A Novel Method for Detecting and Delineating Coppice Trees in UAV Images to Monitor Tree Decline
Abstract
:1. Introduction
- Delineating broad-leaved oak tree crowns, mostly in coppice form, using a new edge detection method.
- Retrieving the height and area of the delineated canopies.
- Assessing the correlation of textural information with tree decline severity.
2. Materials and Methods
2.1. Study Sites and Data
2.1.1. Field Data
2.1.2. UAV-RGB Data
2.2. Methods
2.2.1. Algorithm Inputs
2.2.2. Classification
2.2.3. Multiscale Detection
2.2.4. Edge Sharpening
2.2.5. The SCOR Parameter Thresholding
2.2.6. Crown Boundaries
- The polygon must be the smallest convex polygon that can be fitted,
- An area larger than the value is determined as the smallest area (this threshold is experimentally determined for each plot).
- There must be at least one local maximum within the polygon.
- The sides should be possibly smooth.
2.2.7. Tree Height and Crown Area
2.2.8. Texture Analysis
2.3. Evaluation
3. Results
3.1. Individual Tree Detection and Delineation
3.2. The Factors Affecting the Performance of the Algorithm
3.3. Comparison of the Suggested Method with the Common Methods of Crown Delineation
3.4. Tree Height and Crown Area
3.5. Texture Analysis
4. Discussion
4.1. Comparison of the Suggested Method with the Common Methods of Crown Delineation
4.2. Investigating the Factors Affecting the Performance of the Algorithm
4.3. The Accuracy of Tree Height
4.4. The Potential of Canopy Texture to Assess Tree Decline Severity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fakhri, S.A.; Latifi, H. A Consumer Grade UAV-Based Framework to Estimate Structural Attributes of Coppice and High Oak Forest Stands in Semi-Arid Regions. Remote Sens. 2021, 13, 4367. [Google Scholar] [CrossRef]
- Pourhashemi, M.; Sadeghi, S.M.M. A review on ecological causes of oak decline phenomenon in forests of Iran. Ecol. Iran. For. 2020, 8, 148–164. [Google Scholar]
- Erfanifard, Y.; Mouselo, M. Assessment of Crown Measurement Techniques in Coppice Trees of Zagros Forests by UltraCam-D Aerial Imagery. For. Wood Prod. 2014, 66, 413–426. [Google Scholar]
- Fallah, A.; Haidari, M. Investigation of Oak decline in diameter classes in Sarab-Kazan forests of Ilam. Iran. J. For. 2018, 9, 499–510. [Google Scholar]
- Haidari, M.; Pourhashemi, M.; Alizadeh, T.; Hedayateypour, S.M.K. The effect of forest structure on some physical and chemical soil properties in the forests stands of Kurdistan province. For. Wood Prod. 2022, 74, 469–483. [Google Scholar]
- Finch, J.P.; Brown, N.; Beckmann, M.; Denman, S.; Draper, J. Index measures for oak decline severity using phenotypic descriptors. For. Ecol. Manag. 2021, 485, 118948. [Google Scholar] [CrossRef]
- Javan, F.D.; Samadzadegan, F.; Mehravar, S.; Toosi, A. A review on spatial quality assessment methods for evaluation of pan-sharpened satellite imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Raparelli, E.; Bajocco, S. A bibliometric analysis on the use of unmanned aerial vehicles in agricultural and forestry studies. Int. J. Remote Sens. 2019, 40, 9070–9083. [Google Scholar] [CrossRef]
- Xiang, T.-Z.; Xia, G.-S.; Zhang, L. Mini-unmanned aerial vehicle-based remote sensing: Techniques, applications, and prospects. IEEE Geosci. Remote Sens. Mag. 2019, 7, 29–63. [Google Scholar] [CrossRef] [Green Version]
- Garza, B.N.; Ancona, V.; Enciso, J.; Perotto-Baldivieso, H.L.; Kunta, M.; Simpson, C. Quantifying Citrus Tree Health Using True Color UAV Images. Remote Sens. 2020, 12, 170. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [Google Scholar] [CrossRef]
- Yu, K.; Hao, Z.; Post, C.J.; Mikhailova, E.A.; Lin, L.; Zhao, G.; Tian, S.; Liu, J. Comparison of Classical Methods and Mask R-CNN for Automatic Tree Detection and Mapping Using UAV Imagery. Remote Sens. 2022, 14, 295. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Shao, G.; Fei, S.; Miller, Z.; Hupy, J. Automated Inventory of Broadleaf Tree Plantations with UAS Imagery. Remote Sens. 2022, 14, 1931. [Google Scholar] [CrossRef]
- Chen, Y.; Hou, C.; Tang, Y.; Zhuang, J.; Lin, J.; He, Y.; Guo, Q.; Zhong, Z.; Lei, H.; Luo, S. Citrus Tree Segmentation from UAV Images Based on Monocular Machine Vision in a Natural Orchard Environment. Sensors 2019, 19, 5558. [Google Scholar] [CrossRef]
- Harikumar, A.; Bovolo, F.; Bruzzone, L. A Local Projection-Based Approach to Individual Tree Detection and 3-D Crown Delineation in Multistoried Coniferous Forests Using High-Density Airborne LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1168–1182. [Google Scholar] [CrossRef]
- Miraki, M.; Sohrabi, H.; Fatehi, P.; Kneubuehler, M. Individual tree crown delineation from high-resolution UAV images in broadleaf forest. Ecol. Inform. 2021, 61, 101207. [Google Scholar] [CrossRef]
- Birdal, A.C.; Avdan, U.; Türk, T. Estimating tree heights with images from an unmanned aerial vehicle. Geomat. Nat. Hazards Risk 2017, 8, 1144–1156. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Zarco-Tejada, P.J.; González-Dugo, V.; Moriondo, M.; Tozzini, L.; Palai, G.; Rallo, G.; Hornero, A.; Primicerio, J.; Gucci, R. High-resolution imagery acquired from an unmanned platform to estimate biophysical and geometrical parameters of olive trees under different irrigation regimes. PLoS ONE 2019, 14, e0210804. [Google Scholar] [CrossRef] [Green Version]
- Novotný, J.; Hanuš, J.; Lukeš, P.; Kaplan, V. Individual tree crowns delineation using local maxima approach and seeded region growing technique. In Proceedings of the Symposium GIS Ostrava, Ostrava, Czech Republic, 24–26 January 2011. [Google Scholar]
- Korpela, I.; Anttila, P.; Pitkänen, J. The performance of a local maxima method for detecting individual tree tops in aerial photographs. Int. J. Remote Sens. 2006, 27, 1159–1175. [Google Scholar] [CrossRef]
- Monnet, J.M.; Mermin, E.; Chanussot, J.; Berger, F. Tree top detection using local maxima filtering: A parameter sensitivity analysis. In Proceedings of the 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems (Silvilaser 2010), Freiburg, Germany, 14–17 September 2010. [Google Scholar]
- Pitkänen, J. Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods. Can. J. For. Res. 2001, 31, 832–844. [Google Scholar] [CrossRef]
- Pouliot, D.; King, D. Approaches for optimal automated individual tree crown detection in regenerating coniferous forests. Can. J. Remote Sens. 2005, 31, 255–267. [Google Scholar] [CrossRef]
- Pollock, R. The Automatic Recognition of Individual Trees in Aerial Images of Forests Based on a Synthetic Tree Crown Image Model. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1996. [Google Scholar]
- Gougeon, F.A. A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Can. J. Remote Sens. 1995, 21, 274–284. [Google Scholar] [CrossRef]
- Bunting, P.; Lucas, R. The delineation of tree crowns in Australian mixed species forests using hyperspectral Compact Airborne Spectrographic Imager (CASI) data. Remote Sens. Environ. 2006, 101, 230–248. [Google Scholar] [CrossRef]
- Lamar, W.R.; McGraw, J.B.; Warner, T.A. Multitemporal censusing of a population of eastern hemlock (Tsuga canadensis L.) from remotely sensed imagery using an automated segmentation and reconciliation procedure. Remote Sens. Environ. 2005, 94, 133–143. [Google Scholar] [CrossRef]
- Yancho, J.M.M. Individual tree detection in coastal western hemlock forests using remotely piloted aircraft system acquired digital aerial photogrammetric point clouds. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2019. [Google Scholar]
- Mohan, M.; Silva, C.A.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests 2017, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Khosravipour, A.; Skidmore, A.K.; Wang, T.; Isenburg, M.; Khoshelham, K. Effect of slope on treetop detection using a LiDAR Canopy Height Model. ISPRS J. Photogramm. Remote Sens. 2015, 104, 44–52. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, Z.; Tang, Y.; Qu, Y. Individual tree crown detection from high spatial resolution imagery using a revised local maximum filtering. Remote Sens. Environ. 2021, 258, 112397. [Google Scholar] [CrossRef]
- Pouliot, D.A.; King, D.J.; Bell, F.W.; Pitt, D.G. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ. 2002, 82, 322–334. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level. Remote Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef] [Green Version]
- Hamraz, H.; Contreras, M.A.; Zhang, J. A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Jaskierniak, D.; Lucieer, A.; Kuczera, G.; Turner, D.; Lane, P.; Benyon, R.; Haydon, S. Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests. ISPRS J. Photogramm. Remote Sens. 2020, 171, 171–187. [Google Scholar] [CrossRef]
- Yun, T.; Jiang, K.; Li, G.; Eichhorn, M.P.; Fan, J.; Liu, F.; Chen, B.; An, F.; Cao, L. Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach. Remote Sens. Environ. 2021, 256, 112307. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Jing, L.; Judah, A. Improving the efficiency and accuracy of individual tree crown delineation from high-density LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 145–155. [Google Scholar] [CrossRef]
- Jing, L.; Hu, B.; Li, J.; Noland, T.; Guo, H. Automated tree crown delineation from imagery based on morphological techniques. IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012066. [Google Scholar] [CrossRef]
- Wallace, L.; Sun, Q.C.; Hally, B.; Hillman, S.; Both, A.; Hurley, J.; Saldias, D.S.M. Linking urban tree inventories to remote sensing data for individual tree mapping. Urban For. Urban Green. 2021, 61, 127106. [Google Scholar] [CrossRef]
- Yin, D.; Wang, L. Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote Sens. Environ. 2019, 223, 34–49. [Google Scholar] [CrossRef]
- Hastings, J.H.; Ollinger, S.V.; Ouimette, A.P.; Sanders-DeMott, R.; Palace, M.W.; Ducey, M.J.; Sullivan, F.B.; Basler, D.; Orwig, D.A. Tree species traits determine the success of LiDAR-based crown mapping in a mixed temperate forest. Remote Sens. 2020, 12, 309. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, A.; Haga, C.; Matsui, T.; Machimura, T.; Hayashi, K.; Sugita, S.; Takagi, H. An end to end process development for UAV-SfM based forest monitoring: Individual tree detection, species classification and carbon dynamics simulation. Forests 2019, 10, 680. [Google Scholar] [CrossRef] [Green Version]
- Zaforemska, A.; Xiao, W.; Gaulton, R. Individual tree detection from UAV LiDAR data in a mixed species woodland. In Proceedings of the ISPRS Geospatial Week 2019, Enschede, The Netherlands, 10–14 June 2019. [Google Scholar]
- Koch, B.; Heyder, U.; Weinacker, H. Detection of Individual Tree Crowns in Airborne Lidar Data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Panagiotidis, D.; Abdollahnejad, A.; Surový, P.; Chiteculo, V. Determining tree height and crown diameter from high-resolution UAV imagery. Int. J. Remote Sens. 2017, 38, 2392–2410. [Google Scholar] [CrossRef]
- Wang, L.; Gong, P.; Biging, G.S. Individual Tree-Crown Delineation and Treetop Detection in High-Spatial-Resolution Aerial Imagery. Photogramm. Eng. Remote Sens. 2004, 70, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Tanhuanpää, T.; Saarinen, N.; Kankare, V.; Nurminen, K.; Vastaranta, M.; Honkavaara, E.; Karjalainen, M.; Yu, X.; Holopainen, M.; Hyyppä, J. Evaluating the Performance of High-Altitude Aerial Image-Based Digital Surface Models in Detecting Individual Tree Crowns in Mature Boreal Forests. Forests 2016, 7, 143. [Google Scholar] [CrossRef]
- Nuijten, R.J.G.; Coops, N.C.; Goodbody, T.R.H.; Pelletier, G. Examining the Multi-Seasonal Consistency of Individual Tree Segmentation on Deciduous Stands Using Digital Aerial Photogrammetry (DAP) and Unmanned Aerial Systems (UAS). Remote Sens. 2019, 11, 739. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Wang, Y.; Gan, M.; Zhang, J.; Teng, L.; Wang, K.; Shen, Z. Discrimination of Settlement and Industrial Area Using Landscape Metrics in Rural Region. Remote Sens. 2016, 8, 845. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Kattenborn, T.; Eichel, J.; Fassnacht, F. Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery. Sci. Rep. 2019, 9, 17656. [Google Scholar] [CrossRef] [Green Version]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Diez, Y.; Kentsch, S.; Fukuda, M.; Caceres, M.; Moritake, K.; Cabezas, M. Deep Learning in Forestry Using UAV-Acquired RGB Data: A Practical Review. Remote Sens. 2021, 13, 2837. [Google Scholar] [CrossRef]
- Brandt, M.; Tucker, C.J.; Kariryaa, A.; Rasmussen, K.; Abel, C.; Small, J.; Chave, J.; Rasmussen, L.V.; Hiernaux, P.; Diouf, A.A.; et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 2020, 587, 78–82. [Google Scholar] [CrossRef]
- Csillik, O.; Cherbini, J.; Johnson, R.; Lyons, A.; Kelly, M. Identification of Citrus Trees from Unmanned Aerial Vehicle Imagery Using Convolutional Neural Networks. Drones 2018, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Zortea, M.; Macedo, M.M.; Mattos, A.B.; Ruga, B.C.; Gemignani, B.H. Automatic citrus tree detection from UAV images based on convolutional neural networks. In Proceedings of the 31st Sibgrap/WIA—Conference on Graphics, Patterns and Images, SIBGRAPI, Rio de Janeiro, Brazil, 29 October–1 November 2018. [Google Scholar]
- Zhao, T.; Yang, Y.; Niu, H.; Wang, D.; Chen, Y. Comparing U-Net convolutional network with mask R-CNN in the performances of pomegranate tree canopy segmentation. In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII; SPIE: Bellingham, WA, USA, 2018. [Google Scholar]
- Iqbal, M.S.; Ali, H.; Tran, S.N.; Iqbal, T. Coconut trees detection and segmentation in aerial imagery using mask region-based convolution neural network. IET Comput. Vis. 2021, 15, 428–439. [Google Scholar] [CrossRef]
- Guirado, E.; Blanco-Sacristán, J.; Rodríguez-Caballero, E.; Tabik, S.; Alcaraz-Segura, D.; Martínez-Valderrama, J.; Cabello, J. Mask R-CNN and OBIA Fusion Improves the Segmentation of Scattered Vegetation in Very High-Resolution Optical Sensors. Sensors 2021, 21, 320. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Lin, L.; Post, C.J.; Mikhailova, E.A.; Li, M.; Chen, Y.; Yu, K.; Liu, J. Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN). ISPRS J. Photogramm. Remote. Sens. 2021, 178, 112–123. [Google Scholar] [CrossRef]
- Braga, J.R.; Peripato, V.; Dalagnol, R.; Ferreira, M.; Tarabalka, Y.; Aragão, L.E.; de Campos Velho, H.; Shiguemori, E.H.; Wagner, F.H. Tree Crown Delineation Algorithm Based on a Convolutional Neural Network. Remote Sens. 2020, 12, 1288. [Google Scholar] [CrossRef]
- Dai, W.; Yang, B.; Dong, Z.; Shaker, A. A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 144, 400–411. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A review. IEEE Geosci. Remote Sens. Mag. 2017, in press.
- Weinstein, B.G.; Marconi, S.; Bohlman, S.A.; Zare, A.; White, E.P. Cross-site learning in deep learning RGB tree crown detection. Ecol. Inform. 2020, 56, 101061. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Adão, T.; Hruška, J.; Peres, E.; Sousa, A.; Sousa, J.J. UAV-Based Automatic Detection and Monitoring of Chestnut Trees. Remote Sens. 2019, 11, 855. [Google Scholar] [CrossRef] [Green Version]
- Hassaan, O.; Nasir, A.K.; Roth, H.; Khan, M.F. Precision Forestry: Trees Counting in Urban Areas Using Visible Imagery based on an Unmanned Aerial Vehicle. IFAC-PapersOnLine 2016, 49, 16–21. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, M.; Yao, Y.; Zhang, L.; Lin, J. Use of UAV oblique imaging for the detection of individual trees in residential environments. Urban For. Urban Green. 2015, 14, 404–412. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Olmedo, G.F.; Ingram, B.; Bardeen, M. Detection and Segmentation of Vine Canopy in Ultra-High Spatial Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV): A Case Study in a Commercial Vineyard. Remote Sens. 2017, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Zhang, H.; Wang, F.; Lai, R. Extraction of Broad-Leaved Tree Crown Based on UAV Visible Images and OBIA-RF Model: A Case Study for Chinese Olive Trees. Remote Sens. 2022, 14, 2469. [Google Scholar] [CrossRef]
- Jing, J.; Liu, S.; Wang, G.; Zhang, W.; Sun, C. Recent advances on image edge detection: A comprehensive review. Neurocomputing 2022, 503, 259–271. [Google Scholar] [CrossRef]
- Dollár, P.; Zitnick, C.L. Fast edge detection using structured forests. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 2014; Volume 37, pp. 1558–1570. [Google Scholar]
- Peryanto, A.; Yudhana, A.; Umar, R. Convolutional Neural Network and Support Vector Machine in Classification of Flower Images. Khazanah Inform. J. Ilmu Kompʹût. dan Inform. 2022, 8. [Google Scholar] [CrossRef]
- Argamosa, R.J.L.; Paringit, E.C.; Quinton, K.R.; Tandoc, F.A.M.; Faelga, R.A.G.; Ibañez, C.A.G.; Posilero, M.A.V.; Zaragosa, G.P. Fully automated GIS-based individual tree crown delineation based on curvature values from a lidar derived canopy height model in a coniferous plantation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 563–569. [Google Scholar] [CrossRef]
- Bourgoin, C.; Betbeder, J.; Couteron, P.; Blanc, L.; Dessard, H.; Oszwald, J.; Le Roux, R.; Cornu, G.; Reymondin, L.; Mazzei, L.; et al. UAV-based canopy textures assess changes in forest structure from long-term degradation. Ecol. Indic. 2020, 115, 106386. [Google Scholar] [CrossRef] [Green Version]
- Humeau-Heurtier, A. Texture feature extraction methods: A survey. IEEE Access 2019, 7, 8975–9000. [Google Scholar] [CrossRef]
- Douss, R.; Farah, I.R. Extraction of individual trees based on Canopy Height Model to monitor the state of the forest. Trees For. People 2022, 8, 100257. [Google Scholar] [CrossRef]
- Nyamgeroh, B.B.; Groen, T.A.; Weir, M.J.; Dimov, P.; Zlatanov, T. Detection of forest canopy gaps from very high resolution aerial images. Ecol. Indic. 2018, 95, 629–636. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Wu, Z.; Wang, S.; Bryant, C.R.; Senthilnath, J.; Cunha, M.; Fu, Y.H. Integrating Spectral and Textural Information for Monitoring the Growth of Pear Trees Using Optical Images from the UAV Platform. Remote Sens. 2021, 13, 1795. [Google Scholar] [CrossRef]
- Yuan, W.; Wijewardane, N.; Jenkins, S.; Bai, G.; Ge, Y.; Graef, G.L. Early Prediction of Soybean Traits through Color and Texture Features of Canopy RGB Imagery. Sci. Rep. 2019, 9, 14089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, M.; Malekian, M.; Khodakarami, L. Forest losses and gains in Kurdistan province, western Iran: Where do we stand? Egypt. J. Remote Sens. Space Sci. 2017, 20, 51–59. [Google Scholar] [CrossRef]
- FAO. Guide for Country Reporting for Forest Resource Assessment (FRA) 2015. 2015. Available online: http://www.fao.org/forest-resources-assessment/past-assessments/fra-2015/en/ (accessed on 26 September 2022).
- Ghazanfari, H.; Namiranian, M.; Sobhani, H.; Mohajer, R.M. Traditional forest management and its application to encourage public participation for sustainable forest management in the northern Zagros Mountains of Kurdistan Province, Iran. Scand. J. For. Res. 2004, 19 (Suppl. 4), 65–71. [Google Scholar] [CrossRef]
- Jazirehi, M.; Ebrahimi Rostaghi, M. Silviculture in Zagros; University of Tehran Press: Tehran, Iran, 2003; 560p. [Google Scholar]
- Finch, J. PDI: Phenotypic Index Measures for Oak Decline Severity. R Package Version 0.4.2. 2021. Available online: https://CRAN.R-project.org/package=pdi (accessed on 20 August 2022).
- Agisoft. Agisoft Metashape User Manual: Professional Edition; Version 1.7; Agisoft: St. Petersburg, Russia, 2021; Available online: https://www.agisoft.com/downloads/user-manuals (accessed on 23 February 2021).
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Conners, R.W.; Harlow, C.A. A theoretical comparison of texture algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 1980, PAMI-2, 204–222. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Gómez-Moreno, H.; Maldonado-Bascón, S.; López-Ferreras, F.; Acevedo-Rodríguez, F.J.; Martín-Martín, P. Edge detection by using the support vector machines. Training 2001, 2, 3. [Google Scholar]
- Ren, X. Multi-scale improves boundary detection in natural images. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Lan, Z.; Liu, Y. Study on Multi-Scale Window Determination for GLCM Texture Description in High-Resolution Remote Sensing Image Geo-Analysis Supported by GIS and Domain Knowledge. ISPRS Int. J. Geo-Inf. 2018, 7, 175. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Triggs, B. Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions. IEEE Trans. Image Process. 2010, 19, 1635–1650. [Google Scholar] [PubMed] [Green Version]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In European Conference on Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Pons, X.; Padró, J.-C. An Operational Radiometric Correction Technique for Shadow Reduction in Multispectral UAV Imagery. Remote Sens. 2021, 13, 3808. [Google Scholar] [CrossRef]
- Krause, S.; Sanders, T.G.M.; Mund, J.-P.; Greve, K. UAV-Based Photogrammetric Tree Height Measurement for Intensive Forest Monitoring. Remote Sens. 2019, 11, 758. [Google Scholar] [CrossRef]
- Ganz, S.; Käber, Y.; Adler, P. Measuring Tree Height with Remote Sensing—A Comparison of Photogrammetric and LiDAR Data with Different Field Measurements. Forests 2019, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- Luoma, V.; Saarinen, N.; Wulder, M.A.; White, J.C.; Vastaranta, M.; Holopainen, M.; Hyyppä, J. Assessing Precision in Conventional Field Measurements of Individual Tree Attributes. Forests 2017, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, F.B.; Ducey, M.J.; Orwig, D.A.; Cook, B.; Palace, M.W. Comparison of lidar- and allometry-derived canopy height models in an eastern deciduous forest. For. Ecol. Manag. 2017, 406, 83–94. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Brancalion, P.H.S.; Laestadius, L.; Bennett-Curry, A.; Buckingham, K.; Kumar, C.; Moll-Rocek, J.; Vieira, I.C.G.; Wilson, S.J. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. AMBIO 2016, 45, 538–550. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.; Knapp, D.E.; Balaji, A.; Paez-Acosta, G. Automated mapping of tropical deforestation and forest degradation: CLASlite. J. Appl. Remote Sens. 2009, 3, 033543. [Google Scholar] [CrossRef]
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.-J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
Plot | Date and Time of Flight | Center Coordinate | Number of Reference Trees | Average Canopy Cover (%) | Amount of Shadow (%) | |
---|---|---|---|---|---|---|
Latitude | Longitude | |||||
N1 | 2 September 2019 2:16:12 PM | 34°15′42.00″ | 46°29′27.64″ | 346 | 32.31 | 25 |
N2 | 2 September 2019 4:04:58 PM | 34°13′27.83″ | 46°27′39.09″ | 79 | 22.44 | 75 |
N3 | 3 September 2019 9:50:20 AM | 34°13′30.55″ | 46°39′21.08″ | 302 | 33.44 | 75 |
N4 | 3 September 2019 12:02:00 PM | 34°21′52.87″ | 46°21′36.99″ | 99 | 35.00 | 50 |
C1 | 4 September 2019 12:40:04 PM | 32°08′26.17″ | 50°08′30.88″ | 195 | 37.78 | 50 |
C2 | 4 September 2019 4:33:58 PM | 32°09′18.02″ | 50°07′50.16″ | 62 | 35.66 | 50 |
C3 | 5 September 2019 9:47:04 AM | 31°54′25.17″ | 50°37′03.18″ | 97 | 30.31 | 100 |
C4 | 5 September 2019 12:39:34 PM | 31°52′58.34″ | 50°34′32.10″ | 42 | 28.57 | 50 |
C5 | 5 September 2019 5:02:32 PM | 31°35′34.22″ | 50°36′5.56″ | 83 | 38.16 | 75 |
C6 | 5 September 2019 7:02:58 PM | 31°36′59.24″ | 50°42′55.79″ | 97 | 35.72 | 75 |
S1 | 7 November 2019 9:11:34 PM | 29°51′16.03″ | 51°58′36.37″ | 156 | 38.70 | 75 |
S2 | 8 November 2019 12:25:46 AM | 29°35′28.56″ | 51°56′20.74″ | 133 | 33.48 | 75 |
S3 | 8 November 2019 3:44:44 AM | 29°24′37.79″ | 52°10′08.47″ | 100 | 15.48 | 75 |
S4 | 8 November 2019 9:06:24 PM | 29°24′50.62″ | 52°10′19.16″ | 100 | 14.26 | 50 |
S5 | 8 November 2019 10:58:42 PM | 29°30′16.51″ | 52°09′58.04″ | 191 | 20.46 | 50 |
S6 | 8 November 2019 11:39:50 PM | 29°29′11.79″ | 52°11′04.26″ | 195 | 25.05 | 25 |
VI | Equation | Name | Reference |
---|---|---|---|
GLI | (2G − R − B)/(2G + R + B) | Green leaf index | [86] |
VARI | (G − R)/(G + R − B) | Visible atmospherically resistant index | [87] |
NDTI | (R − G)/(R + G) | Normalized difference turbidity index water | [88] |
RGBVI | (GG) − (RB)/(GG) + (RB) | Red–green–blue vegetation index | [89] |
EXG | 2G − R − B | Excess of green | [90] |
Texture Feature | Equation | Reference |
---|---|---|
Mean | ∑∑iPi,j | [91] |
Variance | ∑∑(i − i)2 Pi,j | [91] |
Homogeneity | ∑∑Pi,j/(1 + (i − j)2) | [92] |
Contrast | ∑∑(i − j)2 Pi,j | [91] |
Dissimilarity | ∑∑i Pi,j|i − j| | [92] |
Entropy | ∑∑ Pi,jIg Pi,j | [91] |
Second Moment | ∑∑i Pi,j2 | [92] |
Site | Tree Count | FN | FP | TP | pr | rc | F-Score | Omission Error * | Commission Error ** | Correctly Detected Trees *** |
---|---|---|---|---|---|---|---|---|---|---|
N1 | 346 | 2 | 4 | 340 | 0.99 | 0.99 | 0.99 | 0.58 | 1.16 | 0.98 |
N2 | 79 | 4 | 6 | 69 | 0.92 | 0.95 | 0.93 | 5.48 | 8.00 | 0.87 |
N3 | 302 | 41 | 3 | 258 | 0.99 | 0.86 | 0.92 | 13.71 | 1.15 | 0.85 |
N4 | 99 | 3 | 3 | 93 | 0.97 | 0.97 | 0.97 | 3.13 | 3.13 | 0.94 |
C1 | 195 | 9 | 17 | 169 | 0.91 | 0.95 | 0.93 | 5.06 | 9.14 | 0.87 |
C2 | 62 | 9 | 2 | 51 | 0.96 | 0.85 | 0.90 | 15.00 | 3.77 | 0.82 |
C3 | 97 | 19 | 0 | 78 | 1.00 | 0.80 | 0.89 | 19.59 | 0.00 | 0.80 |
C4 | 42 | 2 | 2 | 38 | 0.95 | 0.95 | 0.95 | 5.00 | 5.00 | 0.90 |
C5 | 83 | 17 | 0 | 66 | 1.00 | 0.80 | 0.89 | 20.48 | 0.00 | 0.80 |
C6 | 97 | 0 | 26 | 71 | 0.73 | 1.00 | 0.85 | 0.00 | 26.80 | 0.73 |
S1 | 156 | 18 | 1 | 137 | 0.99 | 0.88 | 0.94 | 11.61 | 0.72 | 0.88 |
S2 | 133 | 17 | 0 | 116 | 1.00 | 0.87 | 0.93 | 12.78 | 0.00 | 0.87 |
S3 | 100 | 11 | 8 | 81 | 0.91 | 0.88 | 0.90 | 11.96 | 8.99 | 0.81 |
S4 | 100 | 3 | 12 | 85 | 0.88 | 0.97 | 0.92 | 3.41 | 12.37 | 0.85 |
S5 | 191 | 12 | 4 | 175 | 0.98 | 0.94 | 0.96 | 6.42 | 2.23 | 0.92 |
S6 | 195 | 5 | 6 | 184 | 0.97 | 0.97 | 0.97 | 2.65 | 3.16 | 0.94 |
Total | 1931 | 170 | 90 | 1671 | 0.95 | 0.91 | 0.93 | 9.23 | 5.11 | 0.87 |
Northern Plots | RMSE | Central Plots | RMSE | Southern Plots | RMSE |
---|---|---|---|---|---|
N1 | 0.84 | C1 | 1.69 | S1 | 1.23 |
N2 | 2.77 | C2 | 0.74 | S2 | 1.28 |
N3 | 0.56 | C3 | 0.3 | S3 | 2.15 |
N4 | 0.56 | C4 | 0.95 | S4 | 1.18 |
C5 | 2.72 | S5 | 0.84 | ||
C6 | 1.89 | S6 | 3.14 |
Northern Plots | RMSE | Central Plots | RMSE | Southern Plots | RMSE |
---|---|---|---|---|---|
N1 | 0.04 | C1 | 0.75 | S1 | 0.47 |
N2 | 0.14 | C2 | 0.67 | S2 | 0.86 |
N3 | 0.36 | C3 | 0.81 | S3 | 0.74 |
N4 | 0.81 | C4 | 0.89 | S4 | 0.34 |
C5 | 0.71 | S5 | 0.58 | ||
C6 | 0.12 | S6 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemi, M.; Latifi, H.; Pourhashemi, M. A Novel Method for Detecting and Delineating Coppice Trees in UAV Images to Monitor Tree Decline. Remote Sens. 2022, 14, 5910. https://doi.org/10.3390/rs14235910
Ghasemi M, Latifi H, Pourhashemi M. A Novel Method for Detecting and Delineating Coppice Trees in UAV Images to Monitor Tree Decline. Remote Sensing. 2022; 14(23):5910. https://doi.org/10.3390/rs14235910
Chicago/Turabian StyleGhasemi, Marziye, Hooman Latifi, and Mehdi Pourhashemi. 2022. "A Novel Method for Detecting and Delineating Coppice Trees in UAV Images to Monitor Tree Decline" Remote Sensing 14, no. 23: 5910. https://doi.org/10.3390/rs14235910
APA StyleGhasemi, M., Latifi, H., & Pourhashemi, M. (2022). A Novel Method for Detecting and Delineating Coppice Trees in UAV Images to Monitor Tree Decline. Remote Sensing, 14(23), 5910. https://doi.org/10.3390/rs14235910