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Abstract: Short-term rainfall prediction by radar echo map extrapolation has been a very hot area of
research in recent years, which is also an area worth studying owing to its importance for precipitation
disaster prevention. Existing methods have some shortcomings. In terms of image indicators, the
predicted images are not clear enough and lack small-scale details, while in terms of precipitation
accuracy indicators, the prediction is not accurate enough. In this paper, we proposed a two-stage
model (two-stage UA-GAN) to achieve more accurate prediction echo images with more details.
For the first stage, we used the Trajectory Gated Recurrent Unit (TrajGRU) model to carry out a
pre-prediction, which proved to have a good ability to capture spatiotemporal movement of rain
field. In the second stage, we proposed a spatiotemporal attention enhanced Generative Adversarial
Networks (GAN) model with a U-Net structure and a new deep residual attention module in order
to carry out the refinement and improvement of the first-stage prediction. Experimental results
showed that our model outperforms the optical-flow based method Real-Time Optical Flow by
Variational Methods for Echoes of Radar (ROVER), and some well-known Recurrent Neural Network
(RNN)-based models (TrajGRU, PredRNN++, ConvGRU, Convolutional Long Short-Term Memory
(ConvLSTM)) in terms of both image detail indexes and precipitation accuracy indexes, and is visible
to the naked eye to have better accuracy and more details.

Keywords: precipitation nowcasting; GAN; attention mechanism; spatiotemporal prediction

1. Introduction

Precipitation nowcasting, which refers to forecast rainfall in a very short term (often in
0–6 h) at the minute level, kilometer level, or street level [1,2], has the following characteris-
tics: stronger timeliness, higher resolution, and higher accuracy. Precipitation nowcasting
mainly includes nowcasting from a variety of observations as well as different kinds of
numerical weather models. It is of great significance to protect people’s lives and property.
From 17 July 2021, the torrential rain disaster in Henan Province has caused huge economic
losses in Zhengzhou, Xinxiang, Hebi, Zhoukou, and other cities. The yields of crops such as
corn, peanuts, and soybeans were also seriously and negatively affected [3]. Precipitation
nowcasting can forecast heavy rain for hours in advance. Therefore, it plays an important
role in the early prevention and control of rainstorm disasters and minimizing damage
and losses.

Typically, the traditional weather forecasting method, also known as Numerical
Weather Prediction (NWP), is a prediction scheme based on fluid dynamics and thermody-
namic equations. Recent studies have sought to assimilate radar and lighting observations
into NWP models using various data assimilation (DA) techniques with the aim of solving
problems related to spinup in high-resolution NWP, thus improving short-term severe
weather prediction [4]. Although recent advances in numerical weather prediction have
enabled us to predict atmospheric dynamics at very high resolutions, the computational
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cost of nowcasting with frequent update cycle requirements is sometimes too high [5]. In
addition, even small disturbances in initial conditions, boundary conditions, and rounding
errors can cause the descending accuracy of the NWP method [6,7].

With the development of observation technology and the increase in the number of
observation satellites and radars, prediction methods based on the extrapolation of radar
echo maps to infer short-term rainfall have shown good prediction performance. The
radar echo maps have a high correlation to the rainfall rate through the intensity of the
radar echo. By extrapolating the radar echo maps, the short-term precipitation intensity
within the area can be predicted. To convert radar echo maps into rainfall intensity maps,
some methods can be used [8]. An example of radar echo image is given in Figure 1. It
is a Constant Altitude Plan Position Indicator (CAPPI) radar echo map captured by a
Doppler radar at an altitude of 2 km, covering an area of 512 km × 512 km around Hong
Kong. The radar echo map was originally a two-dimensional array. By grouping different
echo intensities according to different thresholds and assigning different colors to different
groups, a colored radar echo image is generated, as shown in Figure 1.
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Figure 1. An example of radar echo image centered in Hong Kong City at 24 May 2015,
02:48:00 (UTC).

There are five general categories [9] that current radar echo extrapolation methods
belong to: object-based methods, area-based methods, statistical methods, probabilistic
methods, which are all traditional methods, and artificial intelligence (AI) methods, which
are modern methods becoming popular in recent years. Thunderstorm Identification,
Tracking, Analysis, and Nowcasting (TITAN) is an object-based methodology featuring
simplicity [10] that can forecast storm movement depending on a weighted linear fit to
the previous storm, with inability to capture nonlinear patterns. Conventional area-based
nowcasting methods including tracking of radar echoes by correlation (TREC) [11] and the
McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) [12],
provided by Germann and Zawadzki, tend to calculate the motion tendency of the rain
fields in certain areas. TREC predicts the radar motions by obtaining the quantitative and
qualitative maximum correlations between two neighboring arrays of radar reflectivity
factor data, while MAPLE uses a modified semi-Lagrangian advection scheme to estimate
the motion field of precipitation. Since TREC usually has a poor forecasting effect on rapidly
changing convective precipitation and has discontinuities in the resulting vector field,
continuity of TREC vectors (COTREC) was proposed by Li to improve the consistency [13].
Classical statistical methods include spectral prognosis (S-PROG) [14], a nowcasting model
for rain fields that have both spatial and dynamic scaling properties, by using a notch filter
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to carry out spectral decomposition and scale-dependent temporal evolution. Probability
forecasts [15], another part of the McGill Algorithm, improve the accuracy of nowcasting
by adding probabilistic information, belonging to the category of probabilistic methods. In
order to improve the radar-echo extrapolation prediction technology, many scholars have
introduced the widely-used optical flow method in the field of computer vision to track the
echo motion of the radar-echo. The ROVER algorithm [16] is a typical optical flow model.
One of the known weaknesses in the above-mentioned traditional methods is that those
models cannot take abundant advantage of the historical sequential information. They also
cannot provide an end-to-end prediction of an entire sequence.

To solve these two problems, also benefiting from the development of the computation
power, machine learning methods are widely applied in the field of computer vision as well
as in extrapolation of radar echo maps, which is substantially a video prediction problem.
Klein et al. [17] added a dynamic convolution layer to the traditional Convolutional Neural
Networks (CNNs) structure to generate two prediction probability vectors to predict
precipitation echoes. Shi E et al. added RNN to the dynamic convolutional layer proposed
by Klein to construct Recurrent Dynamic Convolutional Neural Networks (RDCNN) [18],
which has achieved good results in both forecast accuracy and forecast timeliness. Since
the traditional LSTM cannot realize the extraction of spatial features, Shi et al. changed the
input-to-state and state-to-state transform to convolution, and ConvLSTM network was
proposed [19]. In order to adapt to the non-temporal and spatial invariance of most motions
in practical situations, Shi et al. improved the model and introduced a trajectory GRU
model (TrajGRU) [20] with learnable convolutions. Singh [21] also realized the prediction
based on radar echo image sequence by adding a convolution structure on the basis of
recurrent neural network to adapt to the spatiotemporal dependence of radar echo images.
Feng et al. [22] conducted long-term and case-by-case tests on radar nowcasting using
neural networks and related cross-over algorithms. Results showed that the accuracy
of neural networks on moderate rainfall intensity test items was significantly improved.
Wang et al. [23] proposed an improved ST-LSTM cell (Spatiotemporal LSTM) based on
LSTM cells and applied it to a new end-to-end model PredRNN. Compared with PredRNN,
a gradient unit module was added to construct PredRNN++ [24] to further capture the
long-term memory, as also presented by Wang et al. in 2019. Agrawal et al. [25] regarded
precipitation forecasting as a conversion problem from pictures to pictures, and used a
convolutional neural network with a U-net structure to achieve the forecasting purpose.
The most obvious disadvantage of models based on RNN is that errors will accumulate
over time. Moreover, due to the use of the MSE or MAE loss function, the models tend
to reduce the average error of the entire radar echo map, resulting in a blurry predicted
picture. Based on the above two reasons, some scholars proposed to apply GAN to generate
more realistic radar echo extrapolation prediction [26–29]. Usually, GAN consists of two
parts: a generator to generate ‘fake’ images, and a discriminator whose task is to identify
‘fake’ images from the generator. Liu and Lee introduced a Meteorological Predictive
Learning GAN model (MPL-GAN), which is based on conditional GAN, dealing with
the uncertainty and sharpening the prediction [27]. Ravuri provided deep generative
models (DGMs) [28] using two discriminators to correct the output of the generator and
enhance details. A Conditional Generative Adversarial 3-D Convolutional Neural Network
(denoted as ExtGAN) [29] was presented by Wang et al., using a combination of CNN
model and GAN model to refine the prediction.

Although the existing GAN model improves the clarity of the predicted echo maps
and enhances the performance of details, the capability of improving prediction accuracy
performance is not satisfactory. The prediction accuracy, especially for light and moderate
precipitation, needs to be further improved [27,29]. In ref. [30], a two-stage network was
proposed, wherein the second-stage network was used to further refine the raw prediction
by the first stage network. Inspired by ref. [30], we proposed a two-stage GAN-based
precipitation nowcasting model in this paper. To merge the advantage of RNN and GAN
models, in the first stage, as a pre-prediction process, TrajGRU model was used to capture
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the spatiotemporal transformation to give the first-stage prediction. In the second stage,
a deep residual attention-enhanced GAN model was proposed to refine the first-stage
prediction, which further enhances the prediction accuracy and sharpen the predicted
maps with more details. A real-world dataset of radar echo maps (public benchmark
dataset HKO-7), covering Hong Kong and surrounding areas, was used in this paper to
train and evaluate the proposed model fairly. It is known that both prediction accuracy
and image refinement with more details are important [28,29]. Therefore, we evaluated
the prediction performance using two categories of indicators. The first focuses on echo
image refinement index and then Root Mean Square Error (RMSE), Structural Similarity
Index Measure (SSIM), and Sharpness were employed [29]. The second is the widely-used
accuracy indicators for precipitation prediction [19,20,29,30], including critical success
index (CSI), Heidke Skill Score (HSS), and False Alarm Rate (FAR). Our goal was to further
enhance the precipitation prediction accuracy, while handling blurry extrapolation and
increasing the small-scale details of predicted radar echo maps. Experiments showed that
our model outperforms traditional methods (ROVER) and some deep-learning models
(ConvLSTM, ConvGRU, TrajGRU, and PredRNN++) in terms of both image evaluation
metrics and prediction accuracy metrics, which is demonstrated in Section 3.3.

This paper is developed in the following order. The analysis and definition of the
extrapolation problem of the radar echo map, as well as the detailed information of our
proposed model are demonstrated in Section 2. In Section 3, experimental comparisons of
the models are presented. Section 4 presents the conclusions.

2. Methods

To obtain the short-term rainfall intensity prediction using the radar echo map extrapo-
lation method, first we need to produce a sequence of predicted radar echo maps, and then
the predicted radar echo maps can be converted into predicted rainfall intensity maps [8].
In this paper, we focused on generating a very close prediction to the real future radar
echo image sequence by the previous sequence extrapolation. Since the RNN and CNN
model mentioned before often bring blurry prediction results, and the prediction accuracy
of some GAN models is unsatisfactory [31], we now propose a two-stage GAN-based
prediction and refinement model. We applied TrajGRU in the first stage to obtain a rough
prediction. For the second stage, we proposed a GAN model to further enhance prediction
accuracy and, more importantly, achieve more small-scale detailed prediction. To let the
second-stage network have better generation ability, three innovative ideas were applied to
our model:

• A U-Net structure was used to build the generator, so that feature maps at differ-
ent scales can be preserved and fused through up-sampling, down-sampling, and
integrating global and local skip connections in the decoder part.

• A stacked residual attention module was designed and added into the decoder part of
our generator to extract and adaptively rescale the multiscale sequence- and spatial-
wise features. Experiments showed that the attention mechanism in the decoder
enhanced the generator to obtain better prediction accuracy.

• In most of the existing two-stage models, the input of the second stage contains only
the output of the first stage so that the second stage is only a refinement of the first
stage. However, the data input to our second-stage generator consisted of one image
generated by the first stage, and four history truth images in order to let our generator
obtain more historical spatiotemporal information. By reviewing a certain amount
of historical radar echo information, the generator becomes not only a refinement
module, but also an optimization module with predictive ability.

In this section, we first state the problem in formulation, and then introduce our
two-stage prediction model in detail.
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2.1. Formulation of Prediction Problem

In general, the radar echo data are recorded and saved as a grayscale image every
6 min [19,20], which means 10 frames will be saved in a single hour. We can predict the
precipitation in the next hour through the radar echo maps of the past hours. In this work,
we actually usde the previous 10 frames of radar echo map to predict the next 10 frames
of the radar echo map. Then the predicted radar echo intensity value can be converted
to precipitation intensity value [8]. Essentially, using radar echo map extrapolation to
do precipitation nowcasting is a spatiotemporal sequence prediction [19], which receives
radar echo images in the past as input and outputs possible estimation of future radar echo
images. Using a tensor Xt ∈ RC×W×H to represent the observed radar echo maps at time t,
with C, W, H, representing the channel number of the radar echo image, and the width
and height of the images. We can describe the radar echo map extrapolation problem as (1):

X̂t+1, . . . , X̂t+O = argmax
Xt+1,...,Xt+O

p(Xt+1, . . . , Xt+O|X̃t−I+1, X̃t−I+2, . . . , X̃t) (1)

Here, p is the conditional probability. X̂t+1 is referred to as the prediction at time t + 1,
and X̃t means the real radar echo image at time t. With function (1), we expect to find
the length-O prediction map sequence closest to the real radar echo maps: t + 1 ~ t + O,
through the real radar echo maps in the past from time t− I + 1 to time t. In other words,
I represents the number of images input to the model, and O represents the number of
prediction outputs.

2.2. Network Structure

Figure 2 illustrates the structural framework of the proposed model. The model is
composed of two stages: the pre-prediction stage on the left with a gray background and
the refinement stage on the right with a yellow background. The first stage employs the
TrajGRU model. Unlike the original TrajGRU model [20], which takes 5 frame inputs and
outputs 20 frames, our input here was 10 frame inputs, and the output was also 10 frames.
By increasing the number of input echoes, we allow the model to obtain more historical
radar echo information and more spatiotemporal transformation can be extracted.
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Table 1. Encoder part in the first-stage prediction model.

Name Kernel Stride Padding L Channels
Input/Output

Conv1 7 × 7 5 × 5 1 × 1 - 1/8
TrajGRU1 3 × 3 1 × 1 1 × 1 13 8/64

Conv2 5 × 5 3 × 3 1 × 1 - 64/192
TrajGRU2 3 × 3 1 × 1 1 × 1 13 192/192

Conv3 3 × 3 2 × 2 1 × 1 - 192/192
TrajGRU3 3 × 3 1 × 1 1 × 1 9 192/192

Table 2. Forecaster part in the first stage prediction model.

Name Kernel Stride Padding L Channels
Input/Output

TrajGRU1 3 × 3 1 × 1 1 × 1 13 192/192
DeConv1 4 × 4 2 × 2 1 × 1 - 192/192
TrajGRU2 3 × 3 1 × 1 1 × 1 13 192/192
DeConv2 5 × 5 3 × 3 1 × 1 - 192/64
TrajGRU3 3 × 3 1 × 1 1 × 1 9 64/64
DeConv3 7 × 7 5 × 5 1 × 1 - 64/8

Conv4 1 × 1 1 × 1 0 × 0 - 8/1

The second stage is a deep residual attention-enhanced GAN model. Note that the
input to our GAN is composed of 5 frames of radar echo maps, one predicted echo map
by the first stage and the last 4 frames from the past 10 real echo maps. The output was
refined 10 echo maps, in pursuit of higher prediction accuracy and more small-scale details.
Details of the two stages are stated in the following subsection.

2.2.1. First Stage: Spatiotemporal Prediction Net

The purpose of the first stage is to use many and past true radar echo images to find the
spatial-temporal variation regularity between the past radar echo sequences, and to make a
rough prediction through this spatial-temporal regularity. The TrajGRU model [20] was
employed in the first stage prediction. It can actively learn the location-variant structure for
recurrent connections, since the local correlation structure of consecutive echo maps will be
different for different spatial locations and timestamps, especially for motion patterns such
as rotation and scaling. The main formula of TrajGRU is shown in Equation (2).

Ut,Vt= γ(Xt,Ht−1)

Zt= σ
(
Wxz ∗ Xt + ∑L

l=1W
l
hz ∗warp(Ht−1,Ut,l ,Vt,l)

)
Rt= σ

(
Wxr ∗ Xt + ∑L

l=1W
l
hr ∗warp(Ht−1,Ut,l ,Vt,l)

)
H′t= f

(
Wxh ∗ Xt +Rt ◦

(
∑L

l=1W
l
hh ∗warp(Ht−1,Ut,l ,Vt,l)

))
Ht= (1− Zt) ◦ H′t + zt ◦ Ht−1

, (2)

In this formula, L refers to the number of permitted links. Ut,Vt ∈ RL×H×W are the flow
fields used to store local connections, whose generating network is γ. W l

hi, W
l
h f , W l

hc,W l
ho

indicate the weights for projecting the channels. ‘*’ stands for convolution and ‘◦’ stands
for the Hadamard product. Warp function generates location from Ut,Vt through the
bilinear sampling method [32,33]. DefineM = warp(I , U, V) whereM, I ∈ RC×H×W

and U, V ∈ RH×W , then:

Mc,i,j =
H

∑
m=1

W

∑
n=1
Jc,m,nmax

(
0, 1−

∣∣i + Vi,j −m
∣∣)max

(
0, 1−

∣∣j + Ui,j − n
∣∣) (3)
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It determines that TrajGRU is efficient in capturing the spatiotemporal correlations
and achieved good performance for precipitation nowcasting. It is very suitable as the first
stage of our model. The first stage prediction model is an encoder–forecaster structure. The
detailed parameters of the encoder and forecaster are shown in Tables 1 and 2.

In the two tables, the two dimensions in kernel size, stride size, and padding size
represent height and width. L stands for the number of state-to-state transition links. The
number of input channel and output channel is also given in the tables. Since no major
changes are made to the original TrajGRU but the number of input and output frames and
parameters are modified, the first-stage pre-prediction model will not be introduced too
much here. We focus on the deep residual attention enhanced GAN model in the second
refinement stage.

2.2.2. Second Stage: Detail Refinement Stage

Although TrajGRU has achieved a high prediction accuracy [20,24,29], it can be seen
from the naked eye that the predicted radar echo image is very blurred. As shown in
Figure 3 and discussed in refs. [28,29], this is a common problem that appears in some
ML-based models. Such results are usually related to two factors. (1) The loss function
usually employs the MSE/MAE of the predicted images, which makes the model prediction
results tend to be smooth and mean prediction [34,35]. Moreover, the predictability of radar
echo is related to the echo scale, and small-scale high frequency echo details usually have
low predictability [12,13,36–38]. To deal with this “blurry” problem, a U-Net shaped GAN
with deep residual Attention block (UA-GAN) model was proposed in the second stage,
the detail-refinement stage.
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truth image: (a) ground truth; (b) result by using the first stage prediction model.

General description. As shown in Figure 2, UA-GAN consists of a generator and a
discriminator, and the discriminator is only used during model training. The generator
employs an encoder–decoder model, which are described in detail in the following para-
graphs starting with “Encoder of Generator” and “Decoder of Generator”. The “2DSRAB”
module is an important module we proposed and used in the “Decoder of Generator” part,
so this module is illustrated in a separate paragraph starting with “2DSRAB in Decoder”
before the description of the decoder part.

Generator. The structure of the proposed generator is illustrated in Figure 4, in
which different colored rectangles represent different processing modules. We adopted
the structure of U-Net to build the generator. It employs a encoder–decoder with global
multi-scale skip connections to retain the multi-scale spatial-temporal feature maps in the



Remote Sens. 2022, 14, 5948 8 of 19

encoder, and integrates local residual learning in our proposed attention model (2DSRAB)
of decoder part to adaptively rescale multi-scale spatiotemporal features for guiding a
high-to-low level residual prediction generation. The input form of the generator is also
the key for the better performance of UA-GAN network. As for the input in Figure 4, it
is made up of five frames, including one frame which is the output of the first stage, and
four ground truth frames, which are also part of the input sequence of the first stage. One
frame is the first stage’s pre-prediction result which our generator will take in to carry
out the optimization and refinement, and these four ground truth images are always the
last four frames input to the first stage. In other words, in the second stage, each frame is
actually optimized and refined individually by the generator. For example, the input of
the first stage is the real image from time point t− 9 to t, and the output is from time point
t + 1 to t + 10. In the second stage, when we want to predict the echo image at time point
t + x, the first frame input to the generator is the predicted image by the first stage at time
point t + x, and the last four frames are real images in the past time point t− 3 to t. By
this input policy, the generator can not only enjoy the relatively accurate prediction results
generated by TrajGRU in the first stage and focus on improving the small-scale details
of the prediction maps, but also can take advantage of the original historical radar echo
maps, from which the required spatial and temporal features can be captured to further
improve the prediction accuracy. These five frames of radar echo maps will be sent to the
generator as five different channels, that is, when the width and height of the input radar
echo maps are 256, the actual size of the tensor fed to the generator is 5 * 256 * 256. Thus,
in the generator we actually utilized 2D convolution instead of 3D convolution, which
reduces the overall parameter amount of the model.
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frame is optimized and refined at a time by the generator in UA-GAN.

Encoder of the Generator. In the encoder part, we continuously downsampled the
input radar echo images using an eight-layer convolutional network, together with Batch-
Norm and LeakyReLU modules. In Figure 4, Conv2D modules are represented using
dark blue rectangles, BatchNorm modules using light yellow rectangles, and LeakyReLU
modules using grass green. The first layer has only one Conv2D module. The second
to seventh layers have the same structure, which consists of LeakyReLU, Conv2D and
BatchNorm in order, and the last layer has only one LeakyReLU module. The detail of
parameters in the encoder part are listed in Table 3. The feature maps output by each layer
were copied and fused by skip connections to the decoder side.
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Table 3. Encoder part of generator used in UA-GAN (Stage 2).

Name Kernel Stride Padding Channels
Input/Output

Conv1 4 × 4 2 × 2 1 × 1 5/64
Conv2 4 × 4 2 × 2 1 × 1 64/128
Conv3 4 × 4 2 × 2 1 × 1 128/256
Conv4 4 × 4 2 × 2 1 × 1 256/528
Conv5 4 × 4 2 × 2 1 × 1 528/528
Conv6 4 × 4 2 × 2 1 × 1 528/528
Conv7 4 × 4 2 × 2 1 × 1 528/528
Conv8 4 × 4 2 × 2 1 × 1 528/528

2DSRAB in the Decoder. In the decoder part, we designed a new spatiotemporal
attention mechanism, two-dimensional stacked residual attention block (2DSRAB), and
applied it to the decoder side of the UA-GAN network generator. Instead of treating all
features equally, a spatiotemporal attention module was proposed for temporal-wise and
spatial-wise weightings, which strengthens the discriminative learning ability and the
representational power of deep networks. The structure of this spatiotemporal attention
block is shown in Figure 5. On the left of Figure 5 is the basic attention block, in which the
light purple rectangle represents the average pooling layer, and the light green rectangle
represents the max pooling layer. The input of the basic attention block has the size of
B ∗ C ∗W ∗ H, where B stands for batch size, C stands for channel, and W and H stand for
width and height. Thus, in the basic attention block, we first calculated the average and
maximum value on an image scale, in other words, on a spatial scale. Then, we compute
the average and maximum values on a channel scale. Since five radar echo images were
input into the generator as five different channels, the attention on the channel scale just
means on the temporal scale. Max pooling filters out more recognizable features, while
average pooling retains more common features. Both average and max-pooled features
are simultaneously used to greatly improve the representation power of networks. The
short-cut eases the flow of information. In this basic attention module, we initially realized
the construction of a spatiotemporal attention mechanism.
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Using this basic attention block, we could build a residual attention block by stacking
two basic attention blocks, one Conv2D module, and local skip connection, displayed on
the upper right of Figure 5, with the basic attention block colored orange. This is called
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residual attention block. The lower right of the Figure 5 exhibits the 2DSRAB module,
consisting of the N residual attention module (colored pink), one Conv2D module, and
local skip connection. Local skip connection can stabilize the training of very deep networks
and ease the flow of spatiotemporal information. The 2DSRAB module is quite beneficial
to form very deep trainable prediction and refinement networks, which adaptively rescales
and blends multi-scale spatiotemporal features.

Decoder of the Generator. The decoder also consists of an eight-layer convolutional
network, together with a BatchNorm module and ReLU module. In Figure 4, the ReLU
module is colored dark green, the Deconv2D module is colored gray, and the Dropout
module colored light brown. The first to the seventh layers consist of ReLU, DeConv2D,
and BatchNorm in turn. Additionally, the eighth layer contains only ReLU and DeConv2D.
At the same time, in the first, second, and third layers, a dropout module was added
to randomly discard some neurons to reduce the joint effect of feature extraction. This
also improves the adaptive ability of individual feature extractors, achieving the goal of
improving the generalization ability of the network. To build a better decoder, we added
the 2DSRAB module in three places of the decoder, which were the fourth, fifth, and
sixth layers respectively. In Figure 4, the 2DSRAB module is represented by a rose-red
rectangle, and the N in N-2DSRAB represents the depth of this attention module. It is
worth mentioning that, before the decoder actually outputs the final results, one of the
input frames, the prediction echo frame provided by the first stage, was also added to the
final output result, thereby retaining the important original information initially input into
the generator. The details of the parameters in the decoder are shown in Table 4.

Table 4. Decoder part of the generator used in UA-GAN (Stage 2).

Name Kernel Stride Padding Depth Input/Output
Channels

DeConv1 4 × 4 2 × 2 1 × 1 - 528/528
DeConv2 4 × 4 2 × 2 1 × 1 - 1024/528
DeConv3 4 × 4 2 × 2 1 × 1 - 1024/528
DeConv4 4 × 4 2 × 2 1 × 1 - 1024/528
2DSRAB1 1 × 1 1 × 1 0 × 0 4 528/528
DeConv5 4 × 4 2 × 2 1 × 1 - 1024/256
2DSRAB2 1 × 1 1 × 1 0 × 0 2 256/256
DeConv6 4 × 4 2 × 2 1 × 1 - 528/128
2DSRAB3 1 × 1 1 × 1 0 × 0 1 128/128
DeConv7 4 × 4 2 × 2 1 × 1 - 256/64
DeConv8 4 × 4 2 × 2 1 × 1 - 128/1

Discriminator. The training goal of the discriminator of the UA-GAN model was
used to judge the real radar echo map as true and the prediction map generated by the
generator as false. By adopting a five-layer convolutional structure, the discriminator could
obtain good discriminative performance. The structure of the discriminator is presented in
Figure 6, and the module color is the same as in Figures 4 and 5.

The first layer of the discriminator was composed of Conv2D and LeakyReLU, and
the last layer was composed of Conv2D and Sigmoid. The remaining layers all consisted of
Conv2D, BatchNorm, and LeakyReLU. Both the second-stage refinement map and ground-
truth image were fed into the discriminator. The detailed parameters of the discriminator
are listed in Table 5.
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Table 5. The structure of the discriminator used in UA-GAN (Stage 2).

Name Kernel Stride Padding Input/Output
Channels

Conv1 4 × 4 2 × 2 1 × 1 2/64
Conv2 4 × 4 2 × 2 1 × 1 64/128
Conv3 4 × 4 2 × 2 1 × 1 128/256
Conv4 4 × 4 1 × 1 1 × 1 256/528
Conv5 4 × 4 1 × 1 1 × 1 528/1

2.3. Loss Function

Two different loss functions were adopted respectively for the first-stage and second-
stage models.

2.3.1. Loss Function of First Stage

The first stage mainly employed the TrajGRU model. Shi et al. [20] designed a very
effective loss function, weighted MSE, and weighted MAE for the TrajGRU model, which
can improve the prediction accuracy of heavy rain. In this paper, we used a similar loss
function but changed the threshold and the value of each weight. By assigning different
weights to the pixels of different precipitation intensities, the greater the precipitation
intensity, the greater the weight to enhance the sensitivity of the model for heavy rain pre-
diction [20,29,30]. The weights are defined in (4), where dBZ refers to the radar echo value.

w(z) =


1, z < 20 dBZ
2, 20 dBZ ≤ z < 35 dBZ
6, 35 dBZ ≤ z < 45 dBZ
60, z ≥ 45 dBZ

, (4)

The loss function of the first stage is stated as (5):

Lossstage1 =
1
T ∑T

t=1 ∑i,j

(
wt,i,j

((
Yt,i,j − X̂t,i,j

)2
+
∣∣Yt,i,j − X̂t,i,j

∣∣)), (5)

where T stands for the number of radar echo images in the sequence and wt,i,j is the weights
of (i, j) pixel on the t-th image. Yt,i,j and X̂t,i,j are the values of (i, j) pixels on the t-th
ground truth and predictive images. In this way, we used the sum of the weighted MSE
and weighted MAE together as the loss function of the first stage.
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2.3.2. Loss Function of Second Stage

In a GAN model, the generator and the discriminator have different tasks. The genera-
tor’s job is to generate realistic images to fool the discriminator, while the discriminator’s
job is to tell if the image is from the generator or a real image. They achieve better per-
formance by competing with each other. Thus, the goal of the conditional GAN can be
described as (6):

LCGAN(G, D) = Ex,z[log D(z, x)] +Ez[log(1− D(z, G(z)))], (6)

In which the generator (G) intends to minimize, while the discriminator (D) tries to max-
imize. In Formula (6), x represents the ground-truth echo images and z represents other
conditional information to generate a specific prediction image. Of course, only using
the previous loss function of conditional GAN will only allow the generator to imitate
the small-scale features of real images, but not fine-tune the generator on the pixel scale.
Therefore, on the basis of the basic loss function, we added MSE and MAE functions to
enable the generator to have better echo intensity prediction accuracy at the pixel scale,
which is shown in the following Equation (7).

Lossstage2 = ω1(Ex,z[log D(z, x)]−Ez[log(1− D(z, G(z)))]
+ω2(x− G(z))2 + ω3|x− G(z)|

(7)

The designed loss function consisted of three parts: basic GAN loss, MSE, and MAE,
where ω1, ω2, ω3 denote the weights of the three parts, respectively. To make the three loss
parts have similar orders of magnitude, here we set ω1 = 1, ω2 = ω3 = 100.

3. Experiments
3.1. Radar Echo Image Dataset

HKO-7 dataset. The radar echo maps dataset used in this paper were from the famous
and public dataset HKO-7 [20], provided by Hong Kong Observatory (HKO), which
contains 7 years of radar echo data from 2009 to 2015. The original size of each radar
CAPPI reflectivity image was 480× 480 pixels, taken from an altitude of 2 km every 6 min,
which means it can collect 240 frames of radar echo images in a single day. The radar echo
map in this dataset covers Hong Kong and its surrounding region with an area of about
512 km× 512 km. With the formula pixel = 255× dBZ

70 , we can convert the radar echo
intensity to pixel value and then limit the range within (0, 255). An example of radar echo
image is shown in Figure 1.

Dataset filtering and segmentation. Since precipitation does not occur every day,
the radar echo image at the time of no precipitation is not meaningful for developing the
network, so before dividing the training set and the test set, it is necessary to filter out some
data with precipitation and discard the part without precipitation. To preserve the integrity
of the precipitation process, it is necessary to retain the whole process of precipitation
generation and disappearance. Finally, we divided the filtered precipitation data into
training set and test set. There were 812 days in the training set and 131 days in the test set.
In the second stage, in order to shorten the training time, we randomly selected a part from
the training and test set of the first stage as the training and test set of the second stage.
In the second stage, 80,000 echo frames were selected for the training set, with 724 days
involved and 8000 echo frames for the test set, 113 days. The details of the two datasets
used in the two stages are demonstrated in Tables 6 and 7.

Table 6. The dataset used in the first stage.

Training Set Test Set

Years 2009–2014 2015
Days 812 131

Frames 192,168 31,350
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Table 7. The dataset used in the second stage.

Training Set Test Set

Years 2009–2014 2015
Days 724 113

Frames 80,000 8000

3.2. Evaluation

For achieving “no blurry” and high-accuracy echo prediction, we employed both
image quality evaluation and prediction accuracy indexes to evaluate the performance of
the proposed network at the same time.

Image quality evaluation index. To compare echo images generated by our model
with the real images considering image structure and clarity, three widely-used metrics,
RMSE, SSIM, and sharpness, were employed [27,29,30,39,40]. Their definitions are given in
Equations (8)–(10).

RMSE is a widely-used intuitive error evaluation index [19,20,41]. The smaller the
RMSE is, the smaller the error is between the two figures. In Equation (8), x stands for the
ground-truth echo image while x̃ stands for the predictive echo image. W and H are the
width and height of the image, respectively.

RMSE(x, x̃) =

√
∑i ∑j

(
xi,j − x̃i,j

)2

HW
(8)

SSIM (structural similarity) [42], with its formulation given by Equation (9), is also a
famous image quality evaluation metric [30,40]. It estimates the structural similarity of two
images by calculating brightness, variance, and covariance. In Equation (9), µ is the mean
value and σ is the covariance. C1, C2 are constants used to avoid division by 0. The larger
SSIM is, the more similar the two images are.

SSIM(x, x̃) =
(2µxµx̃ + C1)(2σxx̃ + C2)(

µ2
x + µ2

x̃ + C1
)(

σ2
x + σ2

x̃ + C2
) (9)

Sharpness [39] of an image can be estimated by calculating the gradient difference
between the two images. Higher sharpness means a sharper image with more details.
Equation (10) defines sharpness, where ∇ix =

∣∣xi,j − xi−1,j
∣∣, ∇jx =

∣∣xi,j − xi,j−1
∣∣.

Sharpness(x, x̃) = 10 log10
max2

x̃
1

WH

(
∑i ∑j

∣∣(∇ix +∇jx
)
−
(
∇i x̃ +∇j x̃

)∣∣) (10)

Apart from image quality indexes for evaluating the details in predicted echo maps,
employing some metrics for focusing on prediction accuracy is also quite important.

Precipitation nowcasting accuracy index. As shown in refs. [19,20,29,30], three com-
monly used precipitation nowcasting metrics, namely, critical success index (CSI), Heidke
Skill Score (HSS), and false alarm rate (FAR) were also employed to evaluate the prediction
accuracy in this work. To calculate them, we first binarized the image 0–1 using a specific
threshold. This means that pixel value larger than threshold was set to 1, while the smaller
was set to 0. As shown in Table 8, TP, TN, FP, and FN represent different results.

Table 8. Confusion matrix used in calculating CSI, HSS, and FAR.

Prediction = 1 Prediction = 0

Truth = 1 TP FN
Truth = 0 FP TN
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Then, we can calculate CSI, HSS, and FAR score using the following Equation (11):

CSI = TP
TP+FP+FN

HSS = 2×(TP×TN−FP×FN)
(TP+FN)(FN+TN)+(TP+FP)(FP+FN)

FAR = FP
TP+FP

, (11)

3.3. Results

For the sake of discussion, we used UA-GAN to refer to our entire two-stage model.
In the experiments, we compared our two-stage model with one optical-flow based model:
ROVER [16], four well-known deep-learning models: ConvLSTM [19], ConvGRU, Traj-
GRU [20], which is also the first-stage result of our model, and PredRNN++ [24] on the
image quality evaluation indexes RMSE, SSIM, sharpness, and on the forecasting evaluation
indexes CSI, HSS, and FAR. Meanwhile, to demonstrate the importance of our proposed
attention mechanism, we also conducted an ablation experiment to delete all the 2DSRAB
in the second stage, which is be referred to as UA-GAN (without attention).

Experiment analysis. In our experiments, we used the past 10 frames of radar echo
images to predict the 10 future echo frames, that is, to predict the future one-hour radar
echo images using the past one hour.

First, three image quality evaluation indexes with different methods were compared
as shown in Table 9. In the table, ‘↓’ means the smaller the better, and ‘↑’ means the larger
the better. We mark the best result within a specific metric with bold face.

Table 9. Image quality comparisons of radar echo prediction.

Model RMSE ↓ SSIM ↑ Sharpness ↑
TrajGRU (first stage) [20] 0.132 0.570 33.674

PredRNN++ [24] 0.142 0.556 39.517
ConvGRU [20] 0.137 0.568 26.877
ConvLSTM [19] 0.139 0.565 30.464

ROVER [16] 0.152 0.404 22.173
UA-GAN (without attention) 0.128 0.514 72.483

UA-GAN (Ours) 0.099 0.585 63.395

From Table 9, all the deep-learning models outperformed the optical flow-based
ROVER algorithm [16]. Among the deep-learning models, our UA-GAN model achieved
the best results in RSME and SSIM. It was second only to UA-GAN without an attention
module in sharpness. It improved the RMSE score of UA-GAN (without attention) (second
best) from 0.128 to 0.099 (decrease of 22.6%), the SSIM score of TrajGRU (first stage, second
best) from 0.570 to 0.585 (increase of 2.63%), and sharpness score of PredRNN++ (second
best) from 39.517 to 63.395 (increase of 60.4%). It is clear that the proposed UA-GAN model
is beneficial to generate sharper echo map prediction with more small-scale details.

In addition, to provide an all-round evaluation of the algorithms’ prediction accuracy
performance, we also present the forecasting evaluation scores for multiple thresholds
(25 dBZ, 35 dBZ, 40 dBZ, 45 dBZ, and 50 dBZ) that correspond to different rainfall lev-
els [19,20,29,30]. The test results are shown in Tables 10–12. The best results are also marked
with bold face.



Remote Sens. 2022, 14, 5948 15 of 19

Table 10. Scores of CSI(↑) at echo thresholds = 25, 35, 40, 45, and 50 dBZ.

Model 25 dBZ 35 dBZ 40 dBZ 45 dBZ 50 dBZ

TrajGRU (first stage) [20] 0.331 0.261 0.208 0.158 0.121
PredRNN++ [24] 0.342 0.271 0.217 0.161 0.114

ConvGRU [20] 0.326 0.257 0.207 0.160 0.111
ConvLSTM [19] 0.323 0.255 0.203 0.155 0.113

ROVER [16] 0.309 0.231 0.169 0.115 0.078
UA-GAN (without attention) 0.328 0.257 0.198 0.141 0.097

UA-GAN (Ours) 0.381 0.313 0.256 0.193 0.138

Table 11. Scores of HSS(↑) at echo thresholds = 25, 35, 40, 45, and 50 dBZ.

Model 25 dBZ 35 dBZ 40 dBZ 45 dBZ 50 dBZ

TrajGRU (first stage) [20] 0.406 0.345 0.290 0.240 0.176
PredRNN++ [24] 0.406 0.346 0.291 0.237 0.189

ConvGRU [20] 0.401 0.341 0.290 0.239 0.172
ConvLSTM [19] 0.396 0.337 0.284 0.231 0.174

ROVER [16] 0.370 0.297 0.225 0.158 0.107
UA-GAN (without attention) 0.404 0.340 0.277 0.208 0.150

UA-GAN (Ours) 0.473 0.409 0.349 0.277 0.205

Table 12. Scores of FAR(↓) at echo thresholds = 25, 35, 40, 45, and 50 dBZ.

Model 25 dBZ 35 dBZ 40 dBZ 45 dBZ 50 dBZ

TrajGRU (first stage) [20] 0.564 0.636 0.679 0.693 0.531
PredRNN++ [24] 0.604 0.640 0.677 0.705 0.631

ConvGRU [20] 0.587 0.622 0.654 0.664 0.511
ConvLSTM [19] 0.581 0.628 0.658 0.677 0.512

ROVER [16] 0.585 0.612 0.749 0.774 0.745
UA-GAN (without attention) 0.566 0.632 0.704 0.778 0.728

UA-GAN (Ours) 0.466 0.514 0.562 0.605 0.627

Judging from the performance of UA-GAN in important CSI and HSS scores, our
method achieved a significant accuracy improvement compared with optical flow methods
and other deep-learning methods, especially at high echo intensity thresholdds (heavy
rainfall). Compared with the deep-learning models, the optical flow-based ROVER method
had a relatively poor prediction performance, and presented a gap in the evaluation indices.
In deep-learning approaches, it can be seen that the proposed UA-GAN achieved better
nowcasting scores than other four methods for almost all three prediction accuracy metrics,
and, particularly importantly, had an obvious improvement at the 45 dBZ and 50 dBZ
(heavy rainfall) thresholds. At the 50 dBZ threshold, the CSI under our UA-GAN was
over 0.017 higher than that under the TrajGRU method (increase of about 14%), and also
0.024 higher than that under the PredRNN++ model (increase of nearly 21%). Moreover, the
HSS was also much improved by about 16.5% relative to that under the TrajGRU method,
of over 8.5% relative to that under the PredRNN++ method. It is clear that our proposed
method had better prediction accuracy even for heavy rainfall, which usually is a more
difficult task. In addition, to verify the effectiveness of the proposed attention mechanism
(2DSRAB) in the generator, an ablation experiment was conducted and the test results
under UA-GAN (without attention) were also supplied. It was demonstrated that the
proposed model with the 2DSRAB attention mechanism could remarkably enhance the
three accuracy metrics relative to that without the attention mechanism.

Figure 7 further shows the prediction accuracy scores for the 6 to 60 min lead times.
They are the average scores for the whole test dataset. The important CSI and HSS scores
had similar trends, and they all decreased with time. From this figure, even for different
lead times and different rainfall intensities, the proposed UA-GAN also outperformed
other models whose nowcasting performances degraded faster as the lead time increased.
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Figure 7. Subfigures (a–o) present the precipitation nowcasting evaluation scores (CSI, HSS, and
FAR) for different lead times at different thresholds, respectively.

A visualization example of the radar echo maps predicted by different models is
shown in Figure 8. The first line is the 10 radar echo frames in the past, and the second line
is the ground truth of the future 10 echo frames. There were three major echo regions at
bottom left, middle, and top right of the echo images, respectively. From the bottom left
and top right corners of the images, it is clear that the major echo regions moved towards
to the east. Moreover, the intensity of middle echo region was gradually weakening.

At the first moment, nearly all models predicted accurately. Then, significant differ-
ences were observed as the lead time increased. The forecasting echo scale in ROVER
(optical flow) was gradually reduced and the echo intensity change was ignored. As
time goes by, PredRNN++ and TrajGRU tended to exaggerate the forecasting scale and
each region stuck to each other. The major echo region’s intensity by the RNN-based
methods (PredRNN++, TrajGRU, ConvGRU, and ConvLSTM) tended to be overestimated.
Importantly, the small-scale details were gradually lost in extrapolations. The intensity
distribution inside the echo map could not be forecasted correctly and the boundaries
became smooth. By comparison, our UA-GAN provided the best performance, where the
predicted echo frames were more realistic, and the details and distribution of each part
were also better preserved. As the lead time increased, our prediction quality did not
experience a significant change, while the echo intensity and position were more consistent
with the real images than other methods.
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Considering the attention mechanism, comparing with the proposed method without
attention, it can be seen that our UA-GAN had more precise small-scale details at the
bottom-left corners and could better predict echo weakened in the middle regions of the
predicted echo maps

4. Conclusions

In this paper, a two-stage network was proposed to achieve the goal of radar echo
extrapolation, whose first stage was a well-trained 10-in–10-out TrajGRU model, and
the second stage was UA-GAN, a deep residual attention enhanced GAN model. Using
TrajGRU to obtain spatiotemporal movement information of rain field, the first stage was
able to produce a preliminary forecast. As for the second stage, we proposed a Unet with
spatiotemporal attention generator in GAN. We input four past frames of echo images and
one frame generated in the first stage into the generator, so that the generator could capture
certain historical spatiotemporal features. Additionally, we designed a new attention block,
2DSRAB, in the decoder of the generator, which integrates the global residual learning and
local deep residual spatiotemporal attention to adaptively rescale the multiscale features,
and enables the generator to produce more accurate and more detailed prediction images.
Experiments showed that our network outperformed traditional optical flow method
and some well-known deep-learning methods in both image quality (RMSE, SSIM, and
sharpness) and prediction accuracy metrics (CSI, HSS, and FAR). From Tables 9–12 and
Figure 7, it is clear that our model can provide more accurate prediction echo images with
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more small-scale details. Moreover, the proposed attention mechanism in the generator
also further improved the prediction accuracy.

In the future, we will continue to work on new models to improve the prediction
accuracy as well as enhance the small-scale details of the radar echo images. Moreover,
we hope to introduce environmental field information and satellite products into the
extrapolation model to improve the prediction of radar echo and further increase the lead
time of radar extrapolation. We will also try to build an operational nowcasting system
using the proposed algorithm.
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