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Abstract: Elastic full waveform inversion (EFWI) is essential for obtaining high-resolution multi-
parameter models. However, the conventional EFWI may suffer from severe cycle skipping without
the low-frequency components in elastic seismic data. To solve this problem, we propose a multistage
phase correction-based elastic full waveform inversion method in the frequency-wavenumber domain,
which we call PC-EFWI for short. Specifically, the seismic data are first split using 2-D sliding
windows; for each window, the seismic data are then transformed into the frequency-wavenumber
domain for PC-EFWI misfit. In addition, we introduced a phase correction factor in the PC-EFWI
misfit. In this way, it is possible to reduce phase differences between measured and synthetic data
to mitigate cycle skipping by adjusting the phase correction factor in different scales. Numerical
examples with the 2-D Marmousi model demonstrate that the frequency-wavenumber domain
PC-EFWI with multistage strategy is an excellent way to reduce the risk of EFWI cycle skipping and
build satisfactory start models for the conventional EFWI.

Keywords: elastic full waveform inversion; frequency-wavenumber domain; multistage phase
correction; cycle skipping; multi-parameter

1. Introduction

The characterization of the velocity models is significant for improving seismic migra-
tion and geology interpretation [1–5]. Full waveform inversion (FWI) uses the kinematic
and dynamic information of seismic waves and is considered an effective means for ve-
locity model building [6–10]. However, the characteristics of the FWI misfit show strong
nonlinearity [11–17]. Suppose the seismic data lack low-frequency components and the
background velocity is very different from the accurate model. In that case, the FWI misfit
may be trapped in local minima, leading to severe cycle skipping [18–23]. In addition, the
physical properties of the subsurface are very complex, and the acoustic wave equation-
based FWI cannot correctly obtain the multi-parameter models [11,24–28]. Therefore, given
the quality of existing seismic data, the proposed new strategy and method comprise an
important way to solve cycle skipping for FWI.

The cycle skipping destroys the advantage of high-resolution acoustic FWI and elastic
FWI, which has attracted wide attention [29–33]. In recent years, many new methods
and strategies have been proposed to mitigate cycle skipping of FWI by building a better
initial model. The multiscale strategy is commonly used for FWI to obtain high-resolution
velocity models [8,34–37]. However, the low-frequency seismic data are usually costly and
contaminated by noise, leading to a multiscale strategy that usually does not work.

The envelope contains abundant low-frequency components, which is suitable for
building the low-wavenumber velocity models [38–44]. Furthermore, a phase-tracking
method can recover the missing low-frequency signals [45]. In addition, the Beat tone
strategy [29], deconvolution method [46–49], and deep learning [50–53] also can be used to
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recover the low-frequency components and for FWI to invert the macro structures of the
subsurface. Similarly, reducing waveform mismatch can better alleviate the cycle skipping
problem and make it easier for misfit to converge to the global minimum. Adaptive
waveform inversion computes the matching filter instead of waveform differences [54].
An adaptive matching filter-based misfit can obtain the velocity model macro structures
for the conventional FWI [55–57]. Ensemble Kalman filter also can be used to enlarge the
convergence domain of the FWI misfit and alleviate the model dependence of the FWI
method [24,58]. Therefore, whether low-frequency reconstruction or by modifying the
phase or amplitude information of seismic data, the nonlinearity of FWI misfit can be
effectively reduced. Then, the cycle skipping of FWI can be mitigated [59–62].

This article proposes a multistage phase correction-based elastic full waveform in-
version (PC-EFWI) in the frequency-wavenumber domain. The PC-EFWI can effectively
mitigate the cycle skipping by reducing phase differences between the measured and
synthetic data. In the EFWI misfit, a phase correction factor is adopted to adjust phase dif-
ferences. Suppose we eliminate the phase differences between the measured and synthetic
data. In that case, the PC-EFWI misfit only contains the amplitude information, which
is similar to the envelope inversion. However, If the phase correction factor is zero, the
PC-EFWI misfit will degenerate into the conventional EFWI misfit. Therefore, we need
to adjust the phase correction factor to bridge the inversion gap between the envelope
inversion and waveform inversion results. Specifically, the article is organized as follows.
We first extend the utilization of 2-D sliding windows to obtain windowed seismic data
and give some theoretical formulas for a window-based 2-D Fourier transform. Then, we
present the theory of the conventional elastic FWI. After that, the frequency-wavenumber
domain PC-EFWI misfit and its gradient operators are established. Finally, in the numerical
tests, the PC-EFWI results are regarded as the initial models for the conventional EFWI to
invert the detailed structures.

2. Window-Based Frequency-Wavenumber Domain Phase Correction

In this section, we try to utilize a window-based 2-D Fourier transform to develop a
frequency-wavenumber domain phase correction-based elastic full waveform inversion
(PC-EFWI). In this case, we first need to define a window-based 2-D Fourier transform,{ ~

u(τ, h, ω, kx) = F2D[u(t, x)] =
s

u(t, x) g(t− τ, x− h) e−i(ωt−kx x)dt dx
u(t, x) = F∗2D[

~
u(τ, h, ω, kx)] =

s s ~
u(τ, h, ω, kx) g(t− τ, x− h)ei(ωt−kx x) dω dkx dτ dh

(1)

where F2D[ · ] and F∗2D[ · ] mean the window-based 2-D Fourier forward and inverse trans-
form, ω = 2π f , f means the frequency, kx is the wavenumber in x direction; u(t, x) are
the seismic data, g(t, x) is a 2-D sliding window,

~
u(τ, h, ω, kx) are the window-based

frequency-wavenumber domain seismic data; and τ and h are the displacements of t
and x, respectively.

The seismic data can easily be separated into phase and amplitude components in the
frequency-wavenumber domain as follows,

~
u(τ, h, ω, kx) =

∣∣∣~u(τ, h, ω, kx)
∣∣∣ eiψu

~
d(τ, h, ω, kx) =

∣∣∣∣~d(τ, h, ω, kx)

∣∣∣∣ eiψd
, (2)

where
~
u,

~
d are the frequency-wavenumber domain synthetic and measured data, re-

spectively. Therefore, the phase differences between
~
u and

~
d can be denoted as follows,

ei(ψd−ψu) = ei∆ψ =

~
u
∗~
d∣∣∣~u∣∣∣∣∣∣∣~d∣∣∣∣ , (3)
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where ψu, ψd are the phase information in the frequency-wavenumber domain. In this way,
the phase correction can denoted as,

~
uc =

~
u eiε(ψd−ψu)

~
dc =

~
d eiε(ψu−ψd)

, (4)

where ε is a phase correction factor that controls the phase correction amount. If ε = 0.5,
there are no phase differences between the corrected measured and synthetic data

(Im
[
ln
(~

uc

)]
= Im

[
ln
(

~
dc

)]
). If ε = 0, it has

~
uc =

~
u,

~
dc =

~
d. Therefore, it is possi-

ble to adjust the phase differences between the corrected measured and synthetic data
using the phase correction factor.

The horizontal component of the measured elastic seismic data and the 2-D window
are shown in Figure 1. In this case, we first use sliding windows to split seismic data and
obtain Figure 2a,d. Equation (1) is then used to obtain the frequency-wavenumber domain
seismic data. After that, we set ε = 0.5 with Equation (4), and we can obtain the phase-
corrected seismic data. In addition, we also show the phase-corrected seismic waveforms in
Figure 3. Comparing the original waveforms and phase-corrected waveforms demonstrates
that the frequency-wavenumber domain phase correction strategy can effectively reduce
the phase differences between the measured and synthetic data.
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Figure 1. (a) Horizontal component of the measured elastic seismic data; (b) 2-D window. Figure 1. (a) Horizontal component of the measured elastic seismic data; (b) 2-D window.
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Figure 2. Windowed seismic data in the time-space domain and frequency-wavenumber domain;
(a,c) are extracted from the red and blue rectangular boxes of Figure 1, respectively; (b,e) are the
frequency-wavenumber domain amplitude information of (a,d), respectively; (c,f) are the phase-
corrected seismic data of (a,d) with ε = 0.5, respectively.
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Figure 3. Seismic waveforms. (a) Measured and synthetic data; (b) phase-corrected measured and
synthetic data.

3. Review of Elastic Full Waveform Inversion

The elastic wave equation is the basis of EFWI. In isotropic media, the second order
partial differential-based 2D elastic wave equations can be written as,

ρ ∂2ux
∂t2 = ∂σxx

∂x + ∂σxz
∂z

ρ ∂2uz
∂t2 = ∂σxz

∂x + ∂σzz
∂z

σxx = (λ+ 2µ) ∂ux
∂x + λ ∂uz

∂z

σzz = (λ+ 2µ) ∂uz
∂z + λ ∂ux

∂x

σxz = µ
(

∂ux
∂z + ∂uz

∂x

)
(5)

where λ and µ are Lamé coefficients; ρ is density, which is taken as a constant value
(ρ = 2 g/cm3) in the tests of EFWI. In Equation (5), the u = [ux, uz] and σ = [σxx,σzz,σxz]
are displacement components and stress components, respectively.

The misfit of EFWI is to measure the elastic seismic data residuals between the mea-
sured and synthetic data as follows [8,11]:

J(m) =
1
2∑

ns
∑
nr

∫
‖u− d‖2

2dt, (6)

where ns, nr indicate the number of shots and receivers, respectively; u, d are the time-
domain measured and synthetic elastic seismic data, which contain horizontal and vertical
components u = [ux, uz], d = [dx, dz]. The EFWI misfit can be minimized by updating the
elastic parameters with an optimization algorithm. The gradients of the elastic parameters
can be expressed as follows,
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
∂J(m)

∂λ = −∑
ns

∫ (
∂
→
u x
∂x + ∂

→
u z
∂z

)(
∂
←
u x
∂x + ∂

←
u z
∂z

)
dt

∂J(m)
∂µ = −∑

ns

∫ (
∂
→
u x
∂z + ∂

→
u z

∂x

)(
∂
←
u x
∂z + ∂

←
u z

∂x

)
+ 2
(

∂
→
u x
∂x

∂
←
u x
∂x + ∂

→
u z
∂z

∂
←
u z
∂z

)
dt

, (7)

where
→
u =

[→
u x,

→
u z

]
and

←
u =

[←
u x,

←
u z

]
are the displacements of the forward and back

propagated stress components, respectively. In addition, Lamé coefficients are related to
the P and S velocities (Vp, Vs), which can be denoted as follows,

vp =
√

λ+2µ
ρ

vs =
√

µ
ρ

. (8)

Therefore, the elastic parameters can be denoted by the P and S velocities m =
[
vp, vs

]
.

The gradient for Vp and Vs can be expressed as follows,
∂J(m)

∂vp
= 2ρ vp

∂J(m)
∂λ

∂J(m)
∂vs

= −4ρ vs
∂J(m)

∂λ + 2ρ vs
∂J(m)

∂µ

. (9)

4. Frequency-Wavenumber Domain Phase Correction-Based EFWI

The nonlinearity of the conventional EFWI misfit makes the inverted results easily
fall into local minima. Therefore, a frequency-wavenumber domain phase correction-
based EFWI (PC-EFWI) is proposed to solve this problem, which helps to reduce the
phase differences between measured and synthetic data. The proposed PC-EFWI misfit is
as follows,

J(m) =
1
2∑

ns

x

τ,h

x

ω,kx

∣∣∣∣∣∣~u
(

~
Au

)ε
−

~
d
(

~
Ad

)ε
∣∣∣∣∣∣
2

dωdkxdτdh, (10)

where
~
Au =

~
u
∗~
d/
∣∣∣~u∣∣∣∣∣∣∣~d∣∣∣∣, ~

Ad =
~
u

~
d
∗
/
∣∣∣~u∣∣∣∣∣∣∣~d∣∣∣∣. Phase correction factor ε ∈ [0, 0.5] is used to

control the amount of phase correction. In Equation (10), if we set ε = 0.5, the misfit only
matches the amplitude information, which becomes envelope inversion in the frequency-
wavenumber domain [38]. In this way, we can obtain a better initial model with ε = 0.5 for
conventional EFWI. Then, we can gradually reduce the phase correction factor to match
the phase and amplitude differences at the same time to obtain detailed structures.

The partial derivative of the PC-EFWI misfit is as follows,

∂J(m)

∂m
= ∑

ns

x

τ,h

x

ω,kx

Re

{ [
~
u
(

~
Au

)ε

−
~
d
(

~
Ad

)ε] ∂

∂m

[
~
u
(

~
Au

)ε

−
~
d
(

~
Ad

)ε] ∗}
dωdkxdτdh, (11)

where * means the complex conjugation. Taking a further derivative, we have

∂J(m)

∂m
= ∑

ns

x

τ,h

x

ω,kx

Re



(1− ε)H
(

~
u
∗
∣∣∣∣~d∣∣∣∣)(−ε) (∣∣∣~u∣∣∣ ~

d
∗)ε ∂

~
u
∗

∂m +

ε H
~
u
∗(1−ε)

∣∣∣~u∣∣∣ε−1
∣∣∣∣~d∣∣∣∣(−ε) (~

d
∗)ε

Re

(
~
u
|~u|

∂
~
u
∗

∂m

)
−

ε H
(~

u
∗)(ε−1)~

d
∗~
d

ε
(∣∣∣~u∣∣∣ ∣∣∣∣~d∣∣∣∣)(−ε) ∂

~
u
∗

∂m +

ε H
~
d
∗(~

u
∗~
d
)ε∣∣∣~u∣∣∣(−ε−1)

∣∣∣∣~d∣∣∣∣(−ε)

Re

(
~
u
|~u|

∂
~
u
∗

∂m

)



dωdkxdτdh, (12)
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where H =
~
u
(

~
Au

)ε
−

~
d
(

~
Ad

)ε
. The gradient of the PC-EFWI misfit is as follows,

∂J(m)

∂m
= ∑

ns

x

τ,h

x

ω,kx

1∣∣∣~u∣∣∣2(∣∣∣~u∣∣∣ ∣∣∣∣~d∣∣∣∣)ε Re



(1− ε) H
∣∣∣~u∣∣∣2(~

u
~
d
∗)ε ∂

~
u
∗

∂m +

~
uRe

[
ε H

~
u
∗
(

~
u

~
d
∗)ε] ∂

~
u
∗

∂m −

ε H
~
u

~
d
∗ (~

u
∗~
d
)

ε ∂
~
u
∗

∂m +

~
uRe

[
ε H

~
d
∗(~

u
∗~
d
)ε] ∂

~
u
∗

∂m



dωdkxdτdh. (13)

According to Equation (1), the final gradient of the PC-EFWI misfit is as follows,

∂J(m)

∂m
= ∑

ns

∫
t

Re


F∗2D



(1−ε)H
∣∣∣~u∣∣∣2(~

u
~
d
∗)ε

∣∣∣~u∣∣∣2(∣∣∣~u∣∣∣ ∣∣∣∣~d∣∣∣∣)ε +

~
uRe

[
ε H

~
u
∗
(

~
u

~
d
∗)ε]

∣∣∣~u∣∣∣2(∣∣∣~u∣∣∣ ∣∣∣∣~d∣∣∣∣)ε −

ε H
~
u

~
d
∗ (~

u
∗~
d
)ε

∣∣∣~u∣∣∣2(∣∣∣~u∣∣∣ ∣∣∣∣~d∣∣∣∣)ε +

~
uRe

[
ε H

~
d
∗(~

u
∗~
d
)ε]

∣∣∣~u∣∣∣2(∣∣∣~u∣∣∣ ∣∣∣∣~d∣∣∣∣)ε




∂u
∂m

dt. (14)

Additionally, the adjoint source is as follows,

fs = F∗2D


(1− ε)H

∣∣∣~u∣∣∣2(~
u

~
d
∗)ε

+
~
uRe

[
ε H

~
u
∗
(

~
u

~
d
∗)ε]

− ε H
~
u

~
d
∗ ((~

u
∗)ε ~

d
ε
)
+

~
uRe

[
ε H

~
d
∗(~

u
∗~
d
)ε]

β +
∣∣∣~u∣∣∣2(∣∣∣~u∣∣∣ ∣∣∣∣~d∣∣∣∣)ε

 (15)

where β is a small positive number to avoid dividing over zero. Therefore, the PC-EFWI
gradients can be obtained by correlating forward and backward wave-fields.

5. Numerical Test

In this section, we apply complex modified Marmousi models to test the frequency-
wavenumber domain phase correction-based elastic full waveform inversion (PC-EFWI).
The Marmousi model consists of various complex geological structures, such as anticlines,
faults, angular unconformities, and oil reservoirs. Figure 4 shows that the oil reservoir
is deep in the Marmousi model and overlaid by complex geological structures. How-
ever, the conventional EFWI is challenging to invert the deep oil reservoir, especially
when seismic data lack low-frequency components. In this case, the Marmousi velocity
models are 1.2 km × 3.6 km, and their initial models are shown in Figure 5. The acqui-
sition system consists of 40 seismic sources and 240 receivers on the top of the velocity
model. This article uses a low−cut 5 Hz Ricker wavelet with a peak frequency of 12 Hz
to test the low-frequency dependence of the PC-EFWI method. In addition, we first use
low−frequency data (5–10 Hz) to recover macro structures. Then, we use it as the initial
model for high−frequency data (5–15 Hz) conventional EFWI.

The conventional EFWI results are shown in Figure 6. Compared to the accurate
Marmousi models, the conventional EFWI results produce a cluster of anomaly values
and artifacts on the left side of the Marmousi velocity models. This is mainly because
the conventional EFWI suffers from severe cycle skipping. Then, we use high-frequency
seismic data to invert the detailed geological structures with Figure 6 as the initial model.
According to Figures 6 and 7, if the low-frequency EFWI produces cycle skipping, the
high-frequency data-based EFWI will also produce errors. Therefore, it is essential to use
new methods to recover the low-wavenumber components of the velocity models.
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Now, the low-frequency seismic data-based PC-EFWI results with phase correction
factor ε = 0.5 are shown in Figure 8. Compared to Figure 6, the geological macro structures
of the Marmousi model inverted by PC-EFWI (Figure 8) seem better than the conventional
EFWI result, because when the phase correction factor ε = 0.5, the PC-EFWI misfit becomes
a pure amplitude misfit, similar to the envelope misfit with a solid ability to recover macro
structures. In addition, we can gradually reduce the phase correction factor to match
the phase differences between the measured and synthetic data. For example, we then
set ε = 0.3 and use Figure 8 as the initial velocity model to obtain detailed geological
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structures, shown in Figure 9. After that, we can use the inverted background Marmousi
model (Figure 9) as the initial model for the conventional EFWI to invert detailed geological
structures (Figures 10 and 11). A comparison of Figures 7 and 11 shows that the PC-EFWI
can better recover the oil reservoir, and the deep geological structures can be seen clearly.
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The inverted velocity profiles with conventional EFWI and PC-EFWI are shown in
Figure 12. Figure 12a,b show that the conventional EFWI has severe cycle skipping, and
the final inverted models are deplorable. The comparison results in Figure 12a–d show that
the Vp and Vs of PC-EFWI + EFWI results are more similar to the accurate elastic velocity
of Vp and Vs. The velocity comparison in Figure 12 shows that the frequency-wavenumber
domain PC-EFWI misfit can successfully build better initial models for EFWI and mitigate
the cycle skipping.
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6. Discussion

In this article, the 2-D window size for PC-EFWI is an important parameter, which
is similar to the window size for Short-time Fourier transform (STFT). In STFT, the time
and frequency resolution is a trade-off problem. Although a narrow-width window results
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in a better resolution in the time domain, it generates a poor resolution in the frequency
domain, and vice versa. Similarly, although a narrow-width 2-D window results in a better
exhibition of local-scale characteristics in the time-space domain, it can not encompass a
complete waveform of seismic events, and vice versa. Therefore, the choice of 2-D window
size involves a certain amount of experience. In this article, the window length in the time
direction is 0.36 s, and the window length in the distance direction is 0.6 km (Figure 2). In
addition, the PC-EFWI misfit needs to calculate the forward and inverse window based
2-D Fourier transform both of synthetic and measured data, which requires a substantial
amount of computing resources. Fortunately, a large sliding step length can greatly improve
calculation efficiency. Additionally, the sliding step length of the 2D window is 1/10 of the
window length in the time and distance directions. In this way, an appropriate sliding step
length can not only ensure the accuracy of the window based 2-D Fourier transform, but
also improve the calculation efficiency.

7. Conclusions

We proposed a frequency-wavenumber domain PC-EFWI to invert for the low-
wavenumber components of subsurface structures. With a phase correction factor adopted
in the PC-EFWI misfit, we can flexibly adjust the phase differences between the measured
and synthetic data to reduce the nonlinearity of the EFWI misfit, which mitigates the cycle
skipping problem to a large extent. For the multistage strategy, we first use a large phase
correction factor to eliminate phase differences in the PC-EFWI misfit, which is suitable
to invert the macro structures of the complex Marmousi models. Then, we can gradually
reduce the phase correction factor to form a more robust multistage inversion strategy to ob-
tain detailed geological structures. Numerical tests show that the frequency-wavenumber
domain PC-EFWI method can successfully build accurate background velocity models and
mitigate cycle skipping of the EFWI.
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