ | × | ||
-Bhattacharyya Distance | [93] | √ | √ | √ | × | |||
-Hellinger Distance | [93] | √ | √ | √ | × | |||
JM Distance of Features | (91) | [105,106] | √ | √ | √ | × | Assume the feature vectors follow the Gaussian distribution. | |
Discrete KL Distance of Features | (92) | [107] | √ | √ | √ | × | For each scalar feature; Replace PDFs by histograms. | |
Inter-Patch Distances | Inter-Patch Bartlett Distance | (96) | [5,43] | √ | √ | √ | × | For multi-look data; Equal to the sum of inter-pixel Bartlett distances of all pixel pairs. |
Inter-Patch SIRV Distance | (99) | [3] | √ | √ | √ | ○ | For single-look data; The NCM of each pixel is required in advance; Speckle influence is alleviated using neighborhood data; The contribution of texture can be added. | |
Distances based on metric learning | Feature Mahalanobis Distance | (101) | [23] | √ | √ | √ | √ | Generalization of weighted feature Euclidean distance; Equal to Euclidean distance of the features after a linear transformation. |
Deep metric learning Distance | Network | [118,119,120,121] | Determined by the given neural network | Use deep network to implicitly represent the distance between data; Labeled training samples are required; Network structure, loss function, and sample selection are important factors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Zhang, Y.; Li, Y.; Cheng, Y.; Yu, W.; Wang, P.; Zou, H. Distance Measures of Polarimetric SAR Image Data: A Survey. Remote Sens. 2022, 14, 5873. https://doi.org/10.3390/rs14225873
Qin X, Zhang Y, Li Y, Cheng Y, Yu W, Wang P, Zou H. Distance Measures of Polarimetric SAR Image Data: A Survey. Remote Sensing. 2022; 14(22):5873. https://doi.org/10.3390/rs14225873
Chicago/Turabian StyleQin, Xianxiang, Yanning Zhang, Ying Li, Yinglei Cheng, Wangsheng Yu, Peng Wang, and Huanxin Zou. 2022. "Distance Measures of Polarimetric SAR Image Data: A Survey" Remote Sensing 14, no. 22: 5873. https://doi.org/10.3390/rs14225873
APA StyleQin, X., Zhang, Y., Li, Y., Cheng, Y., Yu, W., Wang, P., & Zou, H. (2022). Distance Measures of Polarimetric SAR Image Data: A Survey. Remote Sensing, 14(22), 5873. https://doi.org/10.3390/rs14225873