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Abstract: Remote sensing images can obtain broad geomorphic features and provide a strong basis
for analysis and decision making. As 71% of the earth is covered by water, shipping has become an
efficient means of international trade and transportation, and the development level of coastal cities
will directly reflect the development level of a country. The coastline is the boundary line between
seawater and land, so it is of great significance to accurately identify it to assist shipping traffic
and docking, and this identification will also play a certain auxiliary role in environmental analysis.
Currently, the main problems of coastline recognition conducted by remote sensing images include:
(1) in the process of remote sensing, image transmission inevitably brings noise causing poor image
quality and difficult image quality enhancement; (2) s single scale does not allow for the identification
of coastlines at different scales; and (3) features are under-utilized, false detection is high and intuitive
measurement is difficult. To address these issues, we used the following multispectral methods:
(1) a PCA-based image enhancement algorithm was proposed to improve image quality; (2) a dual
attention network and HRnet network were proposed to extract suspected coastlines from different
levels; and (3) a decision set fusion approach was proposed to transform the coastline identification
problem into a probabilistic problem for coastline extraction. Finally, we constructed a coastline
straightening model to visualize and analyze the recognition effect. Experiments showed that the
algorithm has an AOM greater than 0.88 and can achieve coastline extraction.

Keywords: remote sensing; PCA; dual attention; HRnet; fusion; straightening

1. Introduction

The sea and the land are the geomorphological units on the surface of the earth, and
the boundary line between seawater and land becomes the coastal zone [1]. The location of
the coastline is an important part of determining the remote sensing survey of an island’s
coastal zone. Coastline information is the basis for measuring and calibrating terrestrial and
water resources and is the foundation for the excavation and management of coastal zone
resources. The location and orientation of the coastline provides the most basic information
for automated ship navigation, coastline erosion monitoring, and modelling, etc. The analysis
of coastline lengths and changing coast sections is a prerequisite for carrying out the evolution
of the natural environment [2]. Therefore, rapid and accurate coastline extraction, and
thus dynamic monitoring is a pressing issue in many coastal zone studies, which is of
great practical importance for the effective development, sustainable use, and scientific
management of coastal zones.
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Traditional coastline mapping methods are mainly field surveys and photogrammetry.
Due to the complexity of coastline surveys and the wide range, rapid changes and fragmen-
tation of ground objects, these traditional methods of detection have long working cycles
and are labor-intensive and inefficient, making it difficult to achieve dynamic monitoring of
the coastline [3]. At the same time, limited by the geographical environment and other condi-
tions, some survey areas are not easily accessible, making mapping difficult. Remote sensing
technology is a comprehensive application technology of earth observation based on physical
means, geological analysis, and mathematical methods. It is powerful in data acquisition,
has the advantages of large range, high temporal resolution, high spatial resolution, multi-
spectral and multi-temporal sequence, and is not constrained by weather, geographical
environment, and other conditions, which has outstanding advantages in coastal zone re-
source exploration and comprehensive management. Remote sensing has therefore become
an effective means of extracting coastlines and monitoring their dynamic changes.

Remote sensing images are photographs based on electromagnetic wave imaging.
Remote sensing images can not only be used to analyze the natural attributes of ground
objects and the environment, but also provide a basis for urban development and search and
rescue [4]. Currently, the commonly used remote sensing images mainly include hyperspectral
images and multispectral images. Multispectral images are reflected by the brightness values
of different spectral dimensions of the same scene obtained according to the sensitivity of
sensors. Based on the response difference of different ground objects in the specific spectral
segment, the study was carried out [5]. The spectral resolution of hyperspectral images
reaches the order of 10−2λ, and the target region is simultaneously imaged in tens to
hundreds of continuous and subdivided spectral bands [6]. Meanwhile, surface image
information and spectral information are obtained. Compared with multi-spectral remote
sensing images, the hyperspectral image has been greatly improved in information richness.
Scholars have carried out a significant amount of work based on hyperspectral and multi-
spectral remote sensing data, mainly focusing on image quality enhancement, semantic
segmentation, and feature fusion.

In terms of quality enhancement, at the present stage, multi-spectral remote sensing
images have higher quality than hyperspectral remote sensing images, but they still face twill,
ghost images, and noise images, which need to be further improved. Based on the traditional
feature method, the models are constructed according to the ground object morphology
and spectral line law. Representative algorithms include texture [7,8], brightness analysis
model [9,10], wavelet transform [11], color [12,13], light transmission model [14], filter-
ing [15,16], weak signal enhancement [17,18], local and global model [19]. Based on the
statistical method, the models are constructed according to the features of pixel distribution.
Representative ones are cuckoo search model [20], fuzzy [21,22], statistical histogram [23,24],
noise statistics [25,26], and comparative statistical analysis [27]. Based on the deep network
method, the neural conduction process is simulated, and the mapping model is constructed,
including CNN [28,29], dual autoencoder network [30], edged-enhanced GAN [31,32],
conditional generative adversarial networks [33], and end-to-end network [34]. In general,
for quality improvement, traditional methods still dominate, because they extract the inher-
ent properties of substances and have high generalization performance. However, deep
learning methods require a high correlation between test data and training data, with poor
generalization performance.

In semantic segmentation, effective features are the premise of efficient analysis,
and it is of great significance to select representative features from numerous features to
carry out research. Methods based on traditional features include MRF (Markov random
field) [35,36], mean-shift [37,38], spectral [39,40], texture [41,42], dynamic statistical [43,44],
graph theory [45,46], and the threshold method [47,48]. Based on a deep network, the
network is constructed in a supervised manner [49]. CNN is used to extract the correlation
between pixels, and a series of improved algorithms [50,51] are proposed. Then, the 3D
model is constructed to mine the relationship between image channels [52–54], and the Unet
structure is introduced to realize image segmentation [55,56]. Moreover, the DNN network is
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constructed to mine depth features [57], and ResNet connects shallow and deep features [58].
In general, in the face of good image quality, the deep network method simulates the neural
conduction process with a relatively obvious segmentation effect but the traditional method
cannot be essentially improved.

In the terms of feature fusion, it is necessary to carry out research on feature fusion
to make up for the insufficient representation of a single algorithm or single data source.
Based on pixel fusion, the performance of different sensors is analyzed and fused according
to pixel points [59,60]. Later, the features are extracted according to different algorithms
and a fusion model is constructed [61,62]. Based on the fusion of decision sets, the fusion
model is constructed according to the operating results of the algorithm, thus achieving the
fusion [63,64]. In general, fusion algorithms with different levels show different advantages,
and they need to be analyzed in a specific context.

According to the above analysis, a coastline recognition algorithm was proposed
based on multi-feature network fusion: (1) a remote sensing image enhancement algorithm
based on PCA was proposed; (2) the network framework of spatial attention and spectral
attention models was proposed to extract possible coastline regions; (3) the extraction of
the suspected coastline areas based on the HRnet network was proposed; and (4) the fusion
mode of decision sets was constructed to realize coastline extraction and display directly in
the way of coastline straightening.

The structure of this study is as follows: In Section 2, the main framework of the
algorithm in this paper is introduced, and the coastline recognition and display algorithm
of multi-feature network fusion is proposed. n Section 3, the effectiveness of the algorithm
is proved through a lot of experiments. In Section 4, the innovation points and future work
are summarized.

2. Methods

In this paper, a complete coastline recognition algorithm was constructed based on
the requirements of remote sensing image coastline recognition, and the specific process is
shown in Figure 1. First, PCA was used to extract the principal components of the image
and remove the noise. Secondly, the dual attention network and HRnet network were
constructed to extract suspected coastline regions from different angles, and the decision
set fusion method was constructed to realize coastline extraction. To intuitively display the
effect of coastline extraction, a coastline straightening model was established.

2.1. Introduction to Basic Networks

Google developed the DeepLab semantic segmentation framework [65]. DeepLab-
v1 uses atrous convolution operation to expand the network receptive field under the
condition of reducing the sampling, and the dense feature map is obtained, thus realiz-
ing target segmentation. Due to the single-scale structure of Deeplab-V1, the processing
capability of multi-scale segmentation objects is poor [66]. Atrous Spatial Pyramid Pool-
ing (ASPP) structure was proposed in Deeplab-V2 to capture multi-scale image context
information of feature images, and full-link CRF operation was adopted to obtain more
accurate segmentation images. However, the expansion rate of the 3 × 3 convolution
kernel in the ASPP structure keeps increasing, and the 3 × 3 convolution will degenerate
into the 1 × 1 convolution [67]. To compensate for this defect and integrate global context
information, Deeplab-v3 changes the ASPP structure to three 3 × 3 convolution operations
with expansion rates of {6, 12, 18} and one global average pooling operation, respectively.
As the ASPP incorporates image-level features and contains target location information,
the fully connected CRF is removed from the V3 edition [68]. DeepLab V3+ network adds
an encoding-decoding structure based on V3. The encoder is divided into a deep dilated
convolutional neural network and an ASPP layer. The decoder integrates low-level features
for feature graph recovery, as shown in Figure 2.
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The convolutional layer is used to extract feature images, and the pooling layer is used
to reduce the dimension of feature images to decrease the computation of the deep network.
As the downsampling operation causes the loss of target boundary information, it will affect
the effect of semantic segmentation. Furthermore, DeepLabv3+ adds Atrous Convolution
to the deep feature extraction network, increasing network receptive fields without adding
network parameters and minimizing the loss of target boundary feature information in
the feature graph. In the face of different targets in the image with different scales, the
unified use of the same layer feature segmentation can not ensure the requirements of
accuracy. Therefore, the DeepLabv3+ network uses the Spatial Pyramid Pooling (SSP)
operation in SSP-NET as a reference to improve the network to ASPP, aiming to realize the
segmentation of multi-scale objects. After 1 × 1 convolution, 3 × 3 convolution with an
expansion rate of {6,12,18} and global average pooling of the input feature images, ASPP
merges the feature images and compresses the number of channels to 256. Finally, ASPP
can complete the extraction and differentiation of target feature information of different
scales. To fully extract the high-level feature information of the target object in the image,
the DeepLabv3+ network carries out a down-sampling operation on the input image. Then
it adopts a coding-decoding structure to fuse low-level features in the process of feature
graph recovery, in order to compensate for the lost boundary information in the down-
sampling operation. Finally, it adopts a linear interpolation method to recover boundary
information, thus improving the precision of network segmentation.

2.2. Image Enhancement Based on PCA

Principal component analysis (PCA), as a multi-dimensional orthogonal linear trans-
formation based on statistical features, is an algorithm for feature extraction of remote
sensing images [69]. Its principle is as follows: linear transformation is performed on the
image, and the space X composed by the image is multiplied by the linear change matrix R
to form a new space and constitute a new image.

Y = TX (1)

where X is the pixel vector before the transformation; Y is the pixel vector after the transfor-
mation; and T is the transformation matrix.

The original image matrix X is normalized:

X =

 x11 x12 . . . x1n
. . .

xm1 xm2 . . . xmn

 = [xik]m×n (2)

where m and n are the number of variables and pixels, respectively.
The covariance matrix is calculated:

S =
1
n
[
X− X

][
X− X

]T
=
[
Sij
]

(3)

The eigenvalue λ and eigenvector U of matrix S are calculated:

(λI − S)U = 0 (4)

The eigenvalues are arranged from large to small, {λ1, λ2, λm}, and the corresponding
eigenvectors form the following matrix:

U = [U1, U2, . . . Um] =
[
uij
]

m×m (5)

Y = UTX (6)

where Y is the row vector of the matrix, and Yj = [yj1, yj2, . . . , yjn] is the jth principal compo-
nent. After principal component transformation, m new variables are obtained, namely,
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the first principal component, the second principal component, . . . the m-th principal com-
ponent. Matrix y is the data after feature extraction.

Part of the data information in an image is redundant, and the data between each band
are often highly correlated. Principal component transformation aims to extract the useful
data features of the original bands into a small number of new principal component images
so that the different principal component images are independent of each other, and then
the minimum information loss of the original data can be guaranteed. Principal component
analysis (PCA) is of great significance to compress the highly correlated data among the
transformed bands by simplifying the original multiple indexes into a few independent
comprehensive indexes. The 16-bit data is linearly mapped to [0,1]. Meanwhile, random
flipping and mirroring are adopted to increase the diversity of the data.

2.3. Network Framework Based on Dual Attention

DeepLabv3+ network has shown excellent segmentation performance, but there are
still some shortcomings: (1) to increase the segmentation of multi-scale targets, the network
connects the ASPP structure after the cavity convolution feature extraction network. The
large expansion rate cannot accurately extract the features of the image edge target, nor can
it completely simulate the relationship between the local features of the large-scale target,
which leads to the cavity phenomenon in the large-scale target segmentation. Therefore, the
DeepLabv3+ network reduces the segmentation accuracy of edge targets and large-scale
targets in remote sensing images; and (2) in the process that the network model from the
feature extraction network to recovering the feature map by upsampling, the number of
model parameters is huge, and there will be a phenomenon of parameter instability in the
network backpropagation process, which leads to the difficulty of training and the slow
convergence of the network.

In recent years, the attention mechanism has been successfully applied to the field of
deep learning, which can simulate long-term dependence in image processing and establish
the relationship between two pixels in an image with a certain distance. After introducing
the self-attention mechanism into the image generation and evaluation of the GAN network,
it is found that using the attention mechanism in the middle or high-level features makes the
GAN network image generation effect significant. Based on the self-attention mechanism,
the non-local operation in the spatio-temporal dimension is proposed, and good results
have been achieved in images and videos. The self-attention mechanism is introduced into
the semantic segmentation task, and the network model DANet is designed, which proves
that the self-attention mechanism is also applicable to the semantic segmentation task. The
self-attention mechanism in the DANet network is described as follows.

Spatial attention module: Information is obtained through context information. The
semantic segmentation feature extraction based on FCNs is mainly local, which is easy
to cause intra-class segmentation errors. The purpose of the spatial attention module is
to fit the context relationship between global features, so that similar features in different
locations can enhance each other and improve semantic segmentation ability. The module
structure is shown in Figure 3. The local feature A is obtained through the backbone network,
and the depth feature matrix {B, C, D} is obtained by convolution. The spatial attention is
calculated by using the Softmax layer:

Sji =
exp

(
(B′ i)

TC′ j
)

N
∑

i=1
exp

(
(B′ i)

TC′ j
) (7)

where (B′)T is the transpose of the inverse matrix of matrix B, N is the number of elements
in the channel; Sji represents the influence factor of the i-th position on the j-th position,
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indicating that similar features at two different positions have greater correlation and
influence on each other. On this basis, the spatial attention module is constructed:

Ej
space = α

N

∑
i=1

(
SjiD′ i

)
+ Aj (8)

where α is the learning parameter, and E is the weighted sum of all location features and
original features. Therefore, the location attention mechanism has a global context view
and tries to selectively aggregate context according to location attention, so that similar
semantic features can promote each other and maintain semantic consistency.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 25 
 

 

Spatial attention module: Information is obtained through context information. The 
semantic segmentation feature extraction based on FCNs is mainly local, which is easy to 
cause intra-class segmentation errors. The purpose of the spatial attention module is to fit 
the context relationship between global features, so that similar features in different lo-
cations can enhance each other and improve semantic segmentation ability. The module 
structure is shown in Figure 3. The local feature A is obtained through the backbone 
network, and the depth feature matrix {B, C, D} is obtained by convolution. The spatial 
attention is calculated by using the Softmax layer: 

( )( )
( )( )

1

exp

exp

T
i j

ji N
T

i j
i

B C
S

B C
=

′ ′
=

′ ′  (7)

where (B′)T is the transpose of the inverse matrix of matrix B, N is the number of elements 
in the channel; Sji represents the influence factor of the i-th position on the j-th position, 
indicating that similar features at two different positions have greater correlation and in-
fluence on each other. On this basis, the spatial attention module is constructed: 

( )
1

N
j
space ji i j

i
E S D Aα

=

′= +  (8)

where α is the learning parameter, and E is the weighted sum of all location features and 
original features. Therefore, the location attention mechanism has a global context view 
and tries to selectively aggregate context according to location attention, so that similar 
semantic features can promote each other and maintain semantic consistency. 

 
Figure 3. Spatial attention mechanism. 

Channel attention mechanism module: high-level semantic features of different 
channels are extracted to achieve category forecast, and there is a certain relationship 
between the different categories of semantic. By using the contact between different 
channel feature images, the feature images that are interconnected can be highlighted, 
and specific semantic features can be promoted, so it is necessary to explore the features 
of the different channels. The channel attention module is shown in Figure 4. 

 
Figure 4. Channel attention model. 

Figure 3. Spatial attention mechanism.

Channel attention mechanism module: high-level semantic features of different chan-
nels are extracted to achieve category forecast, and there is a certain relationship between
the different categories of semantic. By using the contact between different channel feature
images, the feature images that are interconnected can be highlighted, and specific semantic
features can be promoted, so it is necessary to explore the features of the different channels.
The channel attention module is shown in Figure 4.
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The channel attention module can directly obtain the attention diagram through matrix A:

xji =
exp

[
A′ i · (A′)T

j

]
C
∑

i=1
exp

[
A′ i · (A′)T

j

] (9)

The corresponding channel attention is:

Ej
channel = β

C

∑
i=1

(
xji|Ai

)
+ Aj (10)

where β is the learning parameter, and each channel feature is the weighted sum of all
channel features and the original channel features, so the channel attention module can
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simulate the long-term semantic dependence between different feature maps to enhance
feature representation. Based on the above analysis, the Deeplabv3+ model of double attention
mechanism is proposed, and the network structure is shown in Figure 5.
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Figure 5. Double attentional network structure:(a) parallel network structure, and (b) series network
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Figure 5a shows the parallel network of DAMM and ASPP. The trunk network is used
to extract image features, two branch networks are adopted to process the feature images
extracted from the backbone network, and then the two branch feature images are fused.
The upper branch in the figure is a dual attention mechanism module (channel attention
and spatial attention). The two modules operate in parallel in the dual attention module.
The feature images extracted from the backbone network are convolved with a dilation rate of
2 and a convolution kernel of 3 × 3, and then sent to the channel attention module and the
location attention module for processing, respectively, and the feature images are summed.
The channel attention module uses the correlation between the relevant category features of
different channels to strengthen different category features and improve the classification
accuracy, while the spatial attention module promotes the classification accuracy of different
local features by simulating the connection between different local features. The lower
branch fuses the feature image processed by ASPP with the feature image processed by the
dual attention module, and finally reduces the dimension of the fusion feature image. The
network decoding module adopts the DeepLabv3+ decoding module to operate, and finally,
the image segmentation map is obtained.

Figure 5b shows the series network of DAMM and ASPP. It uses the trunk network
to extract feature images, and the feature images are convolved with an expansion rate
of 2 and a convolution kernel of 3 × 3. The results are sent into DAMM for spatial and
inter-channel pixel feature enhancement of feature images and then input into the ASPP
module for multi-scale target segmentation. Finally, the decoding and restoration of the
feature map are carried out according to the original network method.

2.4. Segmentation Model Based on HRNet

To improve the accuracy of coastline extraction, an enhanced network segmentation
model based on depth discrimination is proposed. It mainly includes data preprocessing,
depth feature extraction, similarity calculation, and loss minimization function calculation.
The output of the lth layer of the convolutional neural network is zl, and {Hl, Wl, Cl} is the
feature resolution.
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HRNet is adopted to achieve feature extraction, and the structure is shown in Figure 6.
HRNet consists of four network branches that are used to extract features of different scales.
In the last layer, multi-scale features are superimposed and fused, and the basic structure
of HRNet consists of a convolution layer and an upsampling layer.
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For the l-th convolutional network, its input data is zl−1, and then the corresponding
convolution expression is:

a = f (Zl−1 ∗W + b) (11)

where f (.) is a nonlinear corresponding function, and if the moving step of the convolution
kernel reduces the spatial dimension of the data in the process of feature extraction, upsam-
pling is used to expand the spatial dimension of the feature map to make the feature map
and the original input image have the same spatial scale. HRNet uses bilinear differences to
restore the spatial dimensions of feature maps. The convolutional neural network obtains
the depth feature vector corresponding to each pixel layer by layer and through superpos-
ing convolutional layer, up-sampling layer, and other networks. Softmax is used to classify
the extracted features. It is assumed that the convolutional neural network adopted has a
total of L layers, and then the l-th layer network is classifier Softmax:

p(n|z0,i ) =
exp(wL,n•zL−1,i)

n
∑

c=1
exp(wL,c•zL−1,i)

(12)

where z0,i is the i-th pixel of the input image, and p(k|z0,i) represents the probability that
sample pixel z0,i belongs to the k class. The essence of Softmax process can be regarded as
similarity calculation, which calculates the inner product of feature vector zL−1,i of pixel
z0,i as the similarity to judge the membership degree of pixel z0,i. Therefore, the parameter
vector wL,c of each class can be regarded as the corresponding category center of this class.
When the modules of the parameter vectors of each category are equal, the inner product
similarity between the depth features of the pixel to be classified and the category center is
transformed into the included angle between the high-dimensional depth features of the
comparison pixel and the category center of each category, that is, the category of the pixel
to be classified is judged by calculating the included angle between the depth features of
the pixel to be classified and the category center. Because the angle θi,1 between feature
point zL−1,i and category center wL,1 is the smallest, pixel z0,i is divided into class 1. At this
point, Softmax is transformed into:

p(n|z0,i ) =
exp

(
Sq cos(θn,i)

)
n
∑

c=1
exp

(
Sq cos(θc,i)

) (13)

Sq = |wL,t|•|zL−1,i| (14)

Therefore, to increase the distinctiveness of depth features and make the depth features
of similar pixels get to its corresponding category center, the included angle between
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category center wL,c in the Softmax and depth features of pixels is taken as a similarity for
measurement, and then the punishment factor β is added to make the training sample and its
corresponding category center have a smaller angle in the training stage. The corresponding
included angle is:

θt,I = arcos(wL,t·zl−1,i) (15)

For any pixel z0,i, assuming its category is t, then its probability of belonging to class t is:

p(t|z0,i ) =
exp

(
Sq cos(θn,i + β)

)
exp

(
Sq cos(θn,i + β)

)
+

n
∑

c=1
exp

(
Sq cos(θc,i)

) (16)

In the loss calculation stage, the classification probability is maximized according to
the maximum likelihood rule, and the classification loss function is obtained:

J = − 1
m

m

∑
i=1

lgp(yi|z0,i ) (17)

where m is the number of trained pixel samples; yi is the category of pixel i. When J takes
the minimum value, it forces the sample to move to the center of its category, making
the included angle smaller to compensate for the angle increase caused by the penalty
factor β. By comparing Figure 7a,b, it can be seen that traditional Softmax and improved
Softmax are used to calculate the probability that z0,i belongs to class l. When the two get
the same probability, the included angle between pixel z0,i and class center wL,1 in Figure 7b
is smaller than that in Figure 7a. Therefore, in the training stage, the feature of the pixel
sample is made to get close to its corresponding category center.
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Figure 7. SOFTMAX classification: (a) traditional SOFTMAX classification; and (b) improved SOFT-
MAX classification.

In the training stage, network parameters are updated by alternatively carrying out
forward and backward operations. In the backward stage, the gradient descent algorithm
is adopted to update network parameters:

w = w− λ
∂L
∂w

(18)

where w represents the parameters of each layer in the convolutional neural network; λ is
the learning rate, which is used to control the step length of network parameter update.

2.5. Coastline Recognition Algorithm Based on Image Straightening

Based on the above introduction, we have obtained the segmentation algorithms of the
two models, which need to be fused. Currently, the main fusion methods are: pixel-level
image fusion, feature set fusion, and decision set fusion [70].

Pixel-level image fusion directly fuses the pixel points of the image. The scale of original
image data results in time-consuming algorithm implementation. Without data processing,
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the advantages and disadvantages of the original sensor information will overlay and affect
the fusion effect. The requirements of hardware facilities are quite high. When carrying out
image fusion, the accuracy requires to be each pixel of the sensor data; As it is based on
pixel calculation, pixel information is susceptible to pollution, noise, and other interference,
so the effect is not stable.

Feature-level fusion is a process in which edge, shape, contour, local feature, and other
information are synthetically processed after feature extraction. Feature-level fusion includes
target state information fusion and target characteristic fusion. Feature level fusion includes
several modules: source image acquisition, image preprocessing, image segmentation, feature
extraction, feature data fusion, and target recognition. The feature fusion of an image is a kind
of cost processing, which reduces the amount of data, retains most of the information, and
still loses part of the details. The combination of original features form features, increases
the dimension of features, and improves the accuracy of the target. Feature vectors can
be directly fused or recombined according to the attributes of features themselves, and
edge, shape, and clearance light are all important parameters to describe features. Target
state feature fusion is a kind of target statistical feature based on multi-scale and multi-
resolution, and it extracts and describes the original data state of the image and requires
strict registration, and an image containing more image information can be obtained
ultimately. It conducts statistics of state information of an image and then performs pattern
matching. Its core idea is to achieve accurate state estimation of multi-sensor targets, and
it is effectively associated with prior knowledge, so it is widely used in target tracking.
The target feature fusion is the internal description of the feature extracted from the image
features according to the specific semantics, or the recombination of feature attributes.
These feature vectors represent abstract image information, and the features are directly
recognized by machine learning theory fusion, which increases the dimension of features
and improves the accuracy of target recognition. Target feature fusion is feature vector
fusion recognition, which generally deals with high-dimensional problems. In essence,
the fusion application is mostly pattern recognition. Compared with a single sensor, the
information provided by a multi-sensor increases the dimension of feature space and
enlarges the space of fine information feature scattering.

Decision-level fusion: on the basis of each sensor independently completing the de-
cision or classification, the recognition results of multiple sensors are fused to make the
global optimal decision. According to certain rules, the decision-level fusion can synthe-
size the source image after feature extraction and recognition and then obtain the fusion
image. The input of the decision is the cognitive framework of the target. The recognition
framework is formed after the basic processing of preprocessing, feature extraction and
recognition by observing the target in the same scene through homogeneous and heteroge-
neous sensors. The fusion result is obtained by optimization decision. The decision-level
fusion tends to be intelligent logic, and the recognition result of the integrated multi-sensor
is more accurate and effective than single recognition. The advantages of the decision-level
fusion are as follows: it has good real-time performance and self-adaptability, low data
requirements and strong anti-interference ability; it is able to efficiently be compatible with
multi-sensor environmental characteristic information; it has good error correction ability;
it can eliminate the error caused by a single sensor through proper fusion; and the system
can also obtain correct results.

As there are certain rules for the environment around the coastline, we firstly fuse
the decision sets of the dual-attention network and HRnet network mentioned above, and
then set thresholds to constrain pixel attributes. Let the probability that the pixel point (x,y)
extracted by the dual attention network is a coastline be P1(x,y) and the probability that
the pixel point (x,y) extracted by the HRnet network is a coastline be P2(x,y). P = (P1(x,y) +
P2(x,y))/2 and set a threshold T to constrain the pixel properties, which is chosen to be 0.6
in this paper. Secondly, with the coastline as the center and D as the width, the image data
around the center line are obtained, and these data are straightened out to visually display
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and analyze image data as show Figure 8. The areas belonging to the coastline are retained
and others are removed.
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Figure 8. Schematic diagram of coastline straightening.

3. Experiment Analysis

The multi-spectral data is taken by Ziyuan 3 satellite, including Sri Lanka data in four
bands. Linux system, image server, seven 12G graphics cards driver version 430.64, CUDA
10.1, and Python loaded deep learning framework were used to carry out the research.

The island of Sri Lanka is roughly pear-shaped, as shown in Figure 9. Its central and
southern parts are plateaus, of which the Pidulu Talagra Mountain is 2524 m above sea
level, the highest point in the country. The northern and coastal areas are plains, of which
the northern coastal plain is wide, and the southern and western coastal plains are relatively
narrow, with an elevation of 150 m. There are a large number of rivers in Sri Lanka, with
16 main rivers, most of which originate in the central mountainous area, with short river
basin, rapid flow, as well as very abundant water flow. The longest river is the Mahaweli,
which is 335 km long and flows into the Indian Ocean near the Port of Trincomalee. There
are scattered lakes in the eastern plain, among which Batticalo Lake is the largest, with an
area of 120 square kilometers. Therefore, in this study, the representative remote sensing
images are selected for experiments, as shown in Figure 10.
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3.1. Introduction to Evaluation Indicators

To verify the performance of the image quality algorithm, image quality is evaluated
from the objective dimension. AG is the mean gradient, SD is the standard deviation, SF is
the spatial frequency, and EI is the edge intensity.
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(19)

To verify the image segmentation effect, we introduce evaluation indexes such as
AOM, AVM, AUM, and CM to demonstrate the performance of the algorithm [71].

AOM =
Rs∩Rg
Rs∪Rg

AVM =
Rs−Rg

Rs

AUM =
Rg−Rs

Rg

CM = 1
3{AOM + (1− AVM) + (1− AUM)}

(20)

where Rg is the gold standard and Rs is the segmentation result of the algorithm. AOM
and CM are directly proportional to the algorithm performance, while AVM and AUM are
inversely proportional to the algorithm performance.

To verify the network performance, the MIOU (Mean Intersection over Union) is
introduced to measure the convergence of the algorithm [72]:

MIoU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(21)
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3.2. Image Enhancement

The original image contains large noise, and the overall image is dark. The histogram
algorithm [23] redistributes the pixel values to enhance the pixel values of the dark part and
reduce the pixel values of the contest part, thus improving the overall performance of the
image. The Gaussian algorithm [61] filters the image and realizes the image enhancement,
and the image is smooth. As shown in Figure 11a, the short coastline image includes
clouds (3%), ground objects (88%), and oceans (9%). As shown in Table 1, the ground
objects are abundant. The algorithm highlights the detailed features of the image, and the
histogram algorithm constructs the mapping to achieve image enhancement. The model
constructed by the Gaussian filtering algorithm has an obvious effect on image smoothing.
As shown in Figure 11b, the long coastline image includes clouds (6%), ground objects
(40%), and oceans (54%). As shown in Table 2, there are more features, oceans, and clouds
in the highlighted area, and the algorithm performance is reduced to a certain extent. As
shown in Figure 11c, multi-coastline images include clouds (8%), ground objects (72%),
and oceans (20%). As shown in Table 3, due to the influence of shooting direction and
clouds, the coastline shows two sections, and the algorithm effect is reduced. As shown in
Figure 11d, the cloud-shielded coastline image includes thin clouds (8%), ground objects
(80%), and oceans (10%). As shown in Table 4, as the whole image is blurred due to the
influence of thin clouds, the improvement of all algorithms is limited. Through the image
comparison effect, it can be seen that the PCA constructed in this paper can extract the
principal components of the image and suppress the noise, showing good results in vision
and indicators.

Table 1. Short coastline image quality.

Algorithm AG SD SF IE

Original 8.7 46.3 34.2 5.1
Histogram 9.1 56.6 35.3 6.3

Gaussian filter 8.8 48.1 47.1 5.6
Ours 10.1 58.3 48.5 7.1

Table 2. Long coastline image quality.

Algorithm AG SD SF IE

Original 8.5 44.1 35.1 4.8
Histogram 9.3 58.3 34.2 6.0

Gaussian filter 9.1 49.2 48.5 5.3
Ours 9.9 59.4 49.3 6.9

Table 3. Multiple coastlines image quality.

Algorithm AG SD SF IE

Original 8.3 45.2 33.1 4.5
Histogram 8.5 51.2 34.3 6.1

Gaussian filter 8.3 46.2 46.3 5.4
Ours 9.5 54.3 47.2 6.5

Table 4. Cloud shielded coastline image quality.

Algorithm AG SD SF IE

Original 7.9 41.3 36.3 4.2
Histogram 8.5 52.4 31.5 5.4

Gaussian filter 8.1 48.5 42.1 5.7
Ours 9.3 51.8 46.3 6.1
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3.3. Attention Network Experiment

We proposed the dual attention network, which has series and parallel structures.
Therefore, we compared the Deeplabv3+ with series and parallel networks. In general, the
network based on Deeplabv3+ can realize coastline identification, and with the deepening
of the network structure, the identification effect shows an upward trend. Both series and
parallel dual attention mechanisms mentioned in this paper improve the performance of the
algorithm. The parallel network extracts spatial information and channel information and
integrates them through different branches to improve algorithm performance. As shown
in Table 5, the coastline is short, and the extraction accuracy is the highest. As shown in
Table 6, with the increase of the coastline length, the accuracy of the algorithm decreases. The
parallel performance can still reach 0.90. As shown in Table 7, an image contains two coastal
regions, and the influence of thick clouds increases the difficulty of algorithm recognition,
resulting in a significant decrease in the algorithm effect. As shown in Table 8, the whole
image is blurred due to the influence of thin clouds, but the coastline is short, so it can
be better identified by the parallel form of Deeplabv3+, which proves the effectiveness of
the algorithm. As can be seen from Figure 12, the attention network responds strongly in
the region where the ocean is located, realizing the distinction between marine and land
surface features. However, some objects are still incorrectly identified, which will be further
removed by the subsequent algorithm. Based on the above analysis, this paper will adopt
the parallel method to carry out follow-up research.
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Table 5. Short coastline extraction effect.

Algorithm Number of Basic Network
Layers AOM AVM AUM CM

Deeplabv3+ 16 0.85 0.24 0.22 0.80
Deeplabv3+ 32 0.91 0.21 0.19 0.84

In series 32 0.93 0.18 0.16 0.86
In parallel 32 0.95 0.16 0.14 0.88

Table 6. Long coastline extraction effect.

Algorithm Number of Basic Network
Layers AOM AVM AUM CM

Deeplabv3+ 16 0.78 0.33 0.31 0.71
Deeplabv3+ 32 0.81 0.31 0.26 0.75

In series 32 0.84 0.27 0.23 0.78
In parallel 32 0.90 0.25 0.18 0.82

Table 7. Multiple coastlines extraction effect.

Algorithm Number of Basic Network
Layers AOM AVM AUM CM

Deeplabv3+ 16 0.72 0.35 0.29 0.69
Deeplabv3+ 32 0.78 0.32 0.24 0.74

In series 32 0.83 0.28 0.23 0.77
In parallel 32 0.88 0.24 0.19 0.82

Table 8. Cloud sheltered coastline extraction effect.

Algorithm Number of Basic Network
Layers AOM AVM AUM CM

Deeplabv3+ 16 0.83 0.29 0.25 0.76
Deeplabv3+ 32 0.86 0.26 0.21 0.80

In series 32 0.90 0.22 0.19 0.83
In parallel 32 0.93 0.19 0.16 0.86
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As shown in Figure 13, as the DeepLabv3+ network is relatively deep, there is insta-
bility and slow training during training. The algorithm proposed in this paper constructs
an attention model from the perspective of space and channel. The serial attention model
reaches 84% when it is stable, and the parallel attention model reaches 86%. Based on the
above analysis, it can be seen that the parallel attention model has stronger stability. There-
fore, in the subsequent experiments, we will adopt the parallel attention model structure.
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3.4. HRNet Network Experiment

In the HRNet network, parameter β determines the degree to which pixel features get
close to their category center, which determines the discrimination of features. β = [0.1, 1] is
selected for analysis, and kapa coefficient is calculated under different values of β. As shown
in Figure 14, the segmentation accuracy is improved in the process that β increases from 0.1 to
0.5, and the optimal value is obtained when β = 0.5. Later, with the continuous increase of
β, the segmentation accuracy decreases. Therefore, our follow-up study will be carried out
when β = 0.5. The extraction effect of HRnet is shown in Figure 15. Then, the loss function is
modified to obtain the classification effect of seawater and other substances.
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3.5. Coastline Extraction Effect Display

To visually display the effect of the algorithm, we take the coastline as the center and
the adjacent 600 pixels as the range to straighten the image, as shown in Figure 16a. Due
to the short coastline, it is less affected, and the straightening effect is the best. The upper
and lower parts of the image show the land and ocean areas, respectively. As shown in
Figure 16b, due to the long coastline and the occlusion in the cloud area above the image,
some coastlines in the cloud cannot be extracted. Coupled with the long coastline, the
phenomenon of image blur occurs during mapping. According to Figure 16c, the coastline is
divided into three sections due to image capture and cloud occlusion, which are shown in red,
green, and yellow. As shown in Figure 16d, the image is blurred as a whole, and there are
wave images on the coastline, making the segmentation effect fluctuate. However, in general,
the algorithm we constructed realizes the extraction of coastline from the perspective of
image enhancement, dual attention network recognition, Hrnet network recognition, and
decision set fusion, so it has a good effect.
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4. Conclusions

In the face of the actual demand for coastline extraction and the problem of difficult
coastline recognition, we established models from the perspective of image enhancement,
dual attention network recognition, and HRENT network construction, and realized coast-
line extraction through the fusion idea of decision sets. Experiments show that the proposed
algorithm accurately focused on the difference between sea and land to build a coastline
straightening model, aiming to realize the intuitive display of the coastline. The specific
innovations can be summarized as follows: (1) a PCA image enhancement algorithm was
proposed based on remote sensing image features; (2) the spatial attention and channel
attention models were proposed, and suspected regions were extracted from parallel and
series perspectives; and (3) the improved Softmax function improved HRENT network
performance. The idea of decision set fusion was adopted to realize coastline extraction,
and a coastline straightening algorithm was proposed to intuitively display the effect.
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However, in the research process, there are still the following problems: (1) remote
sensing images have high resolution, and still take a lot of time during training and testing,
which cannot meet the requirements of real-time detection; (2) the decision set fusion
method currently adopted relies on the same group of data to carry out the training of
dual attention network and HRENT network, and further studies are needed to determine
if the algorithm is extensible; and (3) in the process of image straightening, due to the
vertical angle problem, there is the problem of insufficient spatial resolution in the sampling
process, resulting in poor visual effects or blurred images, so we will carry out further
studies based on the above issues.
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