Clutter Jamming Suppression for Airborne Distributed Coherent Aperture Radar Based on Prior Clutter Subspace Projection
Abstract
:1. Introduction
- (1)
- The different decorrelation characteristics of non-target components for the distributed radar system were analyzed and demonstrated with their structural covariance matrix.
- (2)
- To take advantage of different low-rank structures, a new adaptive processing scheme based on prior clutter subspace projection was proposed to suppress clutter and jamming separately, which improves the performance when training data are insufficient.
- (3)
- To eliminate the influence of varying clutter estimation on jamming suppression, the covariance matrix for inter-node processing was obtained with the mixture model of jamming, which avoids the repeated estimation of interference characteristics.
2. Signal Model
2.1. The Compressed Echo Model in Time Domain
2.2. The Space-Time Steering Vector for Distributed Radar
2.3. The Covariance Matrix of Non-Target Components
3. The Proposed Suppression Scheme for Airborne Distributed Radar
3.1. Mainlobe Jamming Separation Based on Prior Subspace Projection
3.2. Intra-Node Clutter Suppression
3.3. Inter-Node Mainlobe Jamming Suppression
Algorithm 1: The proposed adaptive suppression scheme. |
4. Numeric Simulation
4.1. Scenario A
4.2. Scenario B
5. Discussion
5.1. Inter-Node Narrow Band Assumption
5.2. Influence from Imprecise Prior Clutter Subspace
5.3. Covariance Accuracy after Clutter Suppression
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahlgren, G. Next Generation Radar Concept Definition Team Final Report; MIT Lincoln Laboratory: Lexington, MA, USA, 2003. [Google Scholar]
- Cuomo, K.; Coutts, S.; McHarg, J.; Pulsone, N.; Robey, F. Wideband Aperture Coherence Processing for Next Generation Radar (NexGen); Technical Report; Massachusetts Inst of Tech Lexington Lincoln Lab: Lexington, MA, USA, 2004. [Google Scholar]
- Coutts, S.; Cuomo, K.; McHarg, J.; Robey, F.; Weikle, D. Distributed coherent aperture measurements for next generation BMD radar. In Proceedings of the Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, MA, USA, 12–14 July 2006; pp. 390–393. [Google Scholar]
- Skolnik, M.I. Introduction to Radar Systems; McGraw-Hill Education: New York, NY, USA, 1980. [Google Scholar]
- Yang, Y.; Blum, R.S. Phase synchronization for coherent MIMO radar: Algorithms and their analysis. IEEE Trans. Signal Process. 2011, 59, 5538–5557. [Google Scholar] [CrossRef]
- Yang, X.; Yin, P.; Zeng, T. Time and phase synchronization for wideband distributed coherent aperture radar. In Proceedings of the IET International Radar Conference 2013, Xi’an, China, 14–16 April 2013. [Google Scholar]
- Wang, W.Q. Carrier Frequency Synchronization in Distributed Wireless Sensor Networks. IEEE Syst. J. 2015, 9, 703–713. [Google Scholar] [CrossRef]
- Wang, W.Q. Phase noise suppression in GPS-disciplined frequency synchronization systems. Fluct. Noise Lett. 2011, 10, 303–313. [Google Scholar] [CrossRef]
- Yang, Y.; Blum, R.S. Broadcast consensus based phase synchronization for coherent MIMO radar. In Proceedings of the 2011 45th Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 23–25 March 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Nanzer, J.A.; Schmid, R.L.; Comberiate, T.M.; Hodkin, J.E. Open-loop coherent distributed arrays. IEEE Trans. Microw. Theory Tech. 2017, 65, 1662–1672. [Google Scholar] [CrossRef]
- Mghabghab, S.R.; Nanzer, J.A. Open-loop distributed beamforming using wireless frequency synchronization. IEEE Trans. Microw. Theory Tech. 2020, 69, 896–905. [Google Scholar] [CrossRef]
- Ellison, S.M.; Mghabghab, S.; Doroshewitz, J.J.; Nanzer, J.A. Combined Wireless Ranging and Frequency Transfer for Internode Coordination in Open-Loop Coherent Distributed Antenna Arrays. IEEE Trans. Microw. Theory Tech. 2020, 68, 277–287. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Liu, F. Robust Adaptive Beamforming for Distributed Radar Based on Covariance Matrix Reconstruction and Steering Vector Estimation. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–4. [Google Scholar]
- Liu, X.; Wang, T.; Chen, J.; Wu, J. Efficient configuration calibration in airborne distributed radar systems. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 1799–1817. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Chen, J.; Wu, J. Efficient configuration calibration using ground auxiliary receivers at inaccurate locations. Digit. Signal Process. 2022, 129, 103675. [Google Scholar] [CrossRef]
- Lu, J.; Liu, F.; Sun, J.; Miao, Y.; Liu, Q. Distributed Radar Robust Location Error Calibration Based on Interplatform Ranging Information. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Sun, P.; Tang, J.; Tang, X. Cramer-Rao bound and signal-to-noise ratio gain in distributed coherent aperture radar. J. Syst. Eng. Electron. 2014, 25, 217–225. [Google Scholar] [CrossRef]
- Chen, J.; Wang, T.; Liu, X.; Wu, J. Identifiability Analysis of Positioning and Synchronization Errors in Airborne Distributed Coherence Aperture Radars. IEEE Sens. J. 2022, 22, 5978–5993. [Google Scholar] [CrossRef]
- Lu, J.; Liu, F.; Liu, H.; Liu, Q. Target Localization Based on High Resolution Mode of MIMO Radar with Widely Separated Antennas. Remote Sens. 2022, 14, 902. [Google Scholar] [CrossRef]
- Vukmirović, N.; Erić, M.; Janjić, M.; Djurić, P.M. Direct wideband coherent localization by distributed antenna arrays. Sensors 2019, 19, 4582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, T.; Zhang, H.; Zeng, T.; Liu, Q.; Chen, X.; Zheng, L. High accuracy unambiguous angle estimation using multi-scale combination in distributed coherent aperture radar. IET Radar Sonar Navig. 2017, 11, 1090–1098. [Google Scholar] [CrossRef]
- Liu, Y. Structure-based joint estimation algorithm for distributed coherent aperture radar. J. Eng. 2020, 2020, 1123–1130. [Google Scholar] [CrossRef]
- Yin, P.; Yin, W.; Li, H.; Liang, Z.; Liu, Z.; Liu, Q. Estimation method of coherent efficiency of distributed coherent aperture radar based on cross-correlation. In Proceedings of the ET International Radar Conference 2015, Hangzhou, China, 14–16 October 2015. [Google Scholar]
- Chen, J.; Chen, X.; Zhang, H.; Zhang, K.; Liu, Q. Suppression Method for Main-Lobe Interrupted Sampling Repeater Jamming in Distributed Radar. IEEE Access 2020, 8, 139255–139265. [Google Scholar] [CrossRef]
- Ge, M.; Cui, G.; Kong, L. Mainlobe jamming suppression for distributed radar via joint blind source separation. IET Radar Sonar Navig. 2019, 13, 1189–1199. [Google Scholar] [CrossRef]
- Chen, X.; Shu, T.; Yu, K.B.; He, J.; Yu, W. Joint Adaptive Beamforming Techniques for Distributed Array Radars in Multiple Mainlobe and Sidelobe Jammings. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 248–252. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, F.; Sun, Q.; Wang, X. Mainlobe jamming cancelation method for distributed monopulse arrays. Sci. China Inf. Sci. 2018, 61, 1–3. [Google Scholar] [CrossRef]
- Zeng, T.; Yin, P.; Liu, Q. Wideband distributed coherent aperture radar based on stepped frequency signal: Theory and experimental results. IET Radar Sonar Navig. 2016, 10, 672–688. [Google Scholar] [CrossRef]
- Brookner, E. Adaptive Antennas, Concepts and Performance. IEEE Antennas Propag. Soc. Newsl. 1988, 30, 37. [Google Scholar] [CrossRef]
- Petraglia, M.; Mitra, S. Performance analysis of adaptive filter structures based on subband decomposition. In Proceedings of the 1993 IEEE International Symposium on Circuits and Systems, Chicago, IL, USA, 3–6 May 1993; Volume 1, pp. 60–63. [Google Scholar] [CrossRef]
- Liu, W.; Langley, R.J. An Adaptive Wideband Beamforming Structure with Combined Subband Decomposition. IEEE Trans. Antennas Propag. 2009, 57, 2204–2207. [Google Scholar] [CrossRef]
- Goodman, N.A.; Stiles, J.M. On clutter rank observed by arbitrary arrays. IEEE Trans. Signal Process. 2006, 55, 178–186. [Google Scholar] [CrossRef]
- Tang, G.; Bhaskar, B.N.; Shah, P.; Recht, B. Compressed sensing off the grid. IEEE Trans. Inf. Theory 2013, 59, 7465–7490. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xie, L. Enhancing sparsity and resolution via reweighted atomic norm minimization. IEEE Trans. Signal Process. 2015, 64, 995–1006. [Google Scholar] [CrossRef]
- Dunning, I.; Huchette, J.; Lubin, M. JuMP: A Modeling Language for Mathematical Optimization. SIAM Rev. 2017, 59, 295–320. [Google Scholar] [CrossRef] [Green Version]
- Garstka, M.; Cannon, M.; Goulart, P. COSMO: A Conic Operator Splitting Method for Convex Conic Problems. J. Optim. Theory Appl. 2021, 190, 779–810. [Google Scholar] [CrossRef]
- Zheng, Y.; Fantuzzi, G.; Papachristodoulou, A.; Goulart, P.; Wynn, A. Fast ADMM for semidefinite programs with chordal sparsity. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 3335–3340. [Google Scholar]
- Wang, H.; Cai, L. On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 660–670. [Google Scholar] [CrossRef]
Node | Initial Coordinate |
---|---|
1 | (−53.708 m, 0 m, 6000 m) |
2 | (−33.708 m, 0 m, 6000 m) |
3 | (−13.208 m, 0 m, 6000 m) |
4 | (7.542 m, 0 m, 6000 m) |
5 | (32.542 m, 0 m, 6000 m) |
6 | (60.542 m, 0 m, 6000 m) |
Node | Velocity Vector |
---|---|
1 | (34.985 m/s, 19.392 m/s, 0 m/s) |
2 | (35.507 m/s, 20.5 m/s, 0 m/s) |
3 | (36.858 m/s, 22.147 m/s, 0 m/s) |
4 | (39.635 m/s, 23.347 m/s, 0 m/s) |
5 | (44.147 m/s, 23.474 m/s, 0 m/s) |
6 | (47.804 m/s, 31.044 m/s, 0 m/s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y.; Liu, F.; Liu, H.; Li, H. Clutter Jamming Suppression for Airborne Distributed Coherent Aperture Radar Based on Prior Clutter Subspace Projection. Remote Sens. 2022, 14, 5912. https://doi.org/10.3390/rs14235912
Miao Y, Liu F, Liu H, Li H. Clutter Jamming Suppression for Airborne Distributed Coherent Aperture Radar Based on Prior Clutter Subspace Projection. Remote Sensing. 2022; 14(23):5912. https://doi.org/10.3390/rs14235912
Chicago/Turabian StyleMiao, Yingjie, Feifeng Liu, Hongjie Liu, and Hao Li. 2022. "Clutter Jamming Suppression for Airborne Distributed Coherent Aperture Radar Based on Prior Clutter Subspace Projection" Remote Sensing 14, no. 23: 5912. https://doi.org/10.3390/rs14235912
APA StyleMiao, Y., Liu, F., Liu, H., & Li, H. (2022). Clutter Jamming Suppression for Airborne Distributed Coherent Aperture Radar Based on Prior Clutter Subspace Projection. Remote Sensing, 14(23), 5912. https://doi.org/10.3390/rs14235912